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Monte Carlo simulations of highly anisotropic two-dimensional hard dumbbell-shaped molecules:
Nonperiodic phase between quid and dense solid
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Monte Carlo simulations of a two-dimensional hard homonuclear dumbbell-shaped-molecules system
with a high anisotropy parameter d*=0.924 were performed for three different thermodynamic states:
(i) fluid; (ii) aperiodic molecular solid, whose molecular arrangements can be represented by certain
decorations of the kagome lattice; and (iii) high-density solid, whose molecular structure corresponds to
dense packing of the dumbbell-shaped molecules. The latter structure was exemplified in this study by a
herring-bone-type crystal. Explicit calculations of the free energies of the different states, together with

the analysis of the melting region, show that the aperiodic solid structures form a thermodynamically
stable phase between the fluid and the dense solid. The equation of state, structural properties, and the
locations of the phase transitions are reported. The ro1e of the degeneracy entropy in the aperiodic
phase is discussed.

I. INTRODUCTION

Hard-body systems, despite their simplicity, can repro-
duce many essential features and behaviors of real sys-
tems. ' There is no doubt that the molecular shape is
important in determining physical properties of molecu-
lar systems and, in particular, their phase diagrams.
However, the phase diagrams are well established only
for a few shapes. ' ' ' There exists a basic hard-body
shape for which the phase diagram has not yet been
determined quantitatively, although some qualitative re-
sults have been obtained. This is the case of the hard
homonuclear dumbbell, the crudest model for a diatomic
molecule and the simplest nonconvex body. ' The hard
homonuclear dumbbell consists of two fused hard
spheres, atoms, " of diameter 0. and centers at a distance
d =d*o (where d* is the anisotropy parameter). One of
the reasons for having interest in the properties of a sys-
tem of such molecules is the strong degeneracy of its
close-packed structure at d'=1. Strong degeneracy of
low-energy states is characteristic for disordered systems
such as glasses and spin glasses, which are the subject
of current interest in physics. When the degeneracy leads
to a positive entropy per particle, this entropy can play a
crucial role in determining the properties of the system.
In some cases this leads to striking behaviors as, e.g., for
certain quasicrystalline materials in which the aperiodic
(quasicrystalline) phase is stabilized by this entropy. As
it will be shown below, in the case of dumbbells (at d*
close to unity) the degeneracy entropy also stabilizes cer-
tain molecular aperiodic phase. This aperiodic phase can
be thought of as an "atomic crystal, " and the structural
transitions between it and a crystalline phase can be con-
sidered as the simplest example of a phase transition be-
tween atomic and molecular crystal.

In the present work the two-dimensional (2D) version
of the system of hard homonuclear dumbbells is con-

sidered. Each molecule (hereafter referred to as the
dumbbell, for the sake of brevity) consists of two equidi-
ameter hard discs of centers at the distance d*o.; the sys-
tem is hereafter referred to as the HHD system. We re-
port the equation of state (EOS) and structural properties
of the system that were obtained by the Monte Carlo
(MC) simulations at a single value of the anisotropy pa-
rameter, chosen close to 1. An estimate of the stability
range of the aperiodic phase with respect to d' is given.
The whole phase diagram of the system for 0 ~ d* & 1 will
be described elsewhere.

There are a few reasons to justify studies of the 2D sys-
tems. (i) The model is conceptually simpler than its
three-dimensional (3D) counterpart, and the possibility of
direct observations of the molecular structures is useful
for their analysis. (ii) A much narrower hysteresis loop is
expected at the melting transition of the 2D system if
compared to its 3D version. [This is done by analogy to
the 2D hard disks for which the globally densest triangu-
lar structure is at the same time the densest locally.
(Such a property does not hold for 3D hard spheres for
which the tetrahedron is the densest cluster; no complete
filling of the space by the tetrahedrons exists. ) Hence, no
competition between the triangular lattice and any other
(locally denser) "glassy" structure is expected at freezing.
It is then natural to expect that at d*=1 the system
should easily freeze into the triangular lattice of the disk
"atoms" constituting dimers (at d* = I, the molecules will

be called dimers). A small decrease of d* should not
change this situation greatly. ] A narrow hysteresis loop
in a small system constitutes relatively accurate bracket-
ing of the melting transition region. Moreover, there ex-
ist simple, efticient, and accurate methods for computing
the free energy in model systems, and these methods
can be easily applied to the dumbbells. Such a situation
not only allows for cross-checking the consistency of the
obtained results but demonstrates in a convincing way
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that the system studied does not freeze into a periodic
crystalline structure. (iii) Experiments have been done
with rnonolayers of diatornics absorbed on crystalline sur-
faces. In the simplest approximation these monolayers
can be considered as 2D systems and the HHD system
can be thought of as a crude model for them. (iv) The
system is interesting from a purely theoretical point of
view, providing information on the phase diagram of a
low-dimensional model of anisotropic particles. Finally,
(v) lower dimension also means a lower number of the de-
grees of freedom in the system, which should result in
reduction of computer time.

The organization of the paper is as follows: In the next
section (II) some preliminary information concerning the
system studied is given; in Sec. III the simulation results
of the EOS and structural properties of the system are de-
scribed; in Sec. IV free-energy calculations and phase-
transition locations are discussed; and in Sec. V some re-
marks concerning the degeneracy entropy and the phase
transitions in the system are presented. The last section
(VI) contains the summary of results.

