
PHYSICAL REVIEW B VOLUME 46, NUMBER 4 15 JULY 1992-II

Theory of electron multiple scattering
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A technique to calculate the T matrix exactly for N scatterers from the individual T matrices in the
elastic-electron-scattering process is developed based on the multicenter-expansion method. A summing

formula for the sets of T matrices is also derived to handle large systems without an accumulation of
significant error. Furthermore, it is applied to the study of multiple scattering of a photoelectron and

electron scattering by an adsorbate on solid surface.

I. INTRODUCTION

Electron scattering plays one of the major roles in
many scientific disciplines. Especially with the recent
rapid progress of surface science, it has become one of
the important tools in surface studies due to its relatively
big cross section. In the energy domain of 10-40 keV,
reflection high-energy electron diffraction (RHEED)
(Ref. 1) is routinely adopted as a structural analysis tech-
nique. RHEED is based on the plane-wave expansion.
On the other hand, in the low-energy domain of 20—200
eV, we usually use low-energy electron diffraction
(LEED), ' which is essentially the layer Korringa-
Kohn-Rostoker method. ' Its theoretical basis is the
spherical-wave expansion method. Their difference origi-
nates in the handling of the singularities of the scattering
potentials. In order to handle the scattering problems,
the T matrix is commonly used, since physical interpre-
tation of the scattering processes can be obtained quite
straightforwardly. It is relatively easy to calculate the T
matrix for a single scatterer. However, the calculation of
the T matrix for many scatterers still remains the main is-
sue in most cases. Practical techniques have been
developed and applied to various problems only for sys-
tems having translational invariance. Especially, in the
LEED analysis, many powerful assembling techniques of
T matrices have been developed by Van Hove and Tong,
Pendry, and others since structural analysis requires ac-
curate and efficient techniques. On the other hand,
without the translational invariance, the scattering prob-
lem cannot be transformed to that within a unit cell, and
usually it tends to become a complicated problem. It is
the reason why the random systems are being studied
only approximately. The difficulty originates from the
fact that a good approximation to scattering-state func-
tions is given not by plane waves but by spherical waves.

Recently, we developed a method for calculating pre-
cisely the total T matrix from the T matrices for two
nonoverlapping scatterers in the elastic process. Fur-
thermore, we applied it to a study of the focusing of the
electron scattering. In this paper, we generalize it to a

system of N scatterers. Our previously developed method
can also handle it, but the error could accumulate as the
number of scatterers increases, since the single-center ex-
pansion is involved in its repetition process. On the other
hand, the method to be discussed here can present the to-
tal T matrix as accurately as individual T matrices.
Therefore, it can be used, for example, for the study of
the random systems, the structure analysis of microclus-
ters, or the electron scattering by gas molecules, as well. '

This method can also be straightforwardly applied to the
study of the multiple scattering of a photoelectron.

A discussion of the present paper is as follows. First,
we report an approach to the calculation of the T matrix
for many-scatterer systems in the elastic process by as-
sembling the T matrices for the individual scatterers in
Sec. II. The multiple scattering of a photoelectron is dis-
cussed in Sec. III. Finally, in Sec. IV we apply the
present theory to the problem of the focusing effect of
electron scattering. Discussions are given in Sec. V.

II. GENERAL THEORY OF THE ELECTRON
MULTIPLE SCATTERING

Formally, the T matrix for N scatterers can be written
as follows using the individual T matrices t
(a= 1, . . . , N):

+ g t Got~+ g t Got~Gotr+
a asap

asap,

pay'

where Go is the free Green's function, and a, P,
y, . . . =1,2, . . . , N. When k; and kf are the incident
and scattered wave vectors, respectively, the T matrix
can be expanded in terms of the spherical harmonics Yz
as

T(kf, k;)=(4n) g TII.Y~(kf)Yg (k, ),
L, L'

where L =(I,m), and the caret indicates a unit vector.
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The transition probability from k, to kI is proportional
to lT(kI, k, )l . In the elastic scattering, lk, l

