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Ferromagnetism in the XYmodel with random threefold anisotropy
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A Monte Carlo algorithm has been used to study the XY model with random threefold single-site an-

isotropy on simple cubic lattices, in the strong-anisotropy limit. The model has a pure XY-like fer-

romagnetic critical point at T, /J=2. 190+0.005. The zero-field thermodynamic functions remain close
to those of the simple XY model down to T=2.00J. The ground state has an energy per spin of
Eo /J = —2.2305+0.0010 and a magnetization per spin of Mo =0.720+0.003.

I. INTRODUCTION

The canonical model for magnets with random single-
site anisotropy was proposed by Harris, Plischke, and
Zuckermann' (HPZ)

HHpz= —Jg gS S Dg —g(nS, ) —1, (1)
&ij & a=1 i a=1

where each S, is an m-component unit-length spin, and
the n; are uncorrelated random m-component unit vec-
tors that are distributed uniformly over the m sphere.
HPZ showed that a mean-field approximation gives a fer-
romagnetic phase for this Hamiltonian at low tempera-
tures. There has been a large amount of subsequent
work, whose object has been to go beyond the mean-field
theory and to understand the behavior of two- and three-
dimensional systems.

The random anisotropy term in Eq. (1) can easily be
generalized to higher-order types of anisotropy. It is
particularly interesting to do this for XY spins, the m =2
case of Eq. (1). For m )2, higher-order random anisotro-
pies will generate random uniaxial anisotropy terms un-
der a renormalization-group transformation, ' so that no
qualitatively new behavior is expected. For XY spins we
can transform each spin variable S, into an angular vari-
able 8;. Equation (1) is then generalized to the case of p-
fold random anisotropy by writing

H = —J g cos(8; —8J)—Dg tcoslp(8; —(I};)]—1],

(2)

where tt, is the angular coordinate of n, .
Much progress has been made in analyzing Eq. (2) for

the case of two spatial dimensions (d =2). It was
shown that the Kosterlitz-Thouless phase survives in
the presence of the random anisotropy term when p ~ 3,
at least for small D. This result made it seem reasonable
that these p ~ 3 models should be ferromagnetic for
d =3. Based on a spin-wave argument, however, Pelcov-
its, and co-workers ' had claimed that in the presence of
a random anisotropy there could be no ferromagnetism at
T) 0 when d ~4, so this was discounted. (The analysis

given by Pelcovits is for the p =2 case, but it easily gen-
eralizes to arbitrary p. ) Doubts about the validity of this
spin-wave argument for an XY model had been raised
earlier, by Halperin, who pointed out that a spin-wave
instability cannot destroy the magnetization in this
case. ' Sourlas, " and Villain and Semeria' also dis-
cussed some weaknesses in the spin-wave perturbation
theory treatment of Pelcovits, and co-workers.

Subsequent work' ' has shown that for XY spins the
lower critical dimension for ferromagnetism when p =2
is d =3, rather than 4. Renormalization-group argu-
ments, ' treating the random anisotropy in the small
D/J limit, gave the result that for p ~ 3 the randomness
is irrelevant. This means that the disorder induced by the
quenched random anisotropy is qualitatively indistin-
guishable from thermal disorder, at least near the critical
temperature T, . Thus, near T„ the system is expected to
behave like a simple XY ferromagnet, even in the pres-
ence of the p =3 random anisotropy.

The calculations of Sourlas, ' and Villain and Sem-
eria, ' however, have shown that we must regard these
perturbative arguments with some suspicion. Therefore,
it is important to check the results by doing Monte Carlo
simulations. Reed' has presented the results of such
simulations for both the p =2 and 3 random anisotropy
models with D/J= 1 on simple cubic lattices. He found
that for lattice sizes that could be studied by computer,
the behavior near T, was quite similar to that of a pure
XY ferromagnet without anisotropy. Reed expressed the
opinion that this was a finite-size effect, and that if it were
possible to study much larger lattices the magnetic order
would be seen to vanish at large distances.