(c)

II. PRELIMINARIES

Heuristic reasoning and free-volume arguments suggest
the existence of a few phases in the HHD system, de-
pending on the anisotropy parameter and the density
values. In particular, in the dimer system, d*=1, the
thermodynamic stability of a certain solid, with the di-
mers distributed aperiodically, was suggested for the
whole density range of the solid. ' ' Stability of the
aperiodic phase, which was expected to have its source in
the strong degeneracy of the close-packed structure of
the dimers was recently confirmed by computer simula-
tions. ' The configurational degeneracy of the dimer
close-packed structures leads to a positive entropy per
particle, sDc ——0.857k~T. The orientations of the di-
mers and the positions of their centers of mass in the
aperiodic phase are not quite random: the disk atoms
form a triangular lattice, perfect at close packing and
slightly disturbed at lower densities of the solid. This in-
dicates that the dimer arrangements in the aperiodic
structure are related to certain decorations of the kagome
lattice by the dimer centers of mass. As it is easy to
check, the rule for constructing these decorations re-
quires that in each unit hexagon of the kagome lattice ex-
actly one site is occupied by the center of mass of a di-
mer. Among such configurations there exist countably
many regular (periodic or nonperiodic self similar)—
decorations. Probability of a random choice of any regu-
lar decoration is, however, zero as the number of all the
decorations is uncountably. Hence, there are uncount-
ably many irregular decorations (which are neither
periodic nor self-similar). Such decorations of the ka-
gome lattice will be further referred to as ideal random
decorations (IRD's). Aperiodic molecular structures ob-
tained from the IRD's, by allowing the molecules to
move, represent the so-called disordered (or degenerate)
crystal (DC). ' '

When d* = 1 —e (e) 0) the DC structure, see Fig. 1(a),
into which the HHD Quid should freeze when e is

FIG. 1. Examples of solid structures of the dumbbells at
d =0.924: (a) DC structure, (b) HB crystal, and (c) simple
oblique-lattice crystal.

small, cannot be stable in the whole density range of the
solid. The symmetry of the kagome lattice must be bro-
ken at high densities, and the system should change its
structure. This is so because certain crystalline struc-
tures offer denser packings of the dumbbells, d (1, than
the structure obtained by the random decoration of the
kagome lattice (see Fig. 2), even if some distortions are al-
lowed. The kagome lattice is only a convenient idealiza-
tion which generates the DC structures of the dumbbells.
Except at close packing of the dimers, the observed prob-
ability density maxima of the orientations and positions
of the dumbbells show some (local) deviations from the
IRD. This is easy to understand taking into account that
below the close-packing limit the interparticle interac-
tions do not have the kagome lattice symmetry. It is
worth noting that, except at d*=l, the IRD much

FIG. 2. Example of the IRD for dumbbells at d =0.924.
The dashed lines correspond to the axes of the conjugated tri-
angular lattice, the thin dash-dotted line marks a unit hexagon
of the kagome lattice, and the dotted line indicates the "short"
molecular axis of one of the dumbbells.
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vDC(d )=&3[d "/2+(1 —3d* /4) ] cr (2)

Both these quantities are plotted in Fig. 3. As it can be
seen, vHD vDC', the equality holds only at d* = l.

There exist infinitely many packings of the dumbbells
(e) 0), mostly aperiodic, with the density, p,~ = I/v, ~,
equal to that of the close-packed HB crystal. Some of
them can be obtained by changing orientations of con-
secutive molecular rows in the HB structure [the simplest
example ' is shown in Fig. 1(c)]. It can be seen in Fig.
4(b) that these structures do not exhaust all the possibili-
ties. A question arises whether the degeneracy entropy
per particle of the highest-density state is zero or posi-
tive, as in the case of the DC structures. A rigorous
answer to this question is not known at present. Howev-
er, analysis of a certain lattice model shown in Fig. 4 and
described in Appendix A suggests that this entropy is
zero. Thus, it is assumed further that the degeneracy en-

tropy per particle of the "ground state" of the HHD sys-
tem (e) 0) is zero. If this assumption were not true, i.e.,
if the degeneracy entropy of dumbbells at close packing
were small but positiUe, then the HHD system would not
form any "standard" crystalline phase at d*&0. Its
stable phase at the highest densities would then be in

2.50

2.00

I I I I I I I I I I I I I I I I I
I I I I I I I I I I

I I I I I I I I I I I I I I I I I I 4

1.50

0 50 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.00 0.20 0.40 0.60 0.80 1.00

FIG. 3. Area per particle at the closest packing of the
dumbbell-shaped molecules as a function of e= 1 —d*: (i) IRD
(dotted line) and (ii) HB crystal (continuous line). The star at
a=0.076 represents an MC estimate of the close-packing limit

of real random structures of the dumbbells.

overestimates the area per particle obtained for the real
random close-packed structures (see Sec. III). The reason
is clear from Fig. 2; only a part of the dumbbells are in
contact at the densest IRD. The experimentally estimat-
ed density of the real random packing of the dumbbells at
a certain e is marked by an asterisk in Fig. 3. One of the
simplest crystalline packings that is denser than the ran-
domly decorated kagome lattice is the herring-bone-
pattern (HB) crystal; see Fig. 1(b}. No packing of the
dumbbells is known that reaches higher density in the
thermodynamic limit than that of the close-packed HB
crystal. Hence, in the following the HB crystal is as-
sumed to be the densest structure of the dumbbells. Its
area per particle at close packing is

v„B(d') —:v,~(d*)=[&3/2+d'(1 d—* /4)'~ ]cr . (1)

For comparison, the minimal area per particle of the
IRD can be expressed as

I' I /

FIG. 4. Triangular tilings of the plane corresponding to (a)

the HB crystal, and (b) an aperiodic packing of the same densi-

ty. Two kinds of triangles are used: (i) the isosceles triangle,
whose base (shorter side) is equal to d =d*o. and the other sides

are equal to o, and (ii) the equilateral triangle of the side o.. It is

easy to check that given a tiling at certain d then one can con-
struct a tiling at a different anisotropy parameter d 1, changing
the lengths of the bases of all the isosceles triangles from d to

d, =d &*a. This property can be used to map the tiling problem
onto a certain lattice model, namely, in the limit of zero length

of the short sides of the isosceles triangles (the sides of the equi-

lateral triangles remain intact) one obtains a lattice model being
a certain decoration, see text, of the triangular lattice by tri-
mers. (In this limit the long axes of the rhombi formed by pairs
of isosceles triangles are transformed into pairs of paralle1,
neighboring bonds, forming trimers. The latter are represented
either by straight-line segments or by tilde marks and their mir-

ror images for reasons specified in Appendix A.) The decoration
(c) corresponds to the HB crystal whereas a part (larger dots) of
(d) corresponds to the aperiodic packing shown in (b).

many aspects similar to the DC phase of the dimers.
This would have only minor inhuence on the quantitative
analysis presented in this work and would result in a
slight lowering of the pressure of the structural transition
between the DC phase and the high-density phase.

