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Model for quantitative analysis of reflection-electron-energy-loss spectra
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Two models to reproduce experimental inelastic-electron-scattering cross sections determined from
reflection-electron-energy-loss spectroscopy (REELS) are considered. The models take into account the
momentum transfer in the inelastic processes. Inputs for the models are the dielectric function and the
inelastic electron mean free path, which are both taken from previous works. It is found that a model
that takes into account the k dependence of the dielectric function and the effect of the field set up by the
incoming electron on the outgoing electron gives the best description. Without any adjustable parame-
ters, a reasonable quantitative agreement between experimental and theoretical cross sections is found
for Al, Ti, Fe, Cu, Pd, Ag, and Au in a wide energy range (175—10000 eV). For a backscattered elec-
tron, the effective inelastic mean free path is found to depend strongly on the path length. A method to
determine the dielectric function from REELS spectra is suggested.

I. INTRODUCTION

The aim of this paper is to study the inelastic-
scattering properties of low-energy ( 10 keV) electrons
as they travel in the surface region of solids. This topic is
particularly important since the surface electron spec-
troscopies XPS (x-ray photoelectron spectroscopy), AES
(Auger-electron spectroscopy), and REELS (refiection-
electron-energy-loss spectroscopy) rely on analysis of en-

ergy spectra of electrons in this energy range. For quan-
titative applications of these spectroscopies, reliable mod-
els for the inelastic-scattering cross section are therefore
essential.

REELS spectra can easily be measured and the experi-
mental facility is available in most surface-science labora-
tories.

Information on the inelastic-electron-scattering cross
section can be obtained by analysis of REELS spectra. '
Recently, this method was applied to produce experi-
mental cross sections for Cu, Ag, and Au in the energy
range 300—2000 eV, and for Si, Ti, Fe, and Pd in the en-

ergy range 300—10000 eV. Considering the importance
of quantitative surface analysis by electron spectroscopy,
it is essential to look for as simple models as possible to
make practical applications feasible. We have therefore
considered models of varying degrees of complexity in an
attempt to reproduce the effective cross sections deter-
mined from the REELS experiments.

For an infinite medium, the cross section K(Eo, fico)

may be evaluated directly from the complex dielectric
function e (Refs. 3—5) by

K(Eo, h'co)= J Im
1 dk 1

irEoao k e k co

where Eo is the primary electron energy and ao the Bohr
radius. However, this model was found to be insufficient
to describe cross sections determined from REELS. The
reason is that in REELS, as well as in XPS and AES, the
effect of the surface must be included. Models to deter-

mine e from REELS have previously been considered,
some of which also include the k dispersion in e. The
basic assumption in these works is that the combined
effect of the surface and the bulk excitations can be
modeled by a linear combination of the surface electron-
loss function Im(1/(@+1)I and the bulk electron-loss
function ImI 1/eI. It has further been suggested ' to
determine the surface loss function from an experimental
REELS spectrum taken at grazing angle at a low energy,
since this will effectively increase the importance of sur-
face excitations.

We have recently attempted to single out the surface
and bulk components from sets of spectra taken at widely
different energies. " It was shown that the shape of the
cross sections can be reasonably well described by a linear
combination of a pure bulk and a pure surface com-
ponent. However, it was also shown" that the fitting pa-
rameters only carry limited quantitative information.
Therefore, a simple separation in surface and bulk com-
ponents is not possible for a quantitative description of
the energy-loss processes in REELS.

In the present work, we have developed more realistic
models to reproduce quantitatively cross sections deter-
mined from REELS experiments.

II. THEORY

We study the problem of an electron traveling in a
REELS geometry. We assume a fast electron with veloci-
ty v= Ux and energy Eo coming from the vacuum
(x = —~) to a semi-infinite medium with the surface at
x =0. The electron is elastically backscattered at the
depth x =a inside the medium, and then leaves the solid
along the same path (see Fig. 1).

We want to calculate the effective cross section
IC,cc(Eo,%co,xo ), which we define as the average probabili-

ty that this electron shall lose energy A'co (Eo » fico) per
unit energy loss and per unit path length. The average is
over the total path length xo =2a traveled by the electron
in the solid. In order to simplify the problem, we assume
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x=0 S (Eo,xo) =f ficoK,tt(Eo, fico, xo) d(A'co) .
p

On the other hand, we can calculate this stopping power
from the relation

e- V= VX0 t&0
t)0

V =
S(Eo,xo)= f v Fdt,

Xp —oo
(2)

FIG. 1. Geometry considered in the theoretical models. An
electron starting at x = —ao with velocity v penetrates the sur-
face of the solid (at x =0) and is specularly backscattered at
depth x =a and time t =0.

where

F= —fp,„,(r, t)V4;„(or, t).dr

is the force acting on the electron,

(r, t)= dco fdk4 (k, co)e'"'+""oo

llld
( )4 Ind

normal incidence and specular reflection in the back-
scattering event.