An alternative to using larger lattices is to use larger
values of D/J. This should cause any such qualitatively
new behavior, if it exists, to occur at smaller, and perhaps
accessible, length scales. For the p =2 case, such behav-
ior was indeed found. ' In this work, we present results
for p =3, where no such deviations from pure XY-type
critical behavior have been encountered. The author be-
lieves that the lattice sizes used were sufficiently large
that they indicate the lack of such deviations from pure
XY behavior even for infinite systems. This, of course,
should not be considered a proof, but it does agree with
the renormalization-group results. '
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II. CALCULATIONS

Taking the D/J~ ~ limit of Eq. (2) enormously
simplifies the nature of the problem of performing Monte
Carlo simulations. It is then only necessary to deal with
a discrete phase space, rather than a continuous one.
There is no reason, "however, to believe that the behav-
ior is singular in this limit. Our results will be qualita-
tively valid for all large values of D/J. Upon taking this
limit, we obtain

H „=—Juncos
(ij )

(3)

where each q; is now a Z~ variable, which takes on all in-
teger values between 0 and p —1. If we remove the ran-
domness from Eq. (3) by setting all of the P;=0, we are
left with the standard p-state vector Potts (clock) model. '

For p =3, the vector Potts model has a first-order transi-
tion into the ferromagnetic state when d =3. Alterna-
tively, we could (for example) set all of the I)); on the A

sublattice equal to 0, and all of the P; on the 8 sublattice
equal to m., which yields the antiferromagnetic p-state
clock model. For even p the ferromagnetic and antiferro-
magnetic models can be mapped into each other by a
gauge transformation. This cannot be done for odd p,
and the p =3 antiferromagnetic clock model is believed
to be in the XFuniversality class.

At the mean-field level, the inclusion of the random
4); terms changes the nature of the model in a dramatic
fashion. The probability distribution for the random an-
isotropy terms has a continuous rotational invariance,
rather than the discrete p-fold invariance of the vector
Potts model. Although this might appear to change the
behavior of the domain-wall energy from that charac-
teristic of a system with discrete symmetry to that of a
system with continuous symmetry, that is an artifact of
the mean-field theory. The actual symmetry group of the
ground state is only the p-fold discrete rotation invari-
ance. The energy barriers to rotation of the magnetiza-
tion that are produced by the random anisotropy may
only grow like the square root of the volume. However,
when the volume becomes large, they still become much
larger than thermal activation energies, and they diverge
in the thermodynamic limit.

On a Cayley tree, one can replace Eq. (3) by the ran-
dom chiral model,

Lubensky type, which assume that Eq. (3) can be ap-
proximated by Eq. (4), are of dubious validity.

The reader should note that in the p =2 case Eq. (4)
reduces to a form of the Ising spin glass. It is not true
that Eq. (3) can be reduced to an Ising spin glass for
p =2, except on a tree graph. Despite this, for p ~3 it
may be that the critical point of Eq. (3) corresponds to
some critical point of Eq. (4), within a range of probabili-
ty distributions of the P; . Preliminary results from
Monte Carlo simulations of Eq. (4) with p =3 on simple
cubic lattices do appear to display a continuous transition
from paramagnet to ferromagnet for some distributions
of the p,J. It is diScult, however, to determine the pre-
cise nature of this critical point from the numerical data.

In this paper, we report the results of studying Eq. (3)
with p =3. The Monte Carlo program that was used in
this work was a straightforward modification of the one
used' for the p =2 case. Calculations were performed
on L XL XL simple cubic lattices of sizes L =32 and 48.
A Monte Carlo cycle consisted of six single-spin-flip
passes through the lattice interleaved with three pair-flip
passes (one for each type of pair). No metastability prob-
lems were encountered near T, for the p =3 case, in con-
trast to the earlier p =2 work. This is because T, is
higher for p =3, while the activation barriers are lower.
For p =3, the kinetic freezing occurs below T„with the
freezing temperature increasing to T, as L is increased.
Twelve L =32 lattices were successfully cooled to T =0,
and two L =48 lattices were studied near the critical
temperature. Despite the absence of metastability prob-
lems, the Monte Carlo algorithm is intrinsically slower
for p =3 than for p =2, as one must consider three possi-
ble states for each spin, rather than two.

Figure 1 shows the zero-field specific heat cH as a func-
tion of temperature, in the range 1.3 & T/J (2.3, for Eq.
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simple cubic p=3

H~ „=—J g cos (q; —
qj. ) P;J.