=
lk&l

=k =(2m, E/fi )', where E is the kinetic energy of an
electron, m, is the electron mass, and A is the Planck con-

stant. Generalizing the case of the elastic scattering for
%=2, which we have investigated in detail before, we
can derive the following expression for the X-scatterer
case as

T(kI, k, )=(k/lTlk, ) =(4m) g YI (k/)[KIT, K, +K/T(GT, K, +KITtGT, GT,K, + ]qI, YI'. (k, )

L, L'

=(4m) g tK/T, (2 GT,—) 'K, ]11,YI (kI) YI', (k, ),
L, L'

where

0

T, = 0

0 0 0

0

(4)

0 0 -N

0
621

631

G12

0

G 61N

62N

GN1 6N2 GNN 1 0

ik, R)-
e

ik,. R~-
e

0

0

0 0 0

0

0 0

a tilde signifies a matrix, rows and columns of which are labeled L =(I m), and I is the unit matrix Furthermore

G,.p, = ' y; "(—I) "C,',,-„kI,!'(klR.—Rpl) Y, (R.p},

r„,(k)=;-(i—'~ f "p',dp, fdn, f p', dp, fdQj, (kp, )YI*.(p~)r (p~, pg)YL'(P2}JI'(kp2)

where

R p=(R —Rp)/IR —Rpl

and the free Green's function in real space is expressed as"

Go(r& —rz) —g GII t g&(kp&)JI.(kp&)YI (p&}YI*(pz}
L,L'

as far as the condition lp&
—

pal lR —Rpl is satisfied, where r&=p, +R and rz=p~+Rp. The Gaunt's number CI I-
is defined by

CI.I- —fdQ~YI*(p)YI(p)YI (p) ,. . (12)
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In the above identities, R (a= 1, . . . , N) are positions of the scatterers, and they correspond to the origins of each
coordinate where tLL (k) are calculated, j&(kp), hI "(kp), spherical Bessel, and Hankel function of the first kind, respec-
tively, and finally, L = (I, —m).

Comparison between Eqs. (2) and (3) indicates the T matrix in the angular momentum space as

ik, Rl-
e ' 'I

TLt. (kf, k;)= (e 'Ie f 'I . e f I)T,(J" GT—, }
iki RN

e ' I
(13)

or

TLt (kf yk) ) = g TLt (kf, k; ),
a,p

(14a)
0
0

0

Tfi (2)

0 o ~ ~ 0

0

(18a)

Tgz (kf, k;)=[T,(S GT, )
—] I, t)L e ep 1

—kf.R ik. Rp

(14b)

0 0

ik,. Rl'—
e

Equation (13) has a very clear physical meaning. When
the multiple scattering is neglected (kinematic case), it
can be written as

Tf~($) (e
'"f' ' I. . . e

'"f' NI)T(s)
W

ik,. RNIe

—i(k —k. ).R
TLL (kf, k. ; )= g e '

tLL, , (k) . (15)
(18b)

Equation (15) can be understood as the individual T ma-
trices are expanded at each scattering center R
(a=1, . . . , N); then they are shifted back to the origin
r=O to form the T matrix of the system. Namely, Eq.
(13) corresponds to the T matrix obtained by the multi-
center expansion method including the multiple scatter-
ing. Therefore, the angular momentum space of the com-
bined system is still as small as those of the individual T
matrices. When we use

p p
—ik,. (R —Rp)[g(k }]L„pr,

=
gLL, (k )=G—LL,'e—

0

0

0
i(2)

0 0

T($) —T($)( cf G (s) T($) )
i

w t t 7

0 0

0

i(n)

(20a)

Eq. (13) can be also summed up as
—i(k —k. ) R

TL,L'(kf, k;)= pe '
TLL (k;),

TL,L, (k; }=g [ TsÃ —g«' }TsI '] L„t)L,
p

(16a)

(16b)

T' ' =[P(—R") P( —R")]T"
ik, R)'—

e

iki RN
e

(20b)