The effective stopping power S(Eo,xo) for the path xo
is related to K,tt(Eo, fico, xo ) as follows:

is the induced potential by the fast electron, and p,„,(r, t)
is the charge distribution of the electron. Then, from
Eqs. (1)—(4), we get, after application of the property
4;„d(k,co) =4;"„o(—k, —co},

K,tt(EO, fico, xo)= fdk fdr f dt p,„,(r, t)4;„d(k,co)Ve""'+""1

A coxo (2ir)

So, to solve the problem we have to find 4;„d. This can
be done, following the previous work of Ritchie, by solv-
ing the Poisson equation

jectory into an incoming and an outgoing part. Thus we
first find the energy lost by the fast electron according to
the charge distribution

e(co)V 4;„o=—4irp, „, ,

where

(6) e5(x——a vt)5(—y)5(z) if t &0
PextA — ~ 0 f 0

(r, t)= (9a)

COp

e(co)=1-
CO l /CO

in the case of a pure free-electron metal (like Al), and
more generally'

to later do the same for the charge distribution

0 if t&0
p,„,„+(r,t) =

e5(x ——a+ vt )5(y)5(z) if t & 0, (9b)

e(co) =1— fJ'~i

CO l ppCO J —
~

CO CO& l fjCO
2 —' . 2 — 2 —'

where co is the plasmon energy, yp is the reciprocal of
the relaxation time of the electrons in the valence band,
and fo is an oscillator strength that describes the free-
electron contribution to e(co). The last term represents
the contribution of the interband transitions of energy co,
oscillator strength f , and lifetime 1/y. .. To solve Eq.
(6), we use the appropriate continuity conditions for the
potential and the field at the boundary of the semi-infinite
medium.

One might expect some influence from the interference
of the field from the incoming electron on the outgoing
electron. To be able to study this effect separately, we
have therefore considered two models which correspond
to two different representations of the primary electrons.

Model A. In this model, we separate the electron tra-

—e5(x —a vt)5(y)5(z) —if t &0
p~xiii(r, t) = —e5(x —a+ut)5(y}5(z) if t &0 . (10)

In model A, the electron on its way out does not ex-
perience the influence of the excited electron sea in the
solid by the incoming electron, whereas in model B, it
will experience the effect of this field.

The solutions for 4;„d and K,tt(Eo, fico, xo) are the fol-
lowing

Model A. From Eqs. (6) and (9a), using the continuity
conditions for 4;„d(x =0}and eV4;„d(x =0), we find the
following. For t &0,

and we average both results to find the total energy lost
by the electron.

Model B. In this model, we consider the total electron
trajectory
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kiz, +ik z2
(k, co, a) =

ki+k
ki Z3 +ik z4

k', +k.'

klz1+ + lkxz2+
C'ind~+(~ to a) =

k,'+k.'
k J Z3+ + lkxZ4+ —ik a

ki+k
—ikxa i a+ ——1 .[e " —e' '], (1 la)

k +y

O + l 1 —ik„a+ ——1 [e ' —e '«'],
k —y e

where a is the depth reached by the electron, and

—4~e 1a
ki+y

(12a)

where a is now the path traveled by the electron to reach
the surface and

1

ki+y

1 —e ki 'y k, o — (1—e)
Zi =(X e ' —e e'~',

e(1+e) ki e(1+e)
(1 lb)

1
z, =a ——1 e'~',

1 —e kJ +iy k~g (1—e) «+ e(1+e) kj e(1+e)

z =a ——1e1 —i a
2+ +

(12b)

Z3 =(X l
y

1
1z ——a4 1

E'

z = —a i ——1+ + k E

1
z = —cz ——1-.4+ +

while ki and k„are the perpendicular and parallel com-
ponents of the momentum k of the fast electron.

