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Dynamics of step flow in a model of heteroepitaxy
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We have investigated step-flow dynamics during growth of a periodic heterostructure on a vicinal
surface, assuming different growth velocities for homoepitaxy and heteroepitaxy. Depending on the
ratio of the two velocities for each of the two materials of the heterostructure, steps evolve from their
initial distribution to closely spaced bunches of steps separated by wide terraces or they evolve to
a common average terrace width. We present a mathematical analysis of the process in the latter
regime and identify its boundary in a parameter space comprised of the two dimensionless velocity
ratios. We verify this boundary by comparison with computer simulations and previously published
experimental results.

I. INTRODUCTION

In a recent paper, Cox and co-workersi introduced a
generalization of the step-flow model of layer growth~
designed to describe the deposition of two distinct ma-
terials (hereafter denoted by A and B) onto a vicinal
surface (one misoriented slightly from a principal crys-
tallographic orientation, e.g. , 3 off [100]). Briefly, their
model recognizes a difference in lateral growth velocity
for a material on itself (homoepitaxy) and on a different
material (heteroepitaxy) at the atomic leveL That is, the
first atomic layer of growth of B on A, for instance, is al-
lowed a different growth velocity than that of successive
atomic layers of B, which are considered homoepitaxy
(B on B).

For simplicity, and consistent with their experimental
conditions, a kinetically limited growth regime was as-
sumed where each step was constrained to advance at a
constant lateral velocity, depending only on the chem-
ical identity of the material being grown and that of
the layer immediately below. Thus, four parameters,
Vg~, Vg~, V~~, and V~~ (describing the lateral growth
velocities of A on B, A on A, B on A, and B on B, re-
spectively) characterize the dynamics of the process. In
addition it was assumed that a step could not overtake
the one below it as a minimum step-step separation was
legislated.

Computer simulations, using the rules outlined above

and experimentally derived growth parameters, were
quite successful in duplicating the evolution of an in-
stability observed in the growth of an Ina 53GaQ47AS
multiple-quantum-well structure onto a vicinal surface
by vapor levitation epitaxy. s A cross-sectional transmis-
sion micrograph of the structure and the simulation from
that study are repeated here, for reference, in Figs. 1(a)
and 1(b), respectively. The micrograph of Fig. 1(a) shows
alternating layers of Inp (indicated by light areas) and
Inc 53Gae 47As (indicated by dark areas) which start with
a uniform thickness and are periodic in the growth direc-
tion. The interfaces become rough and the periodicity
is disrupted as growth continues. The Inc 53Gao47As
regions ultimately coalesce into an array of quasi-one-
dimensional wirelike filaments with their longest dimen-
sions normal to the plane of the Ggure. The simulation,
shown in Fig. 1(b) evolves in a remarkably similar manner
as surface steps bunch during growth to form macrosteps.
Details of the experiment and simulation were given ear-
lier in Cox et at.

The behavior is characteristic of one of two modes of
layer growth revealed by computer simulations of the
alternate deposition of materials A and B onto a vici-
nal starting surface consisting of steps and terraces with
randomly distributed widths. Depending on the choice
of growth parameters, steps either (a) bunch and inter-
faces become rough, as shown in the experiment and
simulation of Fig. 1, or (b) the terrace widths approach
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a common value and interfaces become more planar as
the growth proceeds. The two regimes are hereafter
called the step-bunching and terrace-width A,ornogeniza-
tion regimes, respectively.

In this paper we present a mathematical analysis of
the dynamics of step flow in the latter regime and iden-
tify the region in parameter space within which it occurs.
In doing so we also establish the boundary of the step-
bunching regime which is not currently amenable to an
analytical treatment. We verify this boundary by com-
parison with computer simulations.

The terrace-width homogenization regime, while per-
haps less interesting than that of step bunching for quan-
tum wire growth, is technologically important because
it leads to parallel planar interfaces which are crucial
to modern semiconductor device technology. We note
that terrace-width ordering has been examined in detail
for the case of homoepitaxy in surface difFusion limited
growth regimes. s s That is a separate phenomenon, how-
ever, which can, depending upon the experimental condi-
tions, either enhance or deter the ordering process specif-
ically due to heteroepitaxy that we now address.