In general, the dimension of the matrix in Eq. (13}rap-
idly increases with the number of scatterers. Therefore,
in order to handle the large system, we have to divide it
into subgroups of scatterers, calculate their T matrices,
then sum them up. Such a summing formula of T ma-
trices can also be deduced from Eq. (3). Assuming that
the number of subgroups is n, and defining d, as the ori-
gin of sth group of scatterers, Eq. (13}is also expressed as

T(kf, k;)=(e 'I . . e "I)
ik; -di-

e

0

0

0

0

Tf(2)

0

0 0
0

(21a)

X [T '+ T ( J —GT ) ']
i nI

(17} —ik .R"-Tf —(e f I. . . e f NI)T(s)
W

P(R(')
(21b)

where we have introduced the following definitions:
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TO

TO(1)

0

0

0
TO(2)

0 0

0

(22a)

0 G12

G21 0

G

G' G ln

G2n

0 0 TO( n) G" G" Gnn —1

T "=[P(
—R", ) P ( —R") ]T"

P(R")

P ( RI('(')

(22b)

st
GLL'

8m.m, ik
gi ( 1) Ci'Z"

(24a)

r

-1(s)

0
Z

(s) — 0

0
-2(s)

0 0

0

(23)
XhI.,"(k ~d, —d, ~) Y,„(d„), (24b)

0 0 -N (s)
where

d, , =(d, —d, )/~d, —d, ~,

G(s)

0

G 21(s)

G 12(s)

0

G1N(s)

G 2N(s)

(25a)

G N1(s) G N2(s) G NN —1(s) 0

LL g2 L L I (25b)

where

and

(&) —(R(s) g (s)
)/~ R(s) R(&)

~a,p a p a p

p«(R)= J dQ„e'""Y~~(k)Y~(k)= g4n( —1) C~~„i'j,. (kR)YL.(R) .
L"

In the derivation of Eq. (17), we have used the identity relationship

G()(p, +R"+d, —
p~

—Rp" —d, )= g g P«(R~')Gr" L Pl I ( —Rp'))' 'gl(kp))J((kp2)YL(p, )YL'(p2) .
L L L&L2

Equation (27) is valid when the condition (p) +R"—
pz

—RI)"
~

~ (d, —d, ) is satisfied.
When the scatterer is rotated, the T matrix is transformed by"

(26)

(27)

(28)
II 2rl.l. g ~) ~ ) -D ' (aPy )D *

~ (aPy ),
m', m"

where D stands for the Wigner's D function and a,p, y are Euler angles which correspond to the rotation of a scatterer.
In the presence of the translational invariance, Eq. (3) can be summed up as

T(kf k)=(4m) g YL(kf)YL (k ) pe ' t+ Qe ' r g G e ' sr+
a p (Wa)

=(4m)'ge ' g Y~(kf)YL. (k;)[rII—&(k, )r] ']«,
L,L'

LL'

(29)
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where
—ik, Rp[B(k, )]LL ——BLL.(k;)= g GLL (Rtl)e

Rp&0

Comparison between Eqs. (2) and (29) gives

(30)

TLL.= pe f ' [t[I—B(k, )t] ']LL (31)

Equation (31) has a very similar form to Eq. (15). Namely, if t [I B(—k; )t] is taken as the T matrix for a unit cell,
the effect of the multiple scattering among the different cells does not appear explicitly. This effect only appears
through B(k; ). For this reason, the physical discussion can be confined within a unit cell in the presence of the transla-

tional invariance.
Next, let us consider the case of more than one atom in a unit cell. Introducing the condition of the translational in-

variance into Eq. (17), we can modify it as

l(kf —k—
, ) RI

(1) I (1)
"I)T (k;)[2—X(k;)T (k;)]

I (N) I (n)

—l(kf —k,. ) d, ~
—i(kf —k;) R T~ (k )i (32)

where

N

TLL (k;)= g [T (k;)[S—X(k;)T (k;)] 'j L t)L
P=1

(33)

and (16b) clearly shows the role of the translational in-
variance. Equations (13), (17), (28), (31), and (32) consti-
tute the general framework of the electron multiple-
scattering theory. Especially, in the presence of the two-
dimensional translational invariance, Eqs. (31) and (32)
can reproduce the LEED wave functions (see Appendix
A for details). In the case of muffin-tin potentials, the T
matrix given by Eq. (10) can be written as follows:

T (k;)=T,[S g(k;)T,]— (34)
—ik. (d +R —Rp)[X(k;)] L t)L.