—27r

(,j) p
(4)

where the P;. are independent random variables. This,
however, does not work for a lattice that contains closed
loops. To illustrate this, we observe that Eq. (3) is the
same if the probability distribution for the P,. is chosen to
be uniform on [ n/p, m/p] or [—n—, n. ]. In. contrast, if
the probability distribution of the P, . is uniform on
[ n/p, n/p], then —the. grou. nd state of Eq. (4) is a simple
ferromagnet, while a distribution of the P;, which is uni-
form on [ rr, vr], gives a ground state—for Eq. (4) that is
highly frustrated, and has no ferromagnetic long-range
order in the ground state. Analyses of the Chen-
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FIG. 1. Zero-field specific heat vs temperature for the ran-
dom p =3 anisotropy model with D/J = ao. Squares show data
from 32X32X32 simple cubic lattices, and diamonds are data
from 48 X48 X48 lattices. The error bars (not shown) would be
smaller than the plotting symbols.
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(3) with p =3. The data points were obtained by numeri-
cally differentiating the energy per spin E with respect to
the temperature. They represent the average over all of
the L =32 lattices, except in the critical region, where
the L =48 lattices were used. Measuring e~ by using en-

ergy Auctuations gave similar results, but with larger sta-
tistical errors. The critical point occurs at

0.4

t

simple cubic p=3

T, /J =2.190+0.005, (5)

which is only about 0.5% lower than the T, for the sim-

ple XYmodel on this lattice. For the L =48 lattices,
the value of F. at T/J =2.20 is —0.991+0.002, where the
"error" reAects the difference in energy between different
lattices, rather than the uncertainty for a particular lat-
tice. This is also extremely close to the value of F. at the
same temperature for the simple XY model. By compar-
ing with the results of Li and Teitel, we see that the en-
tire cH vs T curve remains close to that of the pure XY
model down to a temperature of about T/J=2. 00, 10%
below T, . If cH is a monotonic function of D/J, which
seems likely, then it follows that the dependence on D/J
is remarkably small at these temperatures. This is con-
sistent with Reed's results' for D/J =1.

For p & 4, the results would be even closer to those of
the pure XY model, since in the limit p~ ~ we recover
the XY model. This is in marked contrast to the situation
for p =2. In that case cH is much lower for
2.0 & T/J & 2.4, and an F. of —0.99 is not achieved until
T/J =1.95, which happens to be just above the T, of the

p =2 model. ' Since the entropy S is the integral of
cH /T, this means that S ( T, ), measured relative to
S(T= oo ), is significantly lower for p =2 than it is for
larger p. Therefore, it is not so surprising that the nature
of the phase transition that occurs in the p =2 model on
this lattice' ' is different from what we see here.

For p ~ 3, there is a spontaneous magnetization M in
the low-temperature phase. Figure 2 shows the average
value of M as a function of T for p =3. Again, by com-
paring with the results of Li and Teitel, we see that the
behavior of the p =3 model remains close to that of the
pure XY model down to about T/J =2.00, and then devi-
ates noticeably. The finite-size effects visible near T, are
comparable in magnitude to those of the XY model, al-
though the sample-to-sample Auctuations cause the sta-
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FIG. 2. Magnetization squared vs temperature for the ran-
dom p =3 anisotropy model with D/J= ~. Squares show data
from 32X32X32 simple cubic lattices, and diamonds are from
48X48X48 lattices. The error bars (not shown} would be
smaller than the plotting symbols.

tistical errors to be somewhat larger. Thus, we verify
that the p =3 model shows no observable deviations from
pure XY behavior near T„as predicted by the small D/J
renormalization group arguments.

The computer simulations also make clear why the in-
stability found by Pelcovits and co-workers does not
destroy the magnetization. While it is true that below T,
the transverse fluctuations of the magnetization are much
larger than the longitudinal ones, they are not purely
diffusive. The phase space is divided into three well-
defined equivalent minima. There are restoring forces in
the transverse direction, and there is no Goldstone mode.
The barriers between the phase-space minima (and thus
the surface tension) disappear continuously as we ap-
proach T„so the model becomes XY-like near T, . It is

true that the T =0, XY fixed point is unstable to the in-

troduction of random anisotropy, but the T =0, random
anisotropy fixed point is also ferromagnetic.

Ground-state properties are displayed in Table I, as a

TABLE I. Ground-state data for L XL XL simple cubic lattices for XY spins with p =3. Mo and

AMo are the average and standard deviation of the magnetization distribution for ground states. Eo
and EEO are the average and standard deviation of the ground-state energy distribution (in units of J).