The above discussion suggests the following picture for
the equation of state (EOS) of the HHD system at
e~O: (i} At low densities the system is fluid (there is
no gas-liquid condensation transition in the system be-
cause no attractive forces are present), (ii) at a certain
density the Auid freezes into the DC phase which, at even

higher density, transforms into (iii) a high-density solid
phase of the highest packing rate. The later phase is
exemplified here by the HB crystalline structure. Some
consequences of this choice wi11 be discussed in Sec. VI.
In this paper we take e =0.076, which leads to
d*=0.924, a value slightly above the rninima1 value of
the anisotropy parameter for which the DC phase is
stable in the free-volume approximation.

At the end of this section we would like to note that
the we11-known problem of the long-range translation or-
der in the 20 sohds has not been taken into account in
this work. This is (i} to avoid unnecessary complications
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and (ii) because the structures considered and the transi-
tions between them are believed to have their source in
the local molecular arrangements. Thus, a local treat-
ment should be sufficient to describe them.

III. THE EQUATION OF STATE
AND THE STRUCTURE DETERMINATION

The EOS and the structural properties of the system
were determined by using the MC method in the NpT
ensemble.

The fluid was simulated in a square box. In the subse-
quent runs the pressure was increased from its minimal
value p

' =pa. /ks T=0.2 up to p
' = l l.5, where the sys-

tern froze into a certain DC structure with some defects
frozen in.

For the solid structures the box shape was allowed to
fluctuate freely. This eliminates internal stresses that
would accompany any misfit between the box shape and
the unit-cell parameters. The simulations of the HB crys-
tal were started at the highest pressure p*=60. Then, in
the following runs, the pressure was decreased until the
system melted at @*=8.5. The simulations of the DC
state were initiated at p* =12; the starting configuration
was a certain IRD generated at v' —=v/v, =1.18, where
v is the area per dumbbell. The pressure was increased
up to p

*=50 and then decreased down to melting, which
has occurred at p* =10.

In the DC state some collective moves of certain
molecular clusters were also introduced in order to sam-

ple different molecular arrangements in this phase. This
was done because, in the absence of such collective
moves, the solid was observed to preserve its molecular
arrangement down to melting. The idea of the collective
moves is presented in Fig. 5 (details are described in Ap-
pendix B). It is worth noting that such collective moves
combined with the standard molecular moves are, in
principle, sufficient for ergodicity in the DC state in the
thermodynamic limit. This is because (i) there exists no
IRD in which none of the clusters shown in Figs. 5 (or
their rotation images) is contained and because (ii) using
the above collective moves one can transform any IRD
(generating a certain real DC structure) into a decoration
with all dumbbells parallel. The proof, which is not com-
plicated but rather lengthy, consists of two parts. First,
one shows that by applying these moves to any IRD it is
possible to construct an infinite row of neighboring mole-
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cules with long axes parallel to the direction of the line
containing their centers. Second, starting from this row
one constructs, by applying the collective moves, a stripe
of arbitrary number of such rows. For a finite width of
the stripe, the arrangement of the molecules in such a
stripe is either equivalent to a perfect oblique lattice of
the molecules or to the oblique lattice with one stacking
fault. When the width tends to infinity, the difference be-
tween these two cases can be neglected because the stack-
ing fault can be removed to infinity. Even these collective
moves were found to be not efficient at high densities, and
above the dimensionless pressure p*=30 the system
remained trapped into a single structure.

The simulations were performed for a system of
%=112 molecules and the averages were calculated for
(2—4) X 10 trial steps per molecule (cycles) after
(0.5 —2)X10 cycles equilibration. Some test runs per-
formed for N =448 dumbbells did not reveal any number
dependence exceeding the experimental error. A series of
runs has also been performed for N=960 in the NpT en-
semble near melting to analyze the structural properties
of the system (these runs are discussed in the Sec. V).
The molecular moves consisted of translations of the
molecular centers accompanied by simultaneous rota-
tions of the molecular axes. The maximal orientational
displacement allowed (in radians) was (2/d') times larger
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FIG. 5. Idea of the collective moves of the molecular clusters
discussed in the text.

FIG. 6. EOS for the different phases of the dumbbells at
d =0.924. The lines in the main figure are drawn to guide the
eyes. The upper inset presents some theoretical approximations
for the Quid: (a) the semiempirical Boublik's equation, Eq. (5) in
Ref. 38, continuous line; (b) the scaled particle theory result, Eq.
(3) in Ref. 3S, dotted line; (c) the second-order y expansion, and
(d) the third-order y expansion (dashed lines). The lower inset
contains an enlargement of the melting region.
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than the maximal translational displacements along the x
and y axes; this is a MC analog of the equipartition of the
kinetic energy when the molecular mass is contained in
the disk centers. The box trial moves were -N' more
often than the moves of a single molecule. The accep-
tance probability of the molecular moves and the box
moves were close to 35%. The collective trial moves of
the molecular clusters in the DC state were 20—100 times
less frequent than those of a single molecule. Their ac-
ceptance ratio varied from about 3% near melting to zero
at the highest pressures studied.

The computed EOS data are collected in Table I and
displayed in Fig. 6; p'=p/p, is the relative density. In
the upper inset, the data for the fiuid are compared with
a few existing theoretical approximations, namely, (i) the
recent semiempirical Boublik's equation, (ii) the scaled
particle theory, and (iii) the second- and third-order
Barboy-Gelbart y expansion. The value of the third
virial coefficient required in case (iii) was estimated as
83/Bz =0.754 from a second-order fit in d' to the re-
sults of Ref. 40, the value of the second virial coefficient
being known analytically. ' As can be seen in the inset,

none of the approximations is quite satisfactory in the
whole density range of the Quid. It is easy to note that
the second-order Barboy-Gelbart y expansion is better
than the third-order one. The lower inset shows details
of the melting transition region.

The solid branches, which at pressures near melting
are close to each other, increase their distance at higher
pressures, tending to difFerent asymptotic values of the
relative density at p*~~: pH&~1 and pDc 0.972.
The latter quantity is the average value obtained by
compressing a few DC structures of dumbbells in a rec-
tangular box that fits the triangular lattice. It is worth
adding that the di6'erences in the EOS data obtained for
the DC branch with and without the collective moves did
not exceed the experimental error, although the densities
of the latter were slightly higher than the densities of the
former.