For t & 0, we get from Eqs. (6) and (9b),

Then, from Eq. (5), we find E,tt for the incoming and
the outgoing electron, and the effective cross section for
the total trajectory is the average of these:

—2e . 1 ki
E,tt(Eo, %to, xo)= Re ~ i dk~ ——1

Aux & k +y

+8e 1Re i dk
1 —e k

g2~ 2a i~ 1+~ k2+ 2 2

—e 1 . 1 e k
+ Re 4i dk~ e ' [(k f

—y )sin(ya}+2yk~cos(ya)]
fg Utorr 2a e(1+6) (kq+y )

(13)

where xo =2a.
Mode/ 8. From Eqs. (6) and (10), with the same bound-

ary conditions as above, we get

kiz
&
+ ik„z2 ik„z3

k2+k2 k2+k2

czi 1+ ——1.
2 y2

—ik a
X [ k„[e " —cos(ya ) ]+iy sin(ya ) ],

(14a)

where a is the maximum depth reached by the fast elec-
tron inside the medium, and

—8me 1
CX

=
k +y

1 —e —k, a (1—e}
z, =a e ' —a cos(ya),e(1+e) e(1+e)

1
z =a ——1 cos(ya),2

1z= —a ——1. .
E

Finally, from Eq. (5), we have

(14b)
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2e ki
K,cf(Eo, fico, xo) = Re i dki ——1

Aux k +p

+ Re i dk
k

A' vcoir 2, (kj+y )

X 8yki cos(ya)e ' +(k j
—y )sin(2ya) ——1

—kia 1 1

e(1+e}

1 —e 1—2yk~e —2yk| ——1
e(1+e} e

1 —e1+2cos (ya) (15)

where again xo =2a.
To evaluate numerically the effective cross sections we

need to use the relations
e(k, co) =1—

2 nf0co I! fj~s
co —cok —iyoco z =i cu —~k —

co&
—iyzN2 2 2

COk2=k2+ and k dk =kidk~ .
U

(16}

2mk~=
1/2

[QEo+QED —fico) .

In the limit xo~ 0!!,only the first term in Eqs. (13) and
(15) remains, and both models give as expected the bulk
value ' for K,cc(EO, %co,xo). For xo —+0 we find

(A) lim K,ir(EO, fico,xo)=0,
xo~o

(18a)

(8) lim K,JEO, %co,xo)
xo-0

Then we evaluate the integrals over k between the al-

lowed maximum k+ and rninimurn k momentum
transfer

where Aa)k=4 k /2m.
From an experimental REELS spectrum, we can evalu-

ate the single-scattering cross section averaged over all
possible electron paths (see Sec. III). To compare with

experiment, we therefore need to calculate the corre-
sponding theoretical quantity. The transport mean free
path for elastic scattering is much larger than the mean
free path A, for inelastic scattering. ' In REELS, we there-
fore have to a good approximation the same contribution
from electrons that have been backscattered at all
depths '2

We assume that the probability for inelastic electron
scattering is proportional to (1—e "i ), where x is the
path traveled in the medium. Then the probability that
the electron has scattered only once is proportional to—x/A, 14

Now, from this and from the effective inelastic-
scattering cross section for each path, we can evaluate
the single-scattering cross section K„(Eo,fico), averaged
over all electrons paths,

2—4e 1 . kx 1 —e
Re i dkj

fi v ir 2a ( k i +y ) I +&
(18b) K„(ED,%co)=

2 f xe " K,cc(EO, fico, x}dx . (20)

Thus if the electron does not penetrate the medium
(a =0), it will not lose any energy in model A, while in
model B it will, even for a =0, transfer energy to the elec-
trons of the medium.

The constant e is given by Eq. (8). This is the Lorentz
approximation for the dielectric constant without k
dependence. In accordance with previous works, ' ' we
introduce the k dependence in e by the following approxi-
mation:

III. CROSS SECTIONS
FROM EXPERIMENTAL REELS

An experimental REELS spectrum ji(E) has contribu-
tions from both single and multiple inelastically scattered
electrons. We can remove the multiple-scattering contri-
butions and determine K„(Eo,fico) by the algorithm
developed by Tougaard and Chorkendorff, "

K„(EO,EO E)=—ji(E)—f —K (EO, E' E)j i(E')dE'—A,L 1 o A,L
A+L c E k+L (21)
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where L =2k&, A,
&

is the transport mean free path for elas-

tic scattering, c = Jz +jI(E)dE is the elastic peak area,

and Ep —E =%co.
Finally, taking tabulated values for A,(Ep), and using

fA(Ep)K„(Ep, fico) d(IIIPI)=1, we can find the exPeri-
mental cross section K„(Ep,hpI) and compare with the
theoretical cross section evaluated by Eq. (20).