= QGLL (d, +—R Rtt)e-
d %0

(35)

and

GLL(R)= —
2

gi' (
—1) CL,L„hl'"(kR)I'L (R) .

fi
(36)

In Eq. (32), the number of atoms in a unit cell is assumed
to be N, and we have used the following identity relation-
ship:

1'

$2 pter

LL'( k) I ( k +LL' e ' (»»l @LL
2m, k

(a=1, . . . , N), (38)

where 5& is the phase shift. The method of calculating
the phase shift for a spherically symmetric potentia1 can
be found in any standard quantum-mechanics textbook.
For a nonspherical potential, we presented a technique
for calculating its T matrix, " and methods for obtaining
tLL.(k) for molecules have been developed by Takatsuka
and McKoy, ' and others. ' ' It is possible, then, to
study various electron scattering problems with Eq. (13)
or Eq. (17).

P(RI )

G"(P( —Ri). . . P( RN))— III. MULTIPLE SCATTERING
OF A PHOTOELECTRON

P(RN ) aL,PL'

=GLL.(d, —d, +R —Rt)) . (37)

Substituting Eq. (32) into Eq. (2), we can obtain the ex-
pression for T(kf, k;). The difference between Eqs. (33)

In this section, we investigate the problem of the multi-
ple scattering of a photoelectron. It is known as the cen-
tral issue of the angle-resolved x-ray photoelectron spec-
troscopy (XPS). In general, the photoelectron wave func-
tion is written as' '
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2m, ik
P'"'(r) =—,g A, i'I I"'(k Ir —R, I)

L

X Yl ((r—R, )/lr —R, I ), (39)

where R, is the position of the emitter of a photoelec-

tron. The major difference from the previous case is that
here the incident wave is not the plane wave but the
spherical wave. In order to obtain the T matrix for a
photoelectron, let us determine its derivation by writing
the similarities and the differences explicitly. Using the
following relationship:

2

Il"'(klr —R, I)YL(« —&, )&lr —R, I)= —
. g Gg'L l' 'jg(klr —R.I)YL («—R.)&lr —R.I),

Eq. (33) can be modified as

p'~'(r)= g [i'j& (k lr —R I) YI.((r—R, )&lr —R l)]GL, 'I, ~L,
L, L'

On the other hand, from Eqs. (3), (10), (11), and the identity relationship

ik'R ik (r —R )e' '=e e

(41)

(42a)

or

g [4n Yl'(k)][i'j&(kr)YL(r)]= g [4n YL"(k)][e ij'I(klr —R I)YL((r—R )llr —R I)],
L L

(42b)

we can easily recognize that (a) [i'jl(kr)YI(r)I corre-
sponds to the base set of the electron-scattering state in
both cases, (b) 4nYr (kf ) a.nd 4m YL*(k;) in Eq. (3) come
from the scattered and the incident plane waves, respec-

ikR
tively, and (c) [e J in Eq. (13) also originate in the
plane waves. Taking all of these into account and com-
paring Eqs. (35) and (36b), we can deduce the T matrix
for a photoelectron as

T"'(kf, y"')= &kf

ITIVE'")

= g 4~YL (kf )QIL ~, (43a)
L,L'

—ik dl- —i k d„—
Q =(e 'I e "I)

0

)( ( 7.fo+ Tf( g G7.O)
—1GTi'o) 0

0

where

(45)

0

(s)
Q=(e 'I . e I)T (J GT ) 'G 0—

Tfo

Tfo(1) 0

0

0

0 0

0

(46a)

0
0 0 0

0

where (A)LI, =ALKALI. . Using the following relation-
ship:

A (s)

T ' '=(e ' I . e "I)T"'G"' 0
W

0
ikr

h'"(kr) =( —i)'+'
kr

(r~ oo ), (46b)

and neglecting the effect of multiple scattering, we can
reproduce the standard expression for the scattered wave
function of the XPS from Eq. (37) (see Appendix A for
details).

