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We present a Ruderman-Kittel approach to the problem of oscillatory exchange coupling between

ferromagnetic layers separated by a nonmagnetic metal spacer. This model provides a very simple

explanation for the occurrence of long periods as vvell as multiperiodic oscillations, and. is valid for

arbitrary crystal structure and Fermi surface. The role of defects, such as misfit dislocations and

interfacial roughness, is discussed.

I. INTRODUCTION

There is currently great interest in the exchange inter-
action between ferromagnetic layers separated by a non-
magnetic spacer layer. Among the most striking results
is the reporting of a mttltiperiodic oscillatory coupling
for the Fe/Cr/Fe(001) system:1 s here the superposition
of short-period [A 2 monolayers (ML's)] and long-
period (A 10—12 ML s) oscillations is observed. Sim-
ilar results were also reported in Fe/Mn/Fe(001) (Ref.
4), Co/Cu/Co(001) (Ref. 5), and Fe/Au/Fe(001) (Ref.
6) systems.

The explanation of this spectacular phenomenon is
a challenge to the theory. Some attempts have been
made to calculate the exchange coupling as the total
energy difference between the parallel and antiparallel
configurations, either ab initio, or within a tight-
binding scheme. ~s ~~ Such calculations are quite difficult
because the energy difference is several orders of magni-
tude smaller than the total energy itself. For this rea-
son, total-energy calculations have been restricted to rel-
atively small spacer thicknesses so far (N ( 6 ML's and
N & 10—20 MI 's for ab initio and tight-binding calcula-
tions, respectively), and therefore appear not well suited
for investigating long-period oscillatory coupling. More-
over, they often yield results that are at least one order
of magnitude larger than experimental results, so that
the question of their numerical accuracy may be raised.
Even if the problem of accuracy were removed, it might
seem difFicult, from total-energy calculations, to gain a
simple intuitive picture of the physical mechanism in-
volved in the coupling phenomenon.

On the other hand, the oscillatory behavior bears much
resemblance with the one observed for Ruderman-Kittel-
Kasuya- Yosida (RKKY) interactions between magnetic
impurities. Thus the RKKY interaction appears a good
candidate for the mechanism of oscillatory interlayer cou-
pling. However, when applied in its simplest version
(i.e. , making a free-electron approximation and assuming
a uniform continuous spin distribution within the ferro-
magnetic layers), ~ ~~ the RKKY theory predicts a sin-
gle period A = A~/2 1 ML, which is much shorter

than the experimental ones. It has been shown then
that long periods can indeed be obtained within a sim-
ple RKKY theory, provided that the discreteness of the
spacer thickness is taken into account. In a recent
paper we have presented a general theory of RKKY
interlayer exchange coupling; in this approach, the cou-
pling is related in a physically transparent manner to the
topological properties of the Fermi surface of the spacer
material. Quantitative predictions were obtained for the
oscillation periods in the case of noble-metal spacers.

The aim of the present paper is to give a more com-
plete discussion of the ideas presented in Ref. 18. The
model is introduced in Sec. II. For the sake of physical
transparency, it is useful to first examine the implications
of the RKKY model within the free-electron approxi-
mation; this is done in Sec. III, with special emphasis
on the problem of multiperiodicity. It is often believed
that multiperiodic oscillations are related to complicated
Fermi surfaces; we show here that this belief is incorrect,
and that multiperiodic oscillations may occur as well for
systems with simple Fermi surfaces (for free electrons,
for instance), provided that the discrete atomic structure
within the ferromagnetic layers is considered. Section IV
is devoted to a detailed description of the general theory
sketched in Ref. 18. The influence of structural imperfec-
tions such as misfit dislocations and interfacial roughness
is discussed in Sec. V. Finally, the results obtained for
noble-metal spacers are given in Sec. VI and compared
to recent experimental data.

II. MODEL

We consider two ferromagnetic monolayers F1 and F2
embedded in a nonmagnetic metal. The distance between
F1 and F2 is z = (N+1)d, where d is the spacing between
atomic planes and N the number of atomic planes of the
spacer. The magnetic layers considered here consist of
a single atomic layer, whereas those used for experimen-
tal studies are usually thicker; nevertheless, it has been
found experimentally that the interlayer exchange cou-
pling is roughly independent of the thickness of the mag-
netic layers, so that, most of the coupling can be ascribed
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to the outmost magnetic planes. Thus, as a first approx-
imation, a model with monoatomic magnetic layers is
expected to describe correctly the coupling phenomenon.
The magnetic layers are assumed to consist of spins S; lo-
cated on the atomic positions R; of the host metal. The
magnetic layers are thus coherent with the spacer; this
assumption plays an important role in the problem. It
is expected to be relevant for epitaxially grown systems;
deviations from this idealized situation will be discussed
in Sec. V.