In Fig. 7(a) the unit-cell parameters of the HB crystal
are presented as functions of the relative area v*=—1/p*.
In Fig. 7(b) the mean orientation of the molecules is plot-
ted. (This mean orientation is the mean value of the ab-
solute values for the two sublattices formed by molecules

TABLE I. Equation of state for the fluid, the DC phase, and the HB crystal. For the solid structures the structural parameters are
also tabulated: the mean molecular orientation P, and the unit-cell sides a =—a /a, ~ and b =b /b, ~; a—,~ =o,
b,~

= [&3+2d ( I —d 2/4) '~' jo. In the case of the DC phase, (i) P was calculated after transforming the orientations modulo m /3 to
the interval (O, m/3), i.e., for an aUeraged single maximum of the orientational probability distribution and (ii) the parameters a, b
represent the sides of the periodic box divided by its sides at an IRD of the area equal to the close-packed HB structure (overlaps of
the dumbbells are allowed; see text). The maximal errors of the density and the unit-cell sides are about 0.5%. The maximal error of
the mean orientation is of order 1%. Single asterisks indicate pressures for which the MC runs were 4X 10 cycles long, double aster-
isks indicate the MC runs performed for %=448 dumbbells (their length was 2 X 10 cycles).

Fluid DC HB

0.20
0.30
0.50
0.70
1.00
1.50
2.00
3.00
4.00
5.00
6.00
7.00
7.50
8.00
8.25
8.50
8.75
9.00
9.25
9.50
9.75

10.00*
10.00
10.25*
10.50*
10.50**
11.00*

0.205
0.264
0.340
0.397
0.461
0.526
0.575
0.637
0.679
0.713
0.733
0.750
0.763
0.773
0.778
0.781
0.791
0.789
0.795
0.798
0.802
0.804
0.802
0.811
0.811
0.810
0.820

50.0*
40.0
35.0
30.0
25.0
20.0*
15.0
13.5
12.0
11.0*
10.5*
10.2*
10.2"*

0.949 0.524 1.020
0.943 0.525 1.022
0.939 0.526 1.025
0.931 0.524 1.031
0.922 0.521 1.038
0.908 0.521 1.046
0.882 0.529 1.062
0.871 0.527 1.071
0.858 0.521 1.081
0.845 0.523 1.094
0.839 0.520 1.091
0.834 0.526 1.097
0.832 0.525 1.095

1.033
1.038
1.040
1.043
1.044
1.053
1.068
1.072
1.078
1.082
1.092
1.093
1.098

60.0
50.0
40.0
35.0
30.0
25.0
20.0
15.0
13.5
12.0
11.0

10.0
10+ saic

9.0

0.971 0.470
0.966 0.468
0.957 0.465
0.951 0.463
0.944 0.461
0.934 0.454
0.919 0.450
0.892 0.437
0.880 0.431
0.868 0.422
0.853 0.413

0.840 0.394
0.841 0.401
0.822 0.392

1.0187
1.022
1.028
1.032
1.038
1.044
1.055
1.075
1.085
1.093
1.108

1.116
1.117
1.138

1.0110
1.013
1.016
1.019
1.021
1.026
1.031
1.043
1.047
1.054
1.058

1.066
1.064
1.070
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of the same orientations at close packing. The molecular
orientation was de6ned as the angle between the molecu-
lar "short" axis and the x axis; the latter was parallel to
the direction of the rows formed by neighboring mole-
cules in the sublattices. ) The parameters of the experi-
mental structure are compared with two simple models:
(i) a hard static model in which the structure is calculated
for an n-inverse power interaction between the centers of
the disks forming dumbbells and then the limit n ~ ao is
taken; (ii) a soft static model in which the dumbbells
interact by a site site -effective potential u (r )
= ——', kz T in(r lcr —1) obtained for the hard-disk system
in the self-consistent free-volume approximation. '" It
is assumed that only the disks that are nearest neighbors
(which have a common side of their Dirichlet polygons)
interact with each other. We observe that the differences
between these models and the experimental data do not
exceed a few percent in the case of the unit-cell sides.
This can be seen as good agreement if we take into ac-
count the nonanalytic character of the dumbbells interac-
tion and simplicity of the models. In the case of the
molecular orientations, the second model is closer to the
MC data.

In Figs. 7(c) and 7(d) analogous plots to those shown in

Figs. 7(a) and 7(b) are displayed for the DC structure.
The experimental data are compared with the IRD model
in which overlaps of dumbbells are allowed (to avoid con-
fusion at high densities), but the decoration rule remains
intact. As can be seen, the IRD model well reproduces
the MC data below p =30. Some differences between the
model and the experiment, concerning the "box sides"
above this pressure, can be related to the mentioned trap-
ping of the system into a single structure at this pressure.
It is worth noticing that the IRD model implies triangu-
lar lattice order of the average positions of the disk atoms
forming dumbbells. Hence, the DC phase can be thought

0.05

(cI )—

TABLE II. Maximal values of the orientational probability
density distribution p,„,and the half width of this distribution
in the DC state {for the averaged single maximum, see caption
to Table I},and in the HB crystal (for a single sublattice).

p —0.00 ---em-o"o

DC
pmax

HB
pmax (p —p)'

—0.05
ooooo /fan

IRD
—0.10

1.0 1.2

FIG. 7. (a) The relative unit-cell sides and (b) the (single-
sublattice) mean orientation (measured in radians) in the HB
crystal as a function of the relative area. The experimental data
are compared with the two approximations discussed in the
text. (c) The relative box sides, and (d) the mean orientation (de-
creased by m/6) in the average maximum (see caption to Table
I) in the DC phase. The experimental data are compared with
the IRD model.

so.o'
40.0
35.0
30.0
25.0
20.0*
15.0
13.5
12.0'
11.0
10.5
10.2

7.48
6.78
6.68
6.01
5.83
5.59
4.67
4.10
3.75
3.46
3.22
2.98

0.051
0.056
0.058
0.064
0.068
0.075
0.093
o.lo6
0.118
0.133
0.139
0.150

60+
so'
40
35
30
25
20
15
13.5
12
11

10
9

72.3
62.9
49.9
43.6
37.4
31.2
25.0
18.1
15.5
13.9
11.9

10.4
9.01

0.0179
0.0210
0.0267
0.0308
0.0356
0.0431
0.0539
0.076
0.088
0.099
0.122

0.146
0.166
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HB
DC
Fluid

I I I I I I where f;d(v)/k/! T= —In(mv) —1 is the free energy of the
ideal gas of dumbbells. To evaluate the integral on the
right-hand side in Eq. (3), we used a sixth-order virial ex-
pansion sufhcient to fit the Quid data with the exact value
of the coefficient B2 and the coefficient B3=0 7.54B2 (see
Sec. III):

6

p —p;d=B2p +B3p + g Bkp" .
k=4

(4)

0 I I

—7T/2 7T//2

of as an atomic crystal. The structural data for the solids
are collected in Table I.