A summing formula for Q, which corresponds to Eq.
(17) for T, can also be deduced as

Tlo

0
0

0

0 0

Tfo(1) 0 0 0
0

0

(47a)
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and

0

A (s)
T"'"=[I(—R',") . P( R—~")]T'"G'" 0 . (47b)

0

In Eq. (39), the emitter of a photoelectron is assumed to
be the sth atom of group "1." T, Tf, T, G, and other
matrices have been defined in Sec. II.

IV. APPLICATION TO THE FOCUSING
OF THE ELECTRON SCATTERING

2.0x IO

Si, E=0.773 hartrees

Recently, we have studied the problem of the focusing
of the electron scattering using two atoms. Due to the
present work, we are now in a position to be able to find

the proper configuration using an arbitrary number of
atoms. Here, using up to ten periodically placed Si atoms
in a row, we have studied two cases. Namely, the in-
cident direction is parallel to the Si row [see Fig. 1(a)
(case I)], or perpendicular to it [see Fig. 2(a) (case II)].
When every atom is of the same type, if we neglect the
multiple scattering (kinematic case), Eq. (13) becomes

f i at (4&)

— 1.0—

0.0

Then, we have

I

30 60 90 120 150 180

e (deg)

FIG. 2. Same as Fig. 1.

(49)

or

2.0x IO

CV

.— 1.0—

E=0.773 har trees

for the forward scattering. Namely, in the kinematic case
the forward scattering by N scatterers is enhanced by N
compared with that of one scatterer. In Figs. 1(b) and
2(b), we show the comparison between the present theory
(solid lines) and the kinetic case (dotted lines). Varying
from N=1 to 10, we have investigated the effect of the
multiple scattering. For simplicity, we show only the
case of N =4 here. Well-defined peaks show up and grow
with the number of scatterers at around

8=tan 'I [k —(k, +g, ) ]'~ /(k, +g, ) I (case I),
and

8=tan '[g, /(k —g, )' ] (case II),

90.0'

0.0
I I I

0 30 60 90 120 150 180

0 (deg)

FIG. 1. Electron multiple scattering by Si atoms. (a)
Schematic view of the scattering. (b) Differential cross section
as a function of 8. Solid lines represent results of the present
theory, the dotted line represents results of the kinematic
theory. Incident electron energy E=0.773 hartrees, a =5.05ao,
N is the number of Si atoms, and ao is the Bohr radius.

which correspond to those of the infinite one-dimensional
system. At E=0.773 hartrees, they are 0=0 and 90.0'
(case I), and 0=0' (case II), where g, is the one-
dimensional reciprocal lattice vector. The maximum
value in case I was 2. 89 X 10 at N =6, and that in case II
was 8.63X10 at N=10. But as far as the forward
scattering is concerned, its intensity is not significantly
enhanced compared with that of the kinetic case in gen-
eral. Namely, the multiple scattering does not always
work favorably for the enhancement of the forward
scattering. Furthermore, we have investigated the case
presented in Fig. 3, where the T matrix can be calculated



2552 SEIDO NAGANO AND NORIO MASUDA

ACKNOWLEDGMENTS

We would like to express our gratitude to S. Shiokawa,
H. Yokokawa of NEC, and to K. Ito, and T. Hosoya of
NNES for their very valuable support during the present
work.

APPENDIX A: SCATTERED ELECTRON
WAVE FUNCTIONS

In the framework of the Lippman-Schwinger equa-
tion, ' the scattered-electron wave function is written as

Pscatt
=GO Tkin ~ (A 1)

3,Qx]O
, E=0.773 hartrees

ik,. r .
where P;„=e ' is the incident wave. The free Green's
function can be written as

1.0I—

N„= 3

2me 1 e —ik r'ikr
(y~co) . (A2)

4m r

Then, Eq. (Al) for the scattering by a cluster becomes

0.0
I

30 60 90 120 150 180

6 (deg) 4n r
(A3)

FIG. 3. Electron multiple scattering by Si hexagon clusters.
(a) Schematic view of the scattering. (b) Differential cross sec-
tion as a function of 8. E=0.773 hartrees, a =5.05ao,
b =11.8ao, and Nz is the number of hexagons.