A magnetic layer (say Fl) interacts with the conduc-
tion electrons of the host material and induces a spin
polarization around it. This polarization is propagated
accross the spacer and eventually interacts with F2, giv-

ing rise to an eH'ective exchange interaction between Fl
and F2. The problem of the exchange coupling between
F1 anf F2 can thus be split, into two aspects: (i) the
interaction between a ferromagnetic layer and the host
conduction electrons, and (ii) the way the spin polariza-
tion is propagated across the host material. For the case
of transition-metal magnetic impurities, aspect (i) is usu-

ally ascribed to the so-called s-d mixing interaction.
Investigations of the interlayer exchange coupling on the
basis of s-d mixing have been done by other authors;
t, his approach is rather sophisticated and relies mostly on
numerical calculations, so that the results obtained so far
are not very transparent; a detailed discussion of this as-
pect of the problem will be presented elsewhere. ~ In the
present paper, we aim to focus on aspect (ii) of the prob-
lem, and in particular on the selection of the oscillat, ion
periods.

For this purpose, it is sufBcient to approximate the cou-

pling between the spins S, and the conduction electrons
(spin s, position r) by a contact potential

q y(q) exp(iq R;,),

Vo is the atomic volume and

Vo
X(q) =

(2 )s ) .
n, n'

sk f(&-,k) —f(&,~+~+~)
6&',k+q+G —C&,k

is the nonuniform susceptibility of the host material (in
units of 2p&/atom). These expressions are given within
a reduced zone scheme: the integration over q and k in

Eqs. (3) and (4), respectively, is performed within the
first Brillouin zone (FBZ), and the indices n and n' re-

fer to the energy bands; G is a vector of the reciprocal
lattice chosen such that k+ q+ G belongs to the FBZ.
The interlayer coupling is obtained from (3) and (4) by
summing Q;& over all the pairs ij, i and j running re-

spectively on Fl and F2. The coupling energy per unit
area can be written

Ig 2
———S ) J(RO, ),

0 jqF2
(6)

where 0 labels one site of Fl taken as the origin. Note
that within the present sign convention, positive (nega-
tive) values of I~ ~ correspond to antiferromagnetic (fer-
romagnetic) coupling.

III. FREE-ELECTRON APPROXIMATION

Ey g = Iy 2 cos Hy 2

where Oi 2 is the angle between the magnetizations of F l
and F2. The interlayer coupling constant Iq 2 is given by

V;(r, s) = A6(r —R;) s S;;

this is the form originally used by Ruderman and Kit-
tel for investigating the indirect exchange coupling be-
t,ween nuclear spins, and extended later by Kasuya
and Yosida. ~7 The contact interaction (1), applied to
transition-metal spins, is a rather crude approximation;
it usually predicts incorrect phases for the oscillatory cou-

pling, and the coupling strength is described by an ad-

justable parameter, A. These limitations of the RKKY
model should be kept in mind when comparing its pre-
dictions with experimental results. On the other hand,
it yields correct results for the oscillation periods, which

are the quantities of interest here. Note that SchrieAer
and Wolff have shown that the s-d mixing approach is

equivalent to the RKKY model in the limit of small s-d
mixing parameter and large intra-atomic Coulomb repul-
sion, so that the limits of validity of the RKKY model
are well defined.