In Fig. 8 typical probability distributions of the molec-
ular orientations are shown for each of the studied
phases. The parameters of these orientational distribu-
tions for the solid structures are shown in Table II.

IV. FREE-ENERGY CALCULATIONS
AND LOCATION OF PHASE TRANSITIONS

The location of the melting transition is approximately
known from the hysteresis obtained in the MC sirnula-
tions by spontaneous freezing of the Quid and spontane-
ous melting of the solid. For determining the thermo-
dynamic stability of the phases and for locating the ex-
pected structural transition in the solid, one needs to
know the free energy of the various EOS branches. This
allows one to apply Maxwell's double-tangent construc-
tion (or an equivalent method) for determining the
phase-transition parameters.

In the case of the fiuid the free energy (we shall use the
configurational free energy per particle implicitly every
tiine) can be obtained directly by integrating the pressure
excess relative to the ideal gas:

f„„;,(v)=f; (v)+ I (p —p; )p 'dp, (3)
0

FIG. 8. Typical orientational probability distributions (nor-
malized to m) for the simulated phases. For the HB crystal the
distribution for only one of its two sublattices, defined in the
text, is plotted. The distribution for the second sublattice is
symmetric to the plotted distribution with respect to zero. The
curves for the solids correspond to the pressure p = 11,
whereas the curve for the fluid to p* =8.

This polynomial was integrated analytically.
In the case of the HB crystal and the DC state, one of

the versions of the Einstein crystal method, described
in Ref. 9, was used after some simple modifications. The
method consists in joining the considered solid structure
of the system with a harmonic crystal by a thermo-
dynamically reversible path. We used the following in-
teraction potential:

+ A,„tN(h/, //t/) =
Udil + UEC

where U'„b . is the interaction potential of the HHD sys-
tem (infinity when any two dumbbells overlap, and zero
otherwise) with the fixed mass center, and UEc' will be
further referred to as the interaction potential of the Ein-
stein crystal with the fixed center of mass. A,„, A,„, are
some coupling constants varying from zero (in which case
the potential corresponds to the pure HHD system with
the fixed mass center) to certain maximal values
A.„'",k„;" which were chosen so large that the original
hard intermolecular interaction gave only a small correc-
tion to the free energy of the Einstein crystal. The quan-
tities (b, //r)' and (b/v P) are defined as

(b, //r)' =N ' g (r; —ro;),

N

(b/vg)=N ' g sin (II), —$0, ) .

In the above formulas r; and I)!I, (i = 1,2, . . . , N) represent
the mass center position and orientation of a chosen mol-
ecule, respectively, whose reference (lattice) values are ro,
and Po;. The c.m. superscript indicates that a given
quantity is related to the system with the fixed center of
mass.

The free energy of the HHD system can be evaluated
by the following formula:

~~tr ~ ~~rotf, &d
= N'ln(Nv*v, )+—f' (1,„'",A,, ;")—f ds ((h&r)' ), + ((b&tt/) ), (7)

where f' ()!„'",iI,„;")is the free energy of the system
with the interaction potential (5), ( .), means the ther-
modynamic average with the interaction potential (5),
and s parametrizes A. ' /(, (

—1)=0, l(, (1)=A, '"
(j=tr, rot). [The first term on the right-hand side in Eq.

(7) comes from the moves of the center of mass of the sys-
tem. ] To reduce computational error the s parametriza-
tion was chosen in such a way as to make the variation of
the integrand with respect to s possibly small; we used the
idea of Ref. 27. The integral in Eq. (7) was calculated us-
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ing the 10-point Gauss-Legendre method. The values of
the averages ( ".), were obtained by the MC simulations

of the system with the interaction potential of Eq. (5).
The simulations were performed at the relative area
v*=1.18, which is inside the (meta)stability region of
both solid phases considered.

The reference values of ro; in the HB crystal corre-
sponded to the unit-cell parameters determined from a
power fit in v* to the data shown in Fig. 7(a); $0; corre-
sponded to the mean orientations of the dumbbells in the
sublattices.

In the DC state the molecular reference positions and
orientations (i) were chosen as IRD's of the required den-

sity or (ii) were obtained by uniform scaling of the real

close-packed DC structures which were first generated by
IRD's and then compressed. In fact, a few molecular ar-
rangements were used to improve the statistics in both
cases. The mean free energies obtained using both kinds
of reference systems were, within experimental error,
essentially the same.

The quantity f' (A,„'",A,„;"),which is the free energy
of the system with the interaction potential (5) at s = 1, is

equal to

yc.m. (gmax gmax) —yc.m. (gmax gmax)+I

where fEc is the free energy of an Einstein crystal (with
the fixed mass center) which at large Al is

fEc (k«, A,,«)= —kz TN 'ln[(eke T/A«) '(eke T/A„, )+i~, /N ],

and f„„is the correction to the free energy of the Ein-
stein crystal, coming from the hard-core interactions of
the dumbbells:

f„„=—kaTN 'ln(exp( —U'„, /kaT))Ec, s=l

kz TN 'I—n[Px,„,«m(no overlaps)] . (10)

The quantity P',„„,' (no overlaps) is the probability that
no overlap will occur for noninteracting dumbbells em-
bedded in the potential UEG . At large A,

~
'", when the

multiple overlaps of the dumbbells can be neglected, this
probability can be expressed by two-body terms, giving'

f„„=,'ks TP,';„=
&, zb—(overlap) .

The probability that a single dumbbell will overlap with
another one, Pzb '(overlap), is easy to compute simulating
overlaps in the system of noninteracting dumbbells in the
field of the EC potential. At large A,

'" this quantity is
very small and even can be neglected if compared to the
numerical integration error.