II. THE MATHEMATICAL MODEL

FIG. l. (a) A cross-sectional transmission micrograph of
InGaAs/InP multiple-quantum-well structure on a vicinal
surface showing the effect of step bunching. (b) Numerical
simulation using different lateral step velocities for heteroepi-
taxy and homoepitaxy.

We consider a model of heteroepitaxy in which two ma-
terials, denoted by A and B, grow alternately in layers.
We assume that the surface is stepped and that growth
only proceeds laterally from the edges of the monolayer-
high steps. For simplicity, we model the situation when
the steps all face in the same direction along which we
orient the x axis.

Before proceeding we first introduce some notation.
In Fig. 2 we show schematically a layer of B grown on
A. Consider first the surface of A. The position of the
steps along the x axis are given by the sequence (z")
where the subscript j denotes the jth step and the su-
perscript n denotes the nth layer. It is assumed that the
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FIG. 2. Schematic diagram showing the notation for step positions and terrace widths of a vicinal surface of material A
and the surface after step-flow growth of a layer of material B.
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sequence of step positions (x"j is monotonic increasing,
i.e, , . . .xj ] ( 2:j & &j+1 ~ ~" The width of the terrace
between the steps at positions x" and x"

1 is denoted by
W" and is therefore given by

In order to develop our model we make the following
assumptions.

(i) The growth of each material proceeds laterally, only
from the step edges in the positive x direction, and the
height of each monolayer of new material is equal to the
step height.

(ii) The lateral velocity of growth of each monolayer
depends on its composition (A or B) and that of the
underlying terrace (A or B) upon which it grows.

(iii) The lateral growth velocity of a monolayer of ma-
terial B on A is V~~, and the velocity of growth of a
monolayer of material A on B is Vg~. Similarly V~~
and V~~ are the lateral growth velocities of material A
and material B on themselves, respectively.

(iv) The time during which growth occurs, T, is suf-
ficiently long that every new step includes some homo-
geneous growth, i.e. , material A on material A or ma-
terial B on material B. For the case considered above
of growth of a layer of B on a layer of A this requires
TVBg )max(W").

(v) Steps do not overtake other steps. This condition
is violated when the steps bunch and we do not treat that
situation here.

With these assumptions we now develop our mathe-
matical model. Refer again to Fig. 2 and consider the
growth of the jth step from position x". The growth
of a step consists of two periods. The first called het-
erogeneous growth occurs when B grows on A and we
denote this time period by Th,,&. The second period con-
sists of homogeneous growth of A on A and we denote it
by Th, The time for heterogeneous growth of the jth
step is given by

~+1 n+1
xi~i xj, may be written using Eq. (1) as

W,"++i' = ~p~,"~i + (1 —o.p) W,"~„ (2)
where np = Vaa/V~&. We may conduct an identical
analysis for the growth of the next layer in which a layer
of A is grown on B. This gives

W, +, ——niW+, + (1 —ui)W. +~',

where o'i = VAA/V~~ ~ We now combine Eqs. (2) and (3)
to obtain

W~"+ = ApW~" + Ai W~"y] + AgW~"+~, (4)

where

Ap

+pauli

Ai = [np(1 —o.i) + o,,(] op)],

A2 = (1 —o.p)(1 —o.i),

Wj = AOWj + Ale"+1+ A2Wj+2.

which relates the terrace widths of the layer of material A
at the nth time interval, W", to the terrace width of the
layer of material A at its next occurrence, W"+ (after
an intervening step of the growth of a layer of B). It is
convenient to consider only the evolution of the terrace
widths of A layers and thus we redefine the superscript
n to represent the sequence of terrace widths between A
layers, in which case Eq. (4) may be written as

Thet = vr
~BA

in which case the time for homogeneous growth is

WA
~horn = ~

BA

The position of the jth step at the end of the growth
period x".+ is therefore given by

+ Th,etVBA + Th,om VAA

and so

We call this the step Pom equatio-n.