The RKKY interaction between two spins S; and Sz
5, 29

Before attempting to calculate the coupling in a gen-
eral case, it is instructive to first examine it within the
free-electron approximation. The calculations can then
be performed in an almost completely analytical man-
ner so that the results are physically transparent; more-

over, many features of the coupling thus obtained remain
qualitatively valid in more realistic situations. In all this
section, the host material will be approximated by a free-
electron gas with the same density; since the model will

be applied to noble metals in this paper, we consider fcc
host materials with one conduction electron per atomic
cell, so that the Fermi vector is k~ = (12x2)~Is/a, where

a is the lattice parameter. The spins S, are still supposed
to be located on the atomic sites of the fcc lattice. In this
section, we adopt the point of view of an ex/ended zone

scheme, which provides the most natural description for
a free-electron gas. Thus, the integrals over q and k in

Eqs. (3) and (4) extend to infinity. 2 To avoid any confu-

sion, the susceptibility is noted here y(q). The exchange

integral in the free-electron approximation is given by the
well- known expression

'H;, =J(R,, )S; S, ,

where the exchange integral is

(2)
4A2rnk4F

J(R) = ~~ F(2kFR),
(2z.)ah

with

(7a)
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z cos z —sin z
F(~) = S2 (gb)

cos z
for z ~+oo; (7b)g3

it oscillates with a period A = AF/2 and decays as R
As a first approximation, one may try to replace the

actual ferromagnetic layers by a continuous uniform dis-

tribution of spins with the same spin density, i.e. , we

perform in Eq. (6) the substitution

d R (8)

d2
Iy 2(z) Ip —

2
—sin(2k~z) for z -+ oo,

with

F2 F

In the above equation, R~~ is the in-plane projection of
R~&. The interlayer coupling is then given as a function
of the distance z by

There is a single oscillation period A = A~/2, and the
coupling decays as z; this result was first obtained by
Yafet. '3

A. Multiperiodicity

We want now to examine the validity of the continuous
approximation (8). When performing the continuous in-
tegration (8) over I"2, the integrand is a function of RJJ,
which oscillates with a period of the order of AF/2; thus
if the inter-atomic distance 6 within the plane is smaller
than Ay /2 we may expect the continuous approximation

(8) to be valid. On the other hand, if b is large as com-
pared to A~/2, it is clear that approximation (8) must
break down.

In order to develop this argument in a more quanti-
tative fashion, we perform explicitly the summation (6)
without making the continuous approximation (8):

1 (A ~ d +
I], ,p(z) = ——

J

— S s dq, exp(iq, z) d qJJ g(qJJ, q, ) ) exp(iqJJ RJJ)
2 (Vp (2~)s

R((GF2

(10)

Because of the translational invariance in the layer plane,
the last sum in the above equation is zero unless

q~~
is

a vector CJJ belonging to the (two-dimensional) recipro-
cal lattice of I"2. Thus the expression of the coupling
becomes

For a vector GJJ j 0, it is easily shown that
the strength of the singularity is reduced by a factor

1 —(GJJ/2k~) . Thus the expression of the inter-2 i/2

layer coupling in the limit of large thicknesses is

1 t' Ai 2 d d
Ig z(z) = ——

J

—
J

S
2 &Vo J Vo 2n.

x ) dq, exp[i(q, z + GJJ R
—OO

II

2

Ii 2(z) = Io —)—
Gg &2kF (2k' )

x sin{[(2k~) —
GJJ]

~ z

+
JJ

(12)
x x(GJJ q~) 1

where R~~ is the in-plane displacement needed to bring
F2 into coincidence with I" 1; the associated phase shift

G~t R~~ depends on ¹ As is well known, the suscepti-

bility g(q) depends only on q and has a logarithmic sin-
gularity in its derivative at q = 2k~ (Kohn singularity),
which is responsible for the long-range oscillatory behav-
ior of the exchange coupling. Thus, the contribution to
Iq q(z) corresponding to a given vector GJJ gives a long-
range oscillatory interlayer coupling if, when integrating
over q„one crosses a singularity, i.e. , if G~~ ( 2k~, the

corresponding wave vector is [(2k~)~ —G2]~~2.
II

It is clear from the above discussion that the multiperi-
odicity is related to the discrete atomic structure within
the layers, and that the number of oscillation periods in-
creases as the in-plane atomic density decreases. This
trend is well exemplified for the case of a fcc spacer:
as shown in Fig. 1, the number of different oscillation
periods for the (111), (001), and (110) orientations is,
respectively, 1, 2, and 3.

Note that, as stressed above, the phase Gr() ~

R~~ depends
on ¹ this must be considered to evaluate the oscillation
period from Eq. (12).

B. Aliasing

At first sight, the prediction of a period A~/2 much
shorter than any observed period might seem to in-
validate the RKKY mechanism. Actually, it has been
pointed out by several authors that this apparent
discrepancy can be removed by a very simple argument:
the spacer thickness z = (N + 1)d (with N an integer) is
not a continuous variable so that an effective period much
larger than A~/2 may result from this discrete sampling.