It is worth noticing that from the two different ways of
defining the reference configurations in the DC state, the
scaled real dense configurations were found to be superior
compared to the IRD. This is because the latter required
extremely large A,

'" to reduce the probability of (the
multiple) overlaps of the dumbbells. Such overlaps have
their source in a very close neighborhood of certain
molecular pairs in the IRD; see Fig. 2. Using very large

values of A, . '" results in increasing computational error.
The values obtained for the free energies of the HB

crystal and the DC average structure are collected in
Table III. Knowledge of the free energies and the EOS
data enable one to calculate the Gibbs free energies:

g=f+pv .

The Gibbs free energies of the solids can be then com-
pared with the Gibbs free energy of the fluid to locate
melting. This is shown in Table IV. As it is easy to note,
the solid structures have much higher Gibbs free energies
than the Quid in the whole hysteresis region. The DC
state exhibits, however, the additional degeneracy entro-
py: sDc =0.857 (compare the last column in Table IV).
Taking this entropy into account, one locates the melting
transition at p,&„„=10.5 0.4, i.e., within the hysteresis
region (see Table V).

The second transition, between the DC state and the
HB crystal is located at pDc„~=35.7+0.4. This pres-
sure is not much different from that at which the system
was trapped into a single structure.

V. THE DEGENERACY ENTROPY AND ERGODICITY

As mentioned in Sec. III, without introducing the col-
lective moves the simulated solid structures preserved
their molecular arrangements down to melting. On the
other hand, the molecular arrangements in the fluid were,

TABLE III. Configurational free energies per particle of the HB crystal and a typical DC structure.
The latter is the mean value obtained for a few (seven in each case) reference configurations: (i) ob-
tained by scaling real dense structures of the dumbbells and (ii) generated by the IRD's.

Structure

HB
DCreal

DCgRD

gmax gmax
tr rot

1000
2000

50000

Integral

3.904(6)
4.663(14)
9.486(24)

corr

0.005
0.019
0.049(4)

yc.m. N
—i

Xln(Xv*v, )

8.5869
9.6205

14.4201

fsolid

4.688(6)
4.976(15)
4.983(28)
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TABLE IV. Comparison of the Gibbs free energies for the studied phases in the melting region.

10.2
11

gH —B

25.070(7)
26.659(7)

tg ical
struct.

25.250(16)
26.887(16)

g fluid

24.374(15)
26.030(15)

RDC

24.393(16)
25.998(16)

of course, varying with "time. " At p*=11.5 the fluid
was observed to freeze spontaneously into a certain non-
periodic structure representing the DC phase. These two
facts compared with the data collected in Table IV seem
to lead to a (double) paradox: (i) The fluid did not freeze
into the solid structure of the lowest Gibbs free energy,
and, moreover, (ii) it froze into the solid structure whose
Gibbs free energy is higher than that of the fluid itself.
Below we discuss this problem in detail, indicating that
such a "paradoxical" behavior can be observed also in
simulations of other strongly degenerate systems, e.g. , in
solid mixtures.

Let us start with the question of whether in the studied
model various molecular arrangements corresponding to
the DC phase will be preserved when the system size and
time of a run tending to infinity. This problem is not only
important for melting but plays a crucial role for the
structural phase transition in the solid: If there were no
transformations from one solid structure to another, this
transition would simply not be realizable. The positive
answer to the posed question would mean that the vari-
ous microscopic structures representing the DC phase
were different ergodic components ' in the model. In
such a case the degeneracy entropy would correspond to
complexity ' and, hence, it would not amount to the
Gibbs free energy of the model. This would imply, in
turn, that the DC phase would not be a thermodynami-
cally stable solid. As it is difFicult to imagine any phase
of density close to that of the DC phase and, at the same
time, with the Gibbs free energy as low as for the DC
phase with the degeneracy entropy included, " one would
be forced to conclude that the actual melting of the HHD
system occurs at much higher pressure than that at
which the spontaneous freezing of the sample of X= 112
molecules was observed. However, spontaneous freezing
of samples of %=448 and 960 (Ref 48) dum. bbells was
observed already at p* = 11 and the frozen structures had
densities close to that of the DC phase. A typical struc-
ture of the frozen system of N =960 dumbbells at p

' = 11
is shown in Fig. 9. As one can see, the centers of mass of
atoms (black dots) form a triangular lattice with a few de-
fects. (The atom-atom distribution function of the system
was found to be the same as in the case of the defectless
system of N=112 dumbbells. ) The orientational order of
the molecules was analyzed by using the functions

TABLE V. Pressures and densities of the phase transitions.

g„(r ) = g cosk(P, P, )—5(r,, r—)
i~i (j&$

(13)
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which are plotted in Fig. 10 for k =2, 6 (P;,P are orien-
tations of two dumbbells whose centers of mass are at the
distance r, and k i"s an integer). It is clear that the angles
between the molecular axes are close to multiples of m. /3
and the angular order is long-range, as expected in the
DC phase.

Spontaneous freezing of the large system into the DC
phase at p* = 11 strongly suggests that also in the ther-
modynamic limit the system will freeze near p =11 into
the same phase. This, however, requires including the
degeneracy entropy into the Gibbs free energy of the
solid. In other words the distinct molecular arrange-
ments cannot be preserved in the DC phase, which has to
be ergodic. Obviously, ergodicity cannot be proved by
computer simulations. However, simulations can provide
some supporting arguments. Such an argument concern-
ing ergodicity of the DC phase is described below.

Different solid structures are represented by small re-
gions of the configurational space, which at close packing
"shrink" to single points or zero-volume sets. To charac-
terize the time evolution of the system one can use, for
example, the quantities (her)™and (b,NP), see Eq. (6),
where the reference configuration corresponds to an ini-
tial structure. In Fig. 11 the time dependence of the
above quantities, characterizing the "penetration" of the
configurational space by a point representing the system,
is presented at two densities. The lower density was
chosen in the melting transition region, whereas the
higher density corresponds to the stable solid. These
runs, much longer than those used to calculate the EOS,

Transition

Melting
Structural

10.5(4)
35.7(4)

Plower

0.812(5)
0.9388(6)

p upper

0.839(6)
0.9521(7)

FIG. 9. Typical configuration of N=960 dumbbells frozen
into a solid at @*=11.Centers of disks forming dumbbells