The step-flow equation has the solution W". = C where
C is a constant, which corresponds to growth where the
steps are of uniform width and do not change between
successive layers. Because the step-flow equation is linear

it follows that if R'" and W" are solutions, then so is any

'near combination of them; W. = pWj ++W
and v are arbitrary real constants. By inspection of the
step-flow equation it also admits solutions of the form

W" = p(cn —i),

W"+i )x"+' = *"+ W" i +
~

T — '
~
&BB

Thus the new terrace width, which is given by W"-++1

where c = ao + al —2. These represent traveling-wave
solutions traveling with "speed" c. For a given layer (n
fixed) the terrace widths depend linearly on the step in-

dex i. Clearly W" changes sign for some i and thus the
terrace widths pass through zero. This solution is there-
fore not physically meaningful.
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We now consider spatially periodic solutions, which
consist of a period of J terraces so that W" = W".+J
for all j. We note that the sum Ao + Aq + A2 ——1,
in which case it can be shown that the total length of
the period defined by L" = P'.

z
W" is independent

of n, and thus does not vary between successive layers
of the same material. Hence the average terrace width
t" = L"/J is constant throughout the evolution of the
layers.

In general we are interested in whether the steps
evolve from their initial distribution into either the step-
bunching or step-homogenization regime, and how this
depends on the two dimensionless parameters no and aq
and hence the four growth velocities V~~, V~~, V~~, and
V~~. To investigate this we now conduct a Fourier anal-
ysis of the step-flow equation.

k=J—C

~" = '+ ). 1&Pexp(i~Pa) + c c,

where

2vrk
k =

i denotes the positive square root of —1, Ag represents
the growth rate of the kth mode, and c.c. indicates the
complex conjugate of the previous term. The constant t
is the average terrace width of this periodic ensemble of
steps, which we showed above is constant. Substituting
this form into the step-flow equation gives the following
expression for Al, .

A. Fourier analysis AA; = Ao + Aqexp(i') + A2exp(2iPy),

As above we consider periodic solutions consisting of which upon using the definition of the constants Ao, Aq,J steps. We thus write the solution as a Fourier series and A2 gives

I
&k

I

=
I
~ro + (1 —o'o) exp(&P~) I ]o'~ + (1 —o'~) exp(~PI, ) I

«» = 1 ",J —1

The system will be stable and the step widths of
all components of the solution decay as n increases if
]Ay] & 1 for all k = 1, . . . , J—1. In this case W" ~ t, as
n -+ oo. We term this homogenization and the interface
approaches a final state in which it is a uniform staircase
where all the terrace widths are constant and equal to the
average terrace width of the initial distribution. If, how-
ever, there exists a value of k such that ]Ay] & 1, the step
widths will grow and ultimately the model may break
down and we may expect step bunching to occur. Here
we consider the conditions under which homogenization

occurs.
It is easy to show from Eq. (7) that if both o.o & 1 and

o'q & 1 then ~AI,
~

& 1 for all k and hence homogenization
is assured, alternatively if both ao & 1 and nq & 1 then
~Ag] & 1 for all k and homogenization does not occur. The
remaining case is when one of ao and o.q is less than or
equal to unity and the other greater than unity. The step-
flow equation is symmetric in no and nq and so without
loss of generality we may assume no & 1 and o;y & 1.
From Eq. (7) the requirement for homogenization that

~
AI, ]

& 1 for all k = 1, . . . , J —1 gives

[2ao(no —1)(1 —cosP~) + 1) [2aq(aq —1)(1 —cosPA;) + 1] & 1 for k = 1, . . . , J —1,

which can be shown to be satis6ed providing where

&I———&np & —+ —for k= 1, . . . , J —1,2 2 2 2

1 cLy(Ay —1)
, k =1, . . . , J—14 2ni(ai —1)[1 —cos(Pg)] + 1'
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is the interval width. Thus for homogenization we require

1 . tk 1 tk——min —& eo & —+ min —.
2 k 2 2 k 2

We observe that the interval width Lk is a monotonic
decreasing function of cos{P~) and so its minimum is at-
tained when cos{PI„.) is maximum, i.e. , k = 1 or J —1.
Thus Eq. (9) requires 2

—
2

& o.e & 2 + 2, i.e. ,

1 1 a;&(~& —1) 1 1 ~i(~i —1)&no& —+
2cr&(o, & l)[1 cos( J )]+1 2 4 2ni(ni —1)[1—cos( g )]+1 (1o)

which is the condition for homogenization. We note that
the interval length Lq is zero when ay = o.'«, q where

crit 1
0!y = —+ +

2 4 2[1+cos( z )]