This eA'ect, known as aliasing, is well understood from
the theory of Fourier analysis: let f(z) be a function of a
continuous variable z, characterized by its Fourier trans-
form F(q); if fjv is a series obtained by sampling f at
equally spaced intervals [i.e. , f~ = f(z = Nd) with N
integer], the Fourier representation F(q) of f~ is peri-
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odic of period 21r/d. Thus, values of q in the interval

[—Yr/d; Yr/d] are sufficient to describe fYv, and F(q) is ob-
tained from F(q) by folding it into [—n./d; Yr/d]

F(q) = ) F(q+ 27m/d) .

(0 ) fcc (111)

o

'IIY' "YYYYY"""

[110] fi I . . a MAw . .
~ YYggY"

~ (b ) fcc (001)

(b)

20 30
N (ML)

40 50

[010]

= [100]

FIG. 2. (a) Oscillatory coupling with a single period
A = 2.1 M L's, showing the modulation of period 21 M L's
due to the beat phenomenon. (b) Oscillatory coupling with
two different periods: Aq ——2 ML's and A2 ——21 ML's.

~ ( C }fee (110)

Actually, the choice of the q interval is arbitrary: any
interval of length 21r/d would give equivalent results; the
interval [—1r/d; 1r/d] represents the best choice, since pe-
riods smaller than 2d are physically meaningless.

Thus the effective period A associated to a given q

vector is given by

2x 2x
q —n—

A d
(14)

~ ~ ~

[110]
Ji

= [001]

where n is chosen such that A ) 2d. In addition to the
aliasing effect, a beat phenomenon may arise from the in-

commensurability of A and d: if A is close to an integer
number P of monolayers (say A/d = P + z), then the
envelope of the oscillations is modulated with a period
A/~z~, as shown in Fig. 2(a). This beat phenomenon
should not be confused with the superposition of a long-
period oscillation [Fig. 2(b)]. However, if only the anti-
ferromagnetic part of the coupling is detected, as is often
the case, it might be dif5cult in practice to distinguish
between these two different behaviors.

FIG. 1. Two-dimensional reciprocal lattice for fcc layers;
(a.), (b), and (c) correspond, respectively, to the (111), (100),
and (110) orientations. The sphere of radius 2k~ is the locus
of singularities of the susceptibility g(q); it should not be
confused with a Fermi sphere. The unit vectors have a length
2s /a.

IV. GENERAL THEORY

A. Calculation of the coupling

Our starting point is the expression of the interlayer
coupling as given by Eqs. (3)—(6). Here and in the follow-
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ing, we consider for simplicity a single conduction band;
the generalization to several bands is immediate. The
integrals over q and k in Eqs. (3) and (4), respectively,
are performed over the FBZ. This is not well adapted to
the symmetry of our problem. Thus we define all the
functions of q and k outside the FBZ by repeating them
periodically on the reciprocal lattice. In other words, we
use a periodic zone scheme, which yields a completely
equivalent description; this allows us to leave out the re-
ciprocal lattice vector G in Eq. (4). Now, the integration

can be performed on any elementary cell of the recipro-
cal space; the convenient choice is a unit cell of prismatic
shape as shown in Fig. 3: the in-plane components q~~

and kll run over the two-dimensional FBZ (2DBZ) of the
layers, whereas q, and k, run from —z /d to 7r/d. The ad-
vantage of using the prismatic auxilliary zone instead of
the FBZ is that the integration over the z and in-plane
components of the wave vector can be separated. The
expression of the coupling becomes

1 t' Ai 2 d
I& 2 ———

I I S, dq, e' *' d qll y(q]], q, ) ) exp(iqll Rll) .

R&~ qF2

which can be written

Ii,2
——

I

—
I
S 4 d kl] B(kll)

2DBZ

with

(17a)

Z" [ooi]

Now, the last sum in the above equation is zero unless

qll = 0 (the only vector Gll belonging to the 2DBZ), so
that, as pointed out by Yafet, P the interlayer coupling is
given by the (one-dimensional) Fourier transform of the
susceptibility g(q, ) = y(qll = » q

1(Ai 2d d
I, , = ——

I

—
I

S' —— dq, y(q. ) e"',
2 (Up) Up 2z.

