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Thermoelectric power of a narrow constriction in the adiabatic approximation
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The thermoelectric power of a narrow constriction is calculated in the adiabatic approximation with
the transmission probability, which includes the quantum effects. The peak values of the thermoelectric
power of a constriction depend on not only the radius of curvature of the constriction but also the tern-

perature of the system. Streda's prediction as to the peak values should be modified at low temperatures.

It is well known experimentally' that the conductance
6 of the ballistic electrons in a narrow constriction in the
two-dimensional electron gas (2DEG) realized in
Al„Gai „As/GaAs heterojunctions reveals quantized
values:

286= n,
h

where n ( = 1,2, . . . ) is the number of the occupied sub-
bands. Theoretically this quantization can be easily ex-
plained within the adiabatic approximation, which as-
sumes a smooth (on the scale of the Fermi wavelength
A,F ) variation of the width of the constriction. Under this
approximation, the electron transport through the con-
striction is regarded as the 1D Wentzel-Kramers-
Brillouin (WKB) scattering problem in which a semiclas-
sical transmission of the electron through the potential
barrier is expected. The studies under this approx-
imation have been done by many theo-
rists. ' Although there is increasing realization that
the adiabatic approximation is not a good approximation
for the experimental systems,

" it is still useful as a quali-
tative guide.

Recently the peak structure of the thermoelectric
power S of a constriction has been theoretically clarified
by Streda. ' The predicted quantized values of the peaks
are independent of the temperature of the system and are
given by

of the curvature of the constriction and the temperature
of the system. A similar investigation has recently been
worked out by Proetto. '

The thermoelectric power in a narrow constriction
within the linear-response approximation is given by'

T„(E) dE
BE "

kit T

T„(E)dE
BE

(3)

T„(E) =8(E E„), — (4)

where E„ is the lowest energy of the nth subband. This
expression is correct in the adiabatic limit. Substitution
of Eq. (4) into Eq. (3) yields

Bf(E) E—P dE
BE kit T

where the infinite square-well lateral confinement poten-
tial for the constriction is assumed for simplicity and

f(E ) is the Fermi-Dirac distribution function, and T„(E)

is the transmission probability of the electron at energy E
through the nth subband. Streda has approximated
T„(E) by a step function of energy:

(2)peak a ln2 59 73 pv/K .
~e~ n —1/2 n —1/2

The nth peak S„""occurs at the width of the constriction
where the number of the occupied subbands at the nar-
rowest point of the constriction changes from n —1 to n

and the height of the peak is independent of the tempera-
ture. ' (The first peak Sf"" is not defined because the
thermoelectric power approaches negative infinity when
the number of occupied subbands is zero. ) This predic-
tion has been confirmed experimentally' ' as regards the
period of the peaks. As to the heights of the peaks, how-
ever, the experimental values are smaller than the pre-
dicted ones. It is very interesting to study the condition
under which the predicted peak values are obtained.

In this paper we investigate how Streda's prediction is
modified in the low-temperature regime due to the effect

T„(E) = . 1+ exp —
m

2R
1/2 k8' —n

7T

where 8'is the narrowest width of the constriction and R
is the radius of curvature of the constriction at the nar-

From this expression, Streda has concluded that the ther-
moelectric power exhibits a peak given by Eq. (2) when p
equals E„.

In the real sample the shape of the constriction is not
so smooth, as we can neglect the tunneling and above-
barrier reAection at the potential barrier. Taking account
of these quantum effects, we get the following expression
for the transmission probability in the adiabatic approxi-
mation:
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FIG. 1. S and G for R = ~, 30k+, and 10k,+ vs W, the width

of the narrowest point of the constriction, at T=4 K. G for
R = ~ and 30k.z are offset to the above by 0.4 and 0.2, respec-
tively, relative to that for R = 10K~.

rowest point, and k=( 2m'E)' /A [rn'(=0. 067mo) is
the effective mass of the electron in GaAs]. A similar ex-
pression has been derived in the case of a saddle-point
constriction' and a more general case. ' From the point
of view of Eq. (6), Eq. (5) is considered to be "R~~ lim-
it,"where the variation of the width of the constriction is
unlimitedly smooth.

We calculate Eq. (3) with Eq. (6) as a function of W at
the several values of R. In the calculation we have as-
sumed the electron concentration N&=3. 5X10" cm
which corresponds to A,F=42.4 nm for the 2DEG of
Al„Ga& „As/GaAs heterojunctions. Figure 1 shows the
thermoelectric power and the conductance corresponding
to three different R's (10k,~, 30K,~, OO) at 4 K. In this
figure S„""(n =2—4) are shown. In the R —+~ limit the
peak values of the thermoelectric power and their posi-
tions are slightly different from those predicted by Streda.
But at W = (A z /2) X integer, the thermoelectric power
has surely the values given by Eq. (2). This discrepancy is
due to the rough estimation of the peak values of Eq. (5).
Although the numerator of Eq. (5) has the maxima at
W = ( A,z /2 }X integer, the existence of the denominator
(whose behavior is the same as that of the conductance)
shifts the positions of the peaks of Eq. (5) to those corre-
sponding to a narrower 8'. Furthermore, the heights of
the peaks with the finite R are reduced in comparison
with the corresponding values in the R ~~ limit. This
result shows that the thermoelectric power depends on
the characteristic property of the constriction. Figure 2
shows the result obtained at 1 K. The reduction of the
peak values of the thermoelectric power is more rernark-
able at this temperature. As pointed out by Glazman
et al. , the value of R determines the effective width of
the integrand of Eq. (3) at low temperatures, but at high
temperatures the temperature dominates in the deter-
mination of the effective width. The critical temperature
T, is given by

FIG. 2. S and G for R = 00, 30K,+, and 10K,+ vs Wat T= 1 K.
G for R = tx) and 30k.+ are offset in the same way as in Fig. 1.

2fi

m '(2R W }'

For example, T, for n =2—4 at R =10k.F and 30K,F are
3.29 K (10K,z) and 1.90 K (30K,+) for n =2; 2.68 K
(10K+) and 1.55 K (30Az) for n =3; 2.32 K (10k,+}and
1.34 K (30K,+) for n =4. Therefore, Fig. 1 corresponds to
the high-temperature regime, where the peak values de-
pend on R weakly. On the other hand, Fig. 2 corre-
sponds to the low-temperature regime, where the peak
values depend on R considerably. These results lead us
to the conclusion that the peak values of the thermoelec-
tric power depend on not only the characteristic property
(the curvature and the width) of the constriction, but also
on the temperature of the system in the temperature re-
gime considered. As claimed by Streda, his result is ex-
pected to be valid at higher temperatures. At very high

temperatures, however, a ballistic transport will break
down. Therefore, his prediction on the peak structure
can be realized under the conditions of an adequately
high temperature and/or a very smooth constriction.
Under the condition imposed in our calculation, the con-
ductance exhibits the quantized values. The effect of the
curvature of the constriction and the temperature on the
conductance is seen in the slopes between the plateaus. It
is reasonable that the thermoelectric power depends on
the constriction geometry and the temperature, since the
thermoelectric power is proportional to the energy
derivative of the logarithm of the conductance.

In summary, we have calculated the thermoelectric
power of the narrow constriction by using an expression
plausible for the transmission probability. It is found
that the prediction by Streda should be modified in the
low-temperature regime, and the heights of the peaks of
the thermoelectric power depend on the geometry of the
constriction and the temperature of the system.

We thank Dr. S. Yamada and Dr. M. Yamarnoto for
sending us their results prior to publication.
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