3
4
5

6
8

10
12
16
20
32

Samples

192
128
96
64
48
40
32
32
24
12

Mo

0.8539
0.8362
0.8182
0.8050
0.7906
0.7750
0.7626
0.7479
0.7388
0.7300

EMO

0.0241
0.0191
0.0175
0.0182
0.0143
0.0120
0.0173
0.0130
0.0140
0.0093

—2.2886
—2.2711
—2.2465
—2.2409
—2.2396
—2.2359
—2.2353
—2.2321
—2.2299
—2.2307

AEO

0.0848
0.0514
0.0349
0.0306
0.0178
0.0118
0.0088
0.0060
0.0044
0.0021
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function of L. The data for L ~20 were obtained previ-
ously, by a simulated annealing method. If we extrapo-
late values of the ground-state energy and the ground-
state magnetization to L = Qo we find

Eo = 2-2305+0.0010 and Mo 0 720+0.003

These values are significantly more precise than the ear-
lier estimates. The approximate ground states, which
are found by the computer for the L =32 lattices, are es-
timated to be about 95% correct, and the errors consist
of isolated clusters of a few hundred spins or less each.
Therefore, systematic errors should be smaller than the
statistical errors. Figure 3 shows the extrapolation of
Mo. We see that

0.1—

CQ

0.05—
CO

I

CO

0.02—

0.01—

I I I I l I

simple cubic p=3

Mo(L) —Mo( ~ ) =1.75L (7)

provides a remarkably accurate fit to the data, for all
L «10. Considering the statistical error bars, some of
this apparent precision must be fortuitous, but it is evi-
dent that the transverse magnetic correlation length of
the ground state is rather short. If we assume that the
sample-to-sample fluctuations of M induced by the ran-
dom anisotropy are functionally equivalent to thermal
fluctuations, then the value of —

—,
' for the exponent on

the right-hand side of Eq (7) c.an be predicted by finite-
size-scaling theory. '

This point deserves further emphasis. The excellent fit
of Eq. (7), the L ~ finite-size effect, to the magnetiza-
tion data of Fig. 3 is strong evidence for the essential
uniqueness of the ordered state (up to the trivial threefold
degeneracy). If there was a Goldstone mode, then the
magnetization ought to display an L finite-size scaling.
Since Pelcovits, Pytte, and Rudnick ' have shown that a
magnetization with a Goldstone mode is not possible for
this model when d &4, we have a consistent picture. If
one did not know that the destruction of the magnetiza-
tion in this model was impossible without the creation of
vortex lines, ' this would all seem rather implausible. It
must be that these vortex lines provide a long-range force
that stabilizes the magnetization and causes the evasion
of Goldstone's theorem.

III. DISCUSSION

The general reader may have gotten the impression, up
to this point, that it should have been obvious a priori
that our Monte Carlo results would turn out as they
have. While it follows from renormalization-group
universality arguments that Eq. (2) should have the same
behavior for essentially all three-dimensional lattices
when D is small enough, this is not true in the large D/J
limit. It may be true, for instance, that for p =3, Eq. (3)
does not have a ferromagnetic phase on the diamond lat-
tice, which has a coordination of only four neighbors per
site.

Perhaps the most remarkable aspect of the work de-

10 20

FIG. 3. Average ground-state magnetization minus 0.72 vs
lattice size L for L XL XL simple cubic lattices, for the random

p =3 anisotropy model with D/J=00. Both axes are scaled
logarithmically. The error bars show one cr, and the straight
line has a slope of —2.
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scribed here is that the strong random threefold anisotro-
py changes the ground-state energy of this model by
25.7%, while the critical temperature changes by only
0.5%. The author's prior expectation, based on the pre-
vious results for the p =2 random anisotropy model, was
that the critical point would be depressed by about 5%.
Further, within the accuracy of the simulations, the ener-

gy at the critical point is unchanged by the p =3 random
anisotropy. These results appear to indicate that the
p =3 random anisotropy does not couple directly to the
operators that are relevant at the critical point. This is a
much stronger result than merely saying that the model
remains in the XY universality class. It seems difficult to
understand this e8'ect in terms of a spin-wave type of
analysis. Therefore, it is probably another manifestation
of the importance of vortex lines to the critical behavior
of the three-dimensional XYmodel.

In this work we have presented a Monte Carlo calcula-
tion of the XY model with random p =3 anisotropy on
simple cubic lattices, in the strong-anisotropy limit. The
model turns out to be in the universality class of the pure
d =3 XY model. More surprisingly, the behavior for
T«2.00J is very insensitive to the presence of the ran-
dom anisotropy, which appears to act merely as a weak
additional source of pseudo-thermal fluctuations.
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