B(k )=ll~
= g

—x/d —n /d 6k)(, k' Ck)), k

i(k', -k, lz
) (17b)

2x e'& ' '
& (lv" I+ lv'I)

where we have changed the variable q, for k', . Note that,
in contrast to the preceeding section (where a different
point of view was adopted), only Gll = 0 contributes;
here multiperiodicity arises from the multiple singulari-
ties of X(qll ——O, q, ). This is because the periodic zone
scheme (in contrast to the extended zone scheme) folds
all the reciprocal lattice vectors G onto G = 0.

To evaluate B(kll), we proceed as in Ref. 29: noting
that the most important contributions come from states
close to the Fermi surface, we expand E'k)l & and
around c~ to first order in k, and k,'; next we change

and k,' for energy variables c and ~' and perform
the integrations over e and c' by using complex-contour-
integration techniques. Thus we get

[100]

In the above equation, q,"' = k," k,", where k,"—(k, )
is such that e1, ~ ——e~ (e1,

~~
y = e~) and the z com-

ponent of the velocity v," & 0 (v, ( 0), as sketched in
Fig. 4. It is also useful to introduce an effective velocity:
v," = 2lv,"v, I/(lv,"I+ lv,"I). The function F„„(z,T) de-
scribes the temperature dependence of B(kll ) due to the
rounding of the Fermi-Dirac function f(e):

F ( T)
z/I.„,(T)

sinh (z/L„„(T))'

where L„„(T)is an attenuation length given by

0]
Ll„„(T)= (20)

FIG. 3. First Brillouin zone of the fcc lattice (thin lines),
a.nd auxiliary zone for the (001) orientation (bold lines).

Next we proceed with the integration over k~~. As k~~

varies, the factor exp(iq,""z) oscillates very rapidly, so
that only the neighborhood of the vectors k for which

II
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positive (negative), when q, is "inside' ("outside"), as
shown on Fig. 5.

B. EfFect of nesting

I

I

I

I

I

I

I

I

I

I

FIG. 4. Sketch showing the wave vector q,"' and the sta-
tionary vector q, . The calliper q of Roth, Zeiger, and Ka-
plan (Ref. 29) is also shown. The small arrows are the velocity
vectors. See text for further explanations.

z u

(21)

where the cross terms have been cancelled by an appro-
priate rotation of the z and y axes; z~ and K„defined
above are the combined principal curvature radii of the
Fermi surface for the stationary vector q™.We also define
the effective mass m', and the phase g by

q,"" is stationary contribute to the integral. In the fol-
lowing, the index n specifies such a stationary point, and
will be used instead of (p, v) for all quantities taken at
this point. It is easily seen that such stationary points
correspond to vectors q, linking two points of the Fermi
surface with antiparallel velocities, as shown on Fig. 4.

The integral can be calculated by using the stationary
phase approximation: k~~ is kept constant, equal to k~~,
except in the phase factor, and q,"" is expanded to second
order in k() —

k~~, i.e. ,

The result expressed by Eq. (24) holds if K and z&
are not infinite. If both K and e„areinfinite, then the
two parts of the Fermi surface linked by q, closely fit
each other, up to second order in (k~~

—k~~): this case
will be referred to as complete nesting. If only one of the
combined principal curvature radii is infinite, the two
parts of the Fermi surface fit each other along a line: this
case is referred to as partial nesting.

The nesting has a dramatic effect, for it changes the
exponent in the power-law decrease of the oscillatory cou-
pling. For partial and complete nesting, we find that the
coupling decreases as z ~2 and z, respectively, instead
of z in the usual case. Therefore, the interlayer cou-
pling has a much longer range in the case of nesting.

This effect is relevant to the case of Fe/Cr/Fe(001).
The short period (A 2 ML's) observed for this
system has been interpreted as associated with a vec-
tor Iq, I

= 0.95 I'H. ~2 This vector yields an almost perfect
nesting of the electron and hole pockets of the Cr Fermi
surface, respectively, around the points I and H of the
bcc FBZ, which is believed to be responsible for the spin-
density-wave antiferromagnetism of Cr. Thus, our analy-
sis of the effect of nesting provides a sensible explanation
for the very slow decrease of the short-period oscillatory
coupling in Fe/Cr/Fe(001), which has been observed up
to Cr thicknesses as large as 50 ML's.