For a.q & o.&"" there is no range of no such that ho-
mogenization occurs. It is clear from Eq. (11) that n&""
decreases as the total number of steps J increases. In
fact in the limit J —+ oo Eq. (10) shows that the region
of homogenization in (oo, uq) space is given by the inte-
rior of the circle of radius 1/v 2 centered on (2, z). This
implies that o,~&"'' —& 1/2 + I/y 2 —1.207, and so ho-

2.0-

mogenization is not possible if o.&"" ) 1/2+ 1/y 2. In
Fig. 3 we plot the region in (ao, nq) space in which ho-
mogenization occurs, for different values of J. Because
the step-How equation is invariant under the transforma-
tion ao ~ o,q, nq ~ no, the stability boundaries in the
(no, nq)plane have reQective symmetry about o, q

= no.
Hence in Fig. 3 we only show them above this line of
symmetry. The data below this line are discussed below
in Sec. II B. The dashed curves show the stability bound-
aries for Pq = n./3, 7r/2, 2m. /3, i.e. , J = 6, 4, and 3. It is
clear that the region of homogenization decreases as the
number of steps in the ensemble, J, increases. The solid
curve gives the limiting circle for the boundary of the ho-
mogenization region as J —+ oo. The convergence to the
limit circle is evidently very rapid, and thus it provides
the appropriate boundary for the physically relevant case
of growth on a vicinal surface, where J is large.

B. Computer simulation
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The stability boundary was tested by comparison with
results obtained by numerical simulation using the pro-
gram developed earlier. For example, the simulation
shown in Fig. 1(b) was obtained using step velocities
vAB = I.o, v» = 0.5, v~A —o.5, snd v» = 1.o.
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FIQ. 3. The regions in (o.o, aq) space in which homoge-
nization will occur for difFerent values of the J, the number of
steps in a periodic ensemble. The solid curve represents the
limiting case of a large number of steps, J —+ oo. The bound-

aries of the regions are symmetric about the line o, q ——o.o, for

the cases J = 3, 4, and 6 the boundary is only shown above
this symmetry line. The data points below this line represent
the results of the numerical simulations. A indicates the
numerical simulation evolved to the homogenization regime,
a & that it evolved to the step-bunching regime, and a D
indicates that no determination of the regime couM be made.

FIG. 4. Numerical simulation of a periodic structure
grown on a very nonplanar vicinal surface using lateral step
velocities for heteroepitaxy and homoepitaxy corresponding
to the center of the terrace-width homogenization regime.
The terrace widths quickly evolve to the initial average value,
resulting in planar interfaces.
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The corresponding values of ap(= Vjygy/Vjy~) and ai(=
V~~/V~~) of 2.0 and 0.5, respectively, provide a point
in (np, ni) space, shown in Fig. 3, that is clearly in the
step-bunching regime, consistent with the simulation and
the experiment. In Fig. 4, we show the growth simula-
tion of a periodic structure using relative step velocities
of Vga = 1.0, Vg~ = 0.5, VjyA. = 1.0, and V~~ = 0.5. In
this case, o,o and nq both equal 0.5 which is in the cen-
ter of the regime of terrace-width homogenization. The
positions of the steps, defining the initial surface, were
placed at irregular intervals, simulating a very nonplanar
surface. The terrace widths quickly adjust to their com-
mon average value, however, resulting in uniform layers
with parallel interfaces, as predicted by our analysis.

We next conducted a series of similar simulations using
difFerent relative step velocities in order to verify the po-
sition of the boundary separating the two regimes of step-
width ordering behavior. The results are summarized in
the lower right section of the (np, ni)-space plot of Fig. 3.
The solid line is the circular boundary between the two
regimes for J = oo, which is appropriate for the large
number steps used in the computer simulations. Pairs of
np and ni that result in step bunching are indicated by
a 0 and those that lead to terrace-width homogenization
by a ~. The closer the values are to the boundary the
slower the appearance of a state recognizable as one of
the two regimes: If a trend was not apparent after about
100 periods the simulation was terminated and the point
denoted by a D. Excellent agreement between theory
and the simulated is clearly apparent.