2' d iq (r —r')

G0(r —r') =
2p2 277 k2 q2+

(A4)

On the other hand, in the presence of the two-
dimensional translational invariance, using

with Eq. (13) directly, or with Eq. (17) by utilizing the T
matrix as a hexagon cluster.

V. DISCUSSIONS

We have developed a formalism to calculate the T ma-
trix for a system of arbitrary numbers of scatterers as de-
scribed by Eqs. (13) and (32). The important point here is
that the T matrix is obtained through the multicenter-
expansion method. Therefore, the angular momentum
space does not expand even after assembling the individu-
al T matrices. The summing formula for the sets of T
matrices represented by Eq. (17) was also derived. It is
then possible to handle large systems with Eq. (17).
Furthermore, if the system consists of the collection of
the basic structures, total computing time can be reduced
dramatically using Eq. (17). Although we have used only
atoms of the same type in Sec. IV to demonstrate the
present theory, Eqs. (13), (17), and (32) can accept T ma-
trices of any kind as long as they are prepared separately.
We have also extended the present theory to the study of
the multiple scattering of a photoelectron.

In this paper, we have discussed only the elastic pro-
cess. In the inelastic scattering, general situations may
not be as simple as the elastic process. The problem of
inelastic electron scattering by an adsorbate is briefly dis-
cussed in Appendix B. We plan to present a study of
eIectron multiple scattering in the general inelastic pro-
cess in the near future.

a g

and Eq. (29), Eq. (Al) becomes

2m, dk

(2m) k k+irt—l'g

(A6)

where

L, L'

X [t [I—B(k, )t j ']lL. , (A7)

ks =
[k;~~, k, ( g) ],

k, (g)=sgn(z)[k —(k, ii+g) ]'~

g is the two-dimensional reciprocal-lattice vector,
sgn(z)=1 for z ~0 and —1 for z (0, k,

~~

is the parallel
component of the incident wave vector. Equation (A6)
corresponds to the LEED wave function. Similarly, us-

ing Eq. (32) the LEED wave function for the composite
layer can be derived easily.

In the case of the scattering of a photoelectron, the in-
cident wave becomes the spherical wave, namely,
P;„=P'"'(r). The corresponding scattered wave then be-
comes
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ikr
(r ~).scatt ~2 4

(A8)
ing 1 to the adsorbate responsible for the inelastic scatter-
ing, the T matrix corresponding to Eq. (3) becomes

On the other hand, substituting Eq. (44) into Eq. (39), we
have

2me ikr
P'v'(r)= — g AL YL(kf) (r~oo) . (A9)

The total wave function then becomes

T(kf, k,. }=(4m) g YL(kf)[Kf(2 —TfG ) 'T, '

L,L'

X ( g G—'T,') 'K;+ ]LL.

X YL'. (k;),
where

(B1)

P„„,(r) =P'"'(r)+f „,(r)
2' e e ikr

g2 Q~L, YL, (kf )+ (kf ITly'"&
L 4m

0
Tf'= 0

0

0

0 0

0

(B2)

2m, e ikr

g YL(kf)[A+Q]LL
L,L'

(A10} 0 0 0

Equation (A10) is the generalized wave function for the
photoelectron of the XPS.

APPENDIX B: INELASTIC ELECTRON
SCATTERING BY AN ADSORBATE

Elastic scattering by an adsorbate on the solid surface
can easily be handled by Eq. (13). Let us generalize the
present theory further to the inelastic process. ' Assign-

and t &' is the T matrix in the angular momentum space
for inelastic scattering by an adsorbate. In Eqs. (Bl}and
(B2), i and f stand for the initial (E;) and final (Ef ) elec-
tron energy states before and after the inelastic scattering
by an adsorbate, respectively. T, and T,' are T matrices
for the elastic process, and G and G' are free Green's
functions. Their corresponding energies are E; and Ef,
respectively.
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