C. Magnetic planes versus magnetic impurities

The theory of RKKY interaction between isolated
magnetic impurities for a nonspherical Fermi surface was
first given by Roth, Zeiger, and Kaplan. The prob-
lem discussed here (interaction between magnetic planes)

and

2hl~ a

l~"I + l~."I (22)

sgn(~ ) + sgn(~„)
2 4

(23)

is, respectively, equal to 0, rr/2, and x when q, is a
maximum, a saddle point, and a minimum.

We finally obtain for the interlayer coupling

d' ™.I) 2(z) = —Io —) sin(q, +@ ) F (z, T),

where Iu is the same as in Eq. (9). As already discussed
extensively, if q, & s/d, we must add or substract 2x/d,
in order to bring it into the interval [—x/d; 7r/dj. The
oscillation periods are A = 2s'/Iq, I. The sign of q, is

FIG. 5. Sketch explaining the sign convention for q, . (a)
q, is "inside" the Fermi surface, i.e. , positive; (b) q, is "ou-
side" the Fermi surface, i.e. , negative.
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presents many features similar to the one studied by
Roth, Zeiger, and Kaplan, and also significant differ-
ences. It is instructive to compare the two situations.

In the theory of Roth, Zeiger, and Kaplan, the ex-
change interaction between two spins S; and S& oscillates
with periods given by the callipers Q, of the Fermi sur-
face along the z direction (taken parallel to the ij axis),
as shown on Fig. 4, i.e. , by the z projection of vectors
Q linking two points of the Fermi surface having their
velocity, respectively, parallel and antiparallel to z, but
the vectors Q themselves must not be parallel to z. On
the contrary, as discussed above, the oscillation periods
of the interlayer coupling are given by stationary vectors

q, , i.e. , by vectors parallel to z, which link two points
of the Fermi surface with antiparallel velocities; the ve-
locities themselves may be at an arbitrary angle p~ with
respect to the z axis (see Fig. 4).

In both cases the strength of the coupling involves an
effective mass related to the curvature radii of the Fermi
surface. The temperature dependence has the same form
(19), with an attenuation length inversely proportional
to T and depending on the Fermi velocities. Also, the
phase of the oscillations is related in both cases to the
topological nature of the q, (Q, ): maximum, minimum,
or saddle point.

fg/ tan y
(25)

The cutoff distance z~~„is thus small when the angle p~
is large. This result may be interpreted by the follow-
ing simple picture: because of the loss of translational
invariance, the electrons have a finite in-plane coherence
length ( D); since the electrons that carry the coupling
have a velocity at an angle y~ with respect to the z axis,
the coherence length in the z direction is D/tang
The cutoff distances zm» corresponding to the various
periods will in general be different, since the angles p
themselves may be different.

For a noble-metal spacer in the (001) orientation the
angle 7 is zero for the two periods, whereas in the (111)
orientation it is very large (y = 62' —68'). Thus we
expect the coupling to be rather insensitive to the mis-
fit dislocations for the (001) orientation, whereas the ef-
fect should be dramatic for the (111)orientation. To be
more quantitative, we have evaluated the cutoff length
for Cu/Co/Cu(111) and Au/Co/Au(111), where the mis-
match is, respectively, ~g~ =2.5' and )g~ =14%: the esti-
mated cutoff length is, respectively, z~~„25ML's and
zxnax 4 ML's

V. INFLUENCE OF STRUCTURAL
IMPERFECTIONS

A. Influence of misfit dislocations

So far we have considered only systems with perfectly
ordered structures. While it is obvious that real systems
always present some defects, it is of crucial importance
to evaluate the influence of departures from the hypo-
thetical perfect systems. Among the defects that play an
important role in ultrathin films are the misfit disloca-
tions. They occur when the lattice parameter of a layer
does not match exactly the one of the underlying layer,
which is a very frequent situation. Assuming that the
mismatch is entirely accommodated by interfacial dislo-
cations, the average distance between the dislocations is
approximately D d/~g~, where ri is the lattice mismatch
between the magnetic material and the spacer material
(we neglect here the difference between the in-plane lat-
tice parameter 6 and the interplane distance d, which is
unimportant for the qualitative discussion given here).