(black dots) are connected by line segments. The periodic box is
marked by a continuous line.
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were performed in the NVT ensemble, which is computa-
tionally cheaper for these quantities than the NpT ensem-
ble. In both cases the initial configurations were the
IRD's of the required density. It is worth noting here
that because the distances in the configurational space be-
tween the neighboring points representing centers of the
regions (corresponding to different solid structures) are of
order unity, the change of (Azr)' by =1/N can be in-

terpreted as "visiting" a new structure by the system [the
analogous is true for (h~P) at the beginning of the
"walk"; this quantity should saturate at 0.5]. As can be
seen in Fig. 11(a), at the lower density the system

"wanders" through many structures, whereas at the
higher density it remains trapped into certain structures
for a very long time. A few "steps" shown in Fig. 11(b)
indicate, however, that some rcarr angements of the
molecular structures (which were independently moni-
tored by direct observations of the structure of the sys-
tem) have occurred in the system. Frequency of such
rearrangements is, however, by a few (at least three) or-
ders of magnitude lower than in the coexistence region
(or in the fluid, where it is even higher). Nevertheless,
their presence provides an argument for the existence of
nonzero-measure connections in the configurational space
between the di8'erent solid structures and, hence, ergo-
dicity of the solid. As easy to note, the mean "times" be-
tween the consecutive transformations much exceed the
lengths of the runs used for the evaluation of the EOS.
This is one of the reasons why the HB structure remained
unchanged down to melting in spite of much higher
Gibbs free energy than in the DC phase.

Although the above discussion indicates that the DC
phase is ergodic, the observed time behavior of the Quid

at freezing still requires a comment. The lifetime of vari-
ous defectless DC arrangements near melting are about
ten times larger than the length of a single run. On the
other hand, the freezing of the (ergodic) fluid occurs in a
single run. Hence, taking into account considerations de-
scribed in Ref. 48 one could ask why the sample freezes
when in the solid state the degeneracy entropy is practi-
cally not available to it within a single run. The answer
to this question can be obtained if one considers defects
(vacancies and dislocations) contained in the structures
into which the fluid freezes. The defects "speed up"
transformations between various DC structures. The ex-
ample illustrating this fact is given in Fig. 12, where a
plot analogous to those shown of Fig. 11 is shown for
N = 111 dumbbells (and a monornolecular vacancy).
Thus, the defects, which have to be created spontaneous-
ly in large systems, can be thought of as a mechanism sta-
bilizing the DC phase. (They should also play an impor-
tant role in the dynamics of the phase transitions between
this phase and other phases. )

It is worth adding that a spontaneous creation of the
defects in an initially defectless DC structure requires

0.150

(~:v)
.00 ~ I I ~ I I s ~ I I ~ f I ~

(~No)

(~: )

Q 0.100

P.05P —,I,+gai'~i. (m ~.kl'~
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0.00 0 500000 1000000 1500000
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FIG. 11. Time dependence of the diffusional parameters
(bII,r)' and (BID,I()) (a) in the transition region (v*=1.22), and
(b) for a randomly chosen structure of the DC phase (v = 1.19).

FIG. 12. Same as in Fig. 11 for IV= 111 dumbbells with a va-
cancy in the DC phase at v =1.179 375, i.e., at the same num-
ber density as in Fig. 11(b).



36 K. W. WOJCIECHOWSKI 46

much larger samples than that studied here. A system of
N = 1008 dumbbells at p* = 11, obtained from nine repli-
cas of a defectless sample of N = 112 dumbbells, remained
defectless within 10 cycles, and no self-diffusion of the
molecules was observed in it.

A few runs were also performed in the NpT ensemble
for a 1:1 mixture of two kinds of hard disks of
infinitesimally small difference of radii. In the latter sys-
tem the mixing entropy plays a similar role to the degen-
eracy entropy in the HHD system. Three sizes of the sys-
tern were simulated at the relative area v*=1.2544; the
length of each run was 10 cycles. Only in the largest sys-
tem was a spontaneous creation of defects observed (after
about 3 X 10 cycles). The dependence of (b,zr)™on the
cycle number was similar to that of Fig. 11(a). In the
smaller systems defects were not created, and the time
evolution of (b,~r)' was similar to that shown in Fig
11(b).

We will now discuss the influence of the defects on the
EOS. The structures used to generate the EOS in the
solid were defectless, and it is not known a priori whether
and how defects will modify the data in Table I. The
influence of the defects on the EOS and the transition lo-
cation can be estimated from the density difference be-
tween the DC structure into which the fluid of N=960
dumbbells froze spontaneously and that simulated for
N = 112. At p = 11 this difference is less than
Ap*=0.002, i.e., does not exceed the error of a single
run. It is easy to check that such a difference has negligi-
ble influence on the location of melting. In the case of
the structural transition in the solid the matter is not as
obvious. (Computing the Gibbs free energy of the DC
phase near the structural transition to the HB crystal one
integrates the EOS on a much larger interval than in the
case of melting. ) Even in that case, however, we do not
expect any substantial corrections because any systematic
decrease of the density of the DC phase coming from de-
fects will likely be accompanied by a similar decrease of
the density of the HB crystal (coming from the same
reason). Hence, the transition pressure will likely remain
unchanged, within the estimated error. At the high den-
sities at which this transition occurs the density of defects
should be much smaller than at melting, and, hence, the
estimated errors for the transition densities should be also
valid.

VI. SUMMARY

account the fact that various crystalline structures re-
cently studied in the hard diner system' exhibit, within
experimental error, the same isotherms and the same free
energies, which are lower than the free energies of single
aperiodic solid structures, we expect that the same will
hold for the structures of the dumbbells studied here.
Hence, assuming that the close-packed structure of the
dumbbells (d* ( 1) on the plane has a degeneracy entropy
equal to zero, we expect that (i) the structure of the high-
density phase is crystalline and (ii) the determined transi-
tion densities between the DC phase and the HB crystal
are, within the experimental accuracy of the present
work, correct for this phase. Comparing the results ob-
tained in this paper with the results of Ref. 19, one can
expect that the DC phase is stable down to d' =0.8, i.e.,
in a rather broad range of the anisotropy parameter.