IV. RESULTS AND DISCUSSION

A. Aluminum

Figure 2 shows KCII(Ep Act) xp) for different values of
the path xp =2a, traveled in the interior of the solid. The
peak at —10-eV energy loss which corresponds to
surface-plasmon excitations dominates for xp(A, . The
peak at —15 eV, which corresponds to bulk-plasmon ex-
citation, dominates for larger path lengths. For model A,
the relative strength of surface-to-bulk excitations
changes gradually with the path length. For model B,
the behavior is quite different. For example, for Ep =300
eV, the strength of the surface plasmon is higher for
xp

=4A, than for x p
= 2A, . For x p

= SA, , the surface and
bulk peaks have developed into four peaks. In REELS
spectra, these will not be seen as separate peaks, since
K„(Ep, Api ) is an average over all path lengths.

In Fig. 3, we have calculated an efFective inelastic mean
free path A.,& according to the following expression

1

A'II(Ep xp)
1 1

A, , (Ep, xp) A,, (Ep)
(22)

where A., (Ep, xp)=[1K,Ir(Ep, %co,xp)diam] ' and A., (Ep)
are the respective valence-band and core-level contribu-
tions to the total A,,JEp, xp). The values for A., (Ep) were
taken from Penn. ' ' For large path lengths, A,,& for the
two models A and B approach the same value. This
value is, for all energies, identical to within a few percent
to the values available in the literature. ' ' For smaller
path lengths, the behavior of models A and B is markedly
different. Thus, for xp(k, model A gives a higher k,ff

value, while model B gives a lower A,,z value compared
with A,,z for large path lengths. The reason is that, in
model B, the electron has a nonvanishing probability for
inelastic scattering even when it has not penetrated the
surface of the solid (xp~O), while in model A this elec-
tron cannot scatter inelastically [see Eq. (18)]. The origin
of this is the interference in model B between the field set
up by the incoming electron on the outgoing electron.
Another effect of this interference can be seen as a
damped oscillating dependence of k,~ on the path xp for
model B.

Experimental cross sections determined by Eq. (21) are
shown in Figs. 4 and 5. The slight negative values of the
experimental cross sections in the energy range 20—30 eV
and the peak at -31 eV are due to the fact that Eq. (21)
does not take the inhomogeneity of the surface into ac-
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The only inputs in these calculations are the dielectric
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parameters have been applied. In spite of this, the quan-
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reasonable.
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TABLE II. Parameters used to expand e from Refs. 20—22 according to Eq. (19) with k =0.

1

2
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4
5
6
7
8
9

10

1.2
2.5
6.0
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16.8
27.5
36.0
60.0

4.2
12.0
19.0
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10V

1.4
4.9
3.5
6.3

13~ 3
2.2

14
24.4
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10V

18.7
6.7
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1.5
3.0
4.0
8.0

12.0
7.0

45.0
60.0

6.5
8.0

14.0

0.4
1.2
6.3

14.5
22.0
31.5
49.0
54.0
67.0
79.0

5.1

12.0
24.0
39.0
46.0
90.0

Ag
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6.6
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100
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1.5
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8.3
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15.5
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21.0
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3
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7

50

Pd
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determines the e(k =0) function, which, within the limi-
tations of the formalism, is the dielectric function of the
solid.

It is thus hoped that the present formalism will, in the
future, increase the quantitative information that can be
extracted from REELS experiments.
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V. CONCLUSIONS
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We have developed two models within the dielectric-
response formalism to reproduce experimental inelastic-
scattering cross sections determined from REELS spec-
tra. It is found that a model which includes the k depen-
dence of e and the effect of the field set up by the incom-
ing electron on the outgoing electron gives the best
description of experimental cross sections of Al, Ti, Fe,
Cu, Pd, Ag, and Au. Primary electron energies in the
175—10000-eV energy range were investigated.

Inputs to the calculations for all metals except Al are
the dielectric function and the inelastic electron mean
free path, which were both taken from previous works.
Even without any adjustable parameters, the quantitative

0.002
TABLE III. Inelastic mean free paths A, for the elements at

different energies [taken from Tanuma, Powell, and Penn (Ref.
19)]. Besides A. =23.2 A for Ti at 1000 eV (Ref. 19) was used.
For ED=10000 eV, the TPP2 formula (Ref. 19) was applied.
The plasmon energies (Ref. 19) are also shown.
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FIG. 13. Theoretical cross sections from Eq. (20) for models

3 and B with e from Eq. (19) compared to experimental cross
sections at several energies in Au.
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agreement between theory and experiment is reasonable.
The effective inelastic mean free path for a backscattered
electron was found to depend strongly on the path length.
Possible sources of error were discussed. A method to
determine the dielectric function from REELS spectra
was suggested.
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