The effect of the dislocations is to destroy the in-plane
translational symmetry for distances larger than D. Be-
cause of the loss of translational invariance,

q~~
is no

longer exact, ly equal to zero in Eq. (15); instead, it is dis-
tributed around zero with a typical width b,

q~~ 1/D
One can easily see that this distribution of q~~ in turn
induces a distribution of the stationary vectors q, of
typical width b, q, Aq~~ tang (to first order in Aq~~),
where y~ is the angle between the corresponding Fermi
velocity and the z direction (see Fig. 4). Because of
the distribution of q, , the coupling will be rapidly sup-
pressed by destructive interferences for z larger than
z~~„1/Eq, D/ tan y, i.e. ,

B. Influence of interfacial roughness

The term roughness is a very vague one. Thus, it seems
important to give a precise (as far as possible) definition
of what is meant by roughness. Let z~ and z2 be the posi-
tion of the interfaces bounding the spacer layer. Because
of the imperfect growth mode, they are not constant over
the layer, but fluctuate as a function of R~~. We need at
least two parameters to describe these fluctuations. The
first one is the width cr of the distribution for zq and z2
(which we may assume to be the same for the two inter-
faces). The second parameter is the lateral correlation
length for the fluctuations of z~ and z2,. we may roughly
describe it as the average "diameter" ( of the flat por-
tions of the interfaces. Another important characteristic
of the problem is the degree of mutual correlation of the
two interfaces.

It is not possible to give a rigorous description of the
influence of roughness on the interlayer coupling, so that
we must rely on qualitative arguments. Basically, we
may expect the effect of roughness to be twofold: (i) it
causes the spacer thickness z to fluctuate with an ampli-
tude Az around its average value z, so that the coupling
must be averaged over these thickness fluctuations and
(ii) it breaks the in-plane translational invariance over
distances larger than g.

Effect (ii) is completely analogous to the effect of misfit
dislocations discussed above, so that it causes the cou-
pling to be suppressed for spacer thicknesses larger than

tan p

This eA'ect has been overlooked by Wang, Levy, and Fry
in their discussion of roughness.

The effect (i) can be described by convoluting Ii 2(z)
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with the distribution of thickness fluctuations P(z —z),
or equivalently by multiplying y(q, ) by the Fourier trans-

form P(q, ) of P(z —z) in Eq. (16). This is the formula-
tion used by Wang, Levy, and Fry. If the two interfaces
are mutually uncorrelated (as was implicitely assumed in

Ref. 22), then P(q, ) = P~(q, )P2(q, ), i.e. , Az = ~2o (for
Gaussian distributions); however, if the two interfaces are
mutually correlated the latter relation no longer holds,
and Az may be much smaller than v 2o. The effect of
the thickness fluctuations is basically to smooth out os-
cillations with a period shorter than Az, i.e. , it acts as a
low-pass filter for the oscillation frequency. This effect is
well exemplified for a Cu (001) spacer in Fig. 2 of Ref. 18.
It is responsible for the absence of the short-period os-
cillation (A 2 ML's) in Fe/Cr/Fe(001) when the layers
are not atomically smooth. '

It is important to note that the coupling is influenced
in a completely different manner by effects (i) and (ii): (i)
influences the oscillatory coupling according to its period,
whereas (ii) affects oscillations corresponding to large val-
ues of p, independently of their period.

C. Inhuence of strain

Strain is a common feature of multilayers. A homo-
geneous strain may arise, for instance, from the interfa-
cial lattice mismatch between the different materials. 3

Strictly speaking, a homogeneous strain is not a defect,
but merely a modification of the structure. Nevertheless,
it is expected to modify the Fermi surface with respect
to the bulk and hence also the periods of oscillatory cou-
pling. As discussed in Ref. 34, the modification of the
Fermi surface depends crucially on the kind of strain,
and for a given strain the change in period will depend
on the kind of stationary vector q, . Moreover, in real
films, one can expect the strain to be thickness depen-
dent and anisotropic.