The structural transformation in the solid is an exam-
ple of a phase transition in a continuous homomolecular
system in which (at least) one of the coexisting solid
phases is aperiodic with respect to the positions of the
molecular centers of mass. It has been explicitly shown
that the degeneracy entropy of the DC phase, being a glo-
bal property of this thermodynamic state, is responsible
for the thermodynamic stability of this phase. It is worth
stressing that at the time and size scales of the simula-
tions performed this entropy is frozen in the defectless
solid phases, and "activates" only in the presence of de-
fects. The latter, which have to be created spontaneously
in large samples, are expected to play a significant role in
the stabilizing of the DC phase.

Finally, it is worth noting that calculations described
above are in qualitative agreement with the free-volume
approximation described in Ref. 20. This approximation
predicts a phase transition from the high-density phase to
the DC phase when d' is increased from a certain (less
than one) value at which the first phase is stable. The
aperiodic molecular DC phase can be thought of as an
atomic crystal of the disk atoms forming dumbbells. At
the same time, the high-density crystalline phase can be
considered as an example of a molecular crystal. In cer-
tain systems of real diatomic molecules a phase transition
between molecular and atomic crystal was observed at
very high pressure. If we assume that the increase of
pressure results in decreasing the effective atomic radii
without any (or with smaller) decrease of the intramolec-
ular bond length (as it occurs in J2, in such a case d*
increases), then the HHD system can be thought of as the
simplest model reproducing such a transition in 2D.

Using the MC simulations for the system of hard
dumbbells of the anisotropy parameter d*=0.924, we
have shown the existence of two phase transitions in the
system: the first, between the fluid and the aperiodic DC
phase, and the second, between the DC phase and a
high-density solid, represented in this work by the HB
crystal. The equation of state, the structural properties
of the phases, and their free energies were determined.
The phase transitions were located.

We do not claim that the high-density phase of the sys-
tem is actually the HB crystal. ' However, taking into
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M XM square lattice is less than 2 . This number is a
crude upper limit for the number of decorations of two
neighboring rows, each of M sites; the decoration of the
remaining rows is then uniquely determined. The entro-

py per particle is then less than 2M 'ln2.

APPENDIX A: ON THE ENTROPY
OF HARD DUMBBELLS

AT CLOSE PACKING

Figure 4 in the text shows that the close-packed struc-
tures of the dumbbells can be mapped onto a certain lat-
tice model. The lattice model consists of a triangular lat-
tice decorated by trimers: (i) Each lattice site is occupied
by a center of one trimer and two ends of other trimers
and (ii) some configurations of trimers are excluded. The
configurations excluded are the so-called E
configurations in which centers of the trimers with ends
occupying a chosen lattice site are located on the same
side of the line defined by a trimer whose center occupies
this site. In order to eliminate "parallel" analogs of the
E configurations, it is convenient to represent certain tri-
mers by tilde marks (or their mirror images).

The lattice model defined is useful for classifying vari-
ous close-packed structures of the dumbbells and for es-
timating the entropy per particle of the close-packed
structure of the dumbbells in the thermodynamic limit.

Estimating this entropy, one should neglect the difterence
between a tilde and its mirror image. This is because re-
placing the tilde by its mirror image in a part of the lat-
tice (if such a replacement is allowed by the decoration
rules, i.e., if it does not lead to the EC configurations), one
gets new configurations of the dumbbells only for
infinitely long lines of parallel trimers. It is easy to show
that the contribution to the entropy per trimer, coming
from such configurations, is zero in the therrnodynarnic
limit. (The same is obviously true for replacing all tri-
mers by their mirror images. ) It is easy to prove that the
necessary condition for a positive value of the entropy
per particle in the model is the existence of some granite
clusters, which could be changed with no influence on the
remaining part of the lattice. (Otherwise the number of
states in the system can be bounded by the number of
states of the boundary of the system, which immediately
leads to the zero entropy per particle in the thermo-
dynamic limit. ) We have not found such clusters and
hence, we expect that the entropy per trirner is zero.
This implies that the degeneracy entropy per dumbbell at
close packing should be zero in the thermodynamic limit.

It is worth noting that for a lattice model analogous to
that described above, but defined on a square lattice, one
can immediately show that the entropy per particle is
zero in the thermodynamic limit. The follows from the
fact that the number of different decorations of a finite

APPENDIX B: CLUSTER MOVES

The trial cooperative moves were performed in se-

quences consisting of N trial moves of individual clusters.
Each of the latter moves can be divided into four parts.

(I} One of the dumbbells is randomly chosen. (The
same dumbbell can be chosen a few times in a single se-
quence of N moves. }

(2) The kind of the cluster we attempt to move is
tossed. (The probability of tossing any of the three kinds
of clusters, see Fig. 5, should be positive, but its value is
arbitrary. It was found that the acceptance ratio for
small clusters is higher than for large ones, decreasing
roughly by one order of magnitude if the cluster is en-

larged by one molecule. Moreover, moves of smaller
clusters require less computer time. Hence, to increase
efficiency of the structure evolution, the probability of
choosing a pair cluster was taken 0.9 and the remaining
two probabilities were equal 0.05.)

(3) The clusters of the tossed kind (shape) that contain
the chosen dumbbell are searched for. Let i(c) be the
number of such clusters and i,„(c)be the upper limit for
i(c) (c represents the kind of cluster: c=2,3,4 for a pair,
a triplet, and a quadruplet, respectively). It is easy to
check that in any IRD packing i »(2)=i,„(3)=2 andi,„(4)=4 These nu. mbers were also found to be maxi-
mal in simulations of the DC solid with an operational
definition of the clusters used in the simulations.

(4) If the number of the clusters searched for in part 3
is positive [i(c))0] then a random number, 0 g ( I, is
generated, and if g ( i (c ) li ~» one of these clusters ( ran-

domly chosen) is replaced by its mirror image with
respect to an axis containing the mass center of the
chosen cluster and a rescaled position of a center of one
of its atoms, chosen randomly (for quadruplets only the
four atoms closest to the cluster mass center are con-
sidered). The rescaling was applied because the accep-
tance ratio for the cluster moves was found to increase
slightly if in place of the real positions of atoms, r, rescale
positions, r', were used according to the formula

r' r, =a(r ——r, ),
where r, is the mass center of the dumbbell to which the
considered atom belongs, and a =+v'/d is a constant
within a single run.

If no overlap is found after the replacement in 4, the
whole move is accepted. Otherwise the previous
configuration is not changed.

One can check that the cluster moves fulfill microscop-
ic reversibility.
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