III. DISCUSSION

It was the observation of step bunching that led
Cox and co-workers to propose the model of step-flow
heteroepitaxyi that we have treated mathematically.
Our mathematical model is only strictly valid for the
step-width homogenization regime. But, since it predicts
step bunching for conditions outside the terrace-width
homogenization regime, it provides a mathematical foun-
dation for step bunching as well, even though it cannot
model the dynamics after its onset. It should also be
noted that intentional substrate misalignment to a vicinal
orientation is not required for surface steps. Accidental
rnisorientation, surface undulations, or even growth rate
nonuniformities may produce the requisite steps. In addi-
tion, a periodic heterostructure with many interfaces was
used in our anlysis but some terrace-width readjustment
obviously occurs at each interface.

In the earlier study, a surface free-energy argument
was used to predict that most superlattice structures
should have one interface type for which the homoepi-
taxial step velocity exceeds the heteroepitaxial step ve-
locity (using the general rule that if A wets B, B will not
wet A,s) which, it was thought, would then lead to step
bunching. It is clear from our present analysis, however,
that there exists a region in (np, ni) space where inter-
face smoothing can result even if one of the homoepitax-
ial velocities exceeds the corresponding heteroepitaxial
velocity.

We can consider, with caution, experimental evidence
from other growth techniques for the heteroepitaxial
step-flow model that we have analyzed. Molecular-beam
epitaxy and organometallic vapor phase epitaxy usually
operate in a mode where the step velocities are deter-
mined primarily from the arrival rate of adsorbed species
from the terrace in &ont of the steps. This results
in surface smoothing as growth proceeds even for ho-
moepitaxy without heterointerfaces. s s This effect would
aid or mask any interface smoothing due to heteroepi-
taxy but tend to reverse step bunching caused by het-
eroepitaxy. These techniques can also operate with high
group-V overpressure which limits the surface difFusion
lengths, so that nucleation occurs between steps and
step-flow behavior is lost. GaAs/A1GaAs superlattices
are routinely observed with molecular-beam epitaxy to
achieve more planar interfaces than a conventional single-
material bufFer provides. p' i A reasonable explanation
for why a superlattice should be more efFective at pla-
narization than a standard buffer has been lacking. We
conjecture that this interface smoothing occurs because
of the relationship between the heteroepitaxy and ho-
moepitaxy step-flow velocities in the step-flow homoge-
nization regime, as described here.

A very careful and systematic study of GaInAs/InP
and GaInAs/AlInAs superlattices grown by low-pressure
organometallic vapor phase epitaxy was reported by Bhat
and co-workers. i2 Excellent properties were obtained
when InP layers were 5 nm or greater in thickness, but
severe problems developed if the InP layers were reduced
in thickness to 3 nm or less. They found these prob-
lems could be reduced by the use of low growth rates,
growth interruptions after InP growth, a substrate ori-
ented as close to exact (100) as possible, and minimiza-
tion of growth rate nonuniformities. Through a process
too extensive to be described here, they eliminated all
conventional explanations and concluded that the results
were all consistent with the model of step-flow heteroepi-
taxy as proposed by Cox et aL Step bunching was oc-
curring at the initial stage of growth of InP on InGaAs
because the lateral growth velocity of InP on InP was
greater than that of InP on InGaAs. If sufficiently thick
layers were grown, the bunching was eliminated by the
mechanism discussed earlier. s s

These examples indicate that the general behavior pre-
dicted by the analysis given here may be applicable to
growth techniques that are not kinetically limited and
do not even come close to meeting our initial simplifying
assumptions. Detailed agreement will obviously require a
more complicated analysis that allows for growth limited
by surface migration.

IV. SUMMARY

We have presented a mathematical analysis of the step-
flow dynamics of the growth of a periodic heterostruc-
ture on a vicinal surface using diferent growth velocities
for homoepitaxy and heteroepitaxy, as proposed earlier
by Cox et al. Depending on the choice of those veloci-
ties, steps evolve from their initial distribution to either
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closely spaced bunches of steps, separated by wide ter-
races, or they evolve to a common average terrace width.
We have treated the process in the latter regime and
identified the region in parameter space where it occurs.

The location of the boundary separating the two
regimes was verified by numerical simulation. Excellent
agreement between theory and the simulations was ob-

tained. The analytical results are strictly valid only for
the terrace-width homogenization regime. Since the com-
puter simulations could be used in either regime they
provide a link between the theoretical results and ex-
perimentally observed interface roughening due to step
bunching, previously reported. ~
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