To treat this effect thoroughly would require band-
structure calculations, which is beyond our present pur-

pose. One can nevertheless obtain a rough estimate the
magnitude of the eKect from published experimental re-
sults, in the simple case of an isotropic volume strain
AVO/Vu in Cu. s4 These de Haas —van Alphen results are
given in terms of the cross-sectional area g of closed
stationary orbit around the Fermi surface: the belly
(001) and the "neck" orbits change, respectively, as
d in'/d ln Vo —0.6 and d ln 2/d ln Vo —3. As shown
in Ref. 18 the "diameter" of these orbits is related to the
long-period oscillation (A2 ——5.S ML's) for the (001) ori-
entation and the oscillation period (A = 4.5 ML's) for
the (111)orientation, respectively. Thus we expect the
latter to be much more strain-sensitive than the former
(roughly by a factor 5). Moreover, even larger changes of
the "neck" orbit are reported for anisotropic strains,

VI. RESULTS FOR NOBLE METALS

Among the different metals that have been used as
spacers in sandwiches and multilayers, the noble metals
are those that possess the simplest Fermi surface. Fur-
thermore, their Fermi surface properties are known with
a very high accuracy from de Haas —van Alphen and cy-
clotron resonance experiments. They appear therefore
as prototype systems to test the predictions of the RKKY
theory. This has been done for Cu, Ag, and Au in (111),
(001), and (110) orientations in Ref. 18 by using experi-
mental Fermi surface data from Ref. 35. For both noble
metals, the number of different oscillation periods is, re-

spectively, 1, 2, and 4 for (111),(100), and (110) orienta-
tions, so that the trend obtained within the free-electron
approximation for the number of periods versus the in-

plane atomic density remains valid.
Since the publication of our previous paper, some

new experimental results have become available. A com-
parison between the theoretically predicted periods and
those that have been observed so far is given in Table I.

For Cu (111), the observed periodss ss is somewhat
larger than the predicted one; however, the difference

TABLE I. Comparison between the oscillation periods predicted by the RKKY theory (Ref. 18)
for noble metals and those observed experimentally.

Spacer Theoretical periods System

Co/Cu/Co

Experimental periods

A= 6 ML's

Ref,

Cu (111)

Cu (001)

A =4.5 ML's

Ag ——2.6 ML's
A2 —— ".-.'.9 ML's

Co/Cu/Co

Fe/Cu/Fe

Co/Cu/Co

Fe/Cu/Fe

Co/Cu/Co

A 5 ML's

A 6 ML's

A 6 ML's

A 7.5 ML's

Ai 2.6 ML's
A2 8 ML's

40

Au (001) Ag ——2.6 ML's
A2 = 8.6 ML's

Fe/Au/Fe Ag 2 ML's
A2 —7—8 ML's
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is not dramatic and may be attributed to experimental
incertainties, and/or to the strain effect mentioned above.

The (001) orientation is of particular interest, since our
RKKY theory predicts the existence of both a short and
a long period. For Cu (001), the two periods have been
actually found, whereas some authors observed only the
long period. The absence of the short period here
may be due to the roughness, as discussed above. The
agreement between the theoretical and experimental pe-
riods is rather good. For Au (001) the comparison is
even better: the two periods have been found, in close
agreement, with the theoretical predictions.

The results displayed in Table I clearly show that the
RKKY theory allows to predict in an essentially cor-
rect manner the periods of oscillatory interlayer coupling,
simply by inspection of the Fermi surface of the spacer
metal. In particular, the observation of the two periods
predicted for Cu (001) and Au (001) is a clear confirma-
tion of our statement that multiperiodicity is not neces-
sarily related to complicated Fermi surfaces, but can oc-
cur as well in systems with comparatively simple Fermi
surfaces (like noble metals), for crystallographic orienta-
tions of low in-plane atomic density.

We show in particular the connection between the mul-
tiperiodicity of coupling oscillations and the discreteness
of the spin distribution within the ferromagnetic layers.
Our results are quite general and allow us, in principle,
to predict the oscillation periods for any spacer metal in

any crystallographic orientation, knowing only its Fermi
surface. We have applied this model to the noble metals,
whose Fermi surface are well known: the overall agree-
ment is excellent, at least with recent results on high-
quality samples. We have also given a schematic theory
of the influence of structural imperfections in real films,
which can explain some puzzling experimental results.

However, the basic assumption of the RKKY theory, a
contact-type interaction between the magnetic moments
and the conduction electrons, is not appropriate for fer-
romagnetic 3d transition metals. As a consequence, the
present model is unable to describe correctly the inten-
sity and the phase of the coupling oscillations. To this
purpose, one needs to treat in an explicit manner the
hybridization between the 3d bands of the ferromagnetic
metal and the conduction band of the spacer metal. This
will be treated in a forthcoming paper. ~
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