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Phonons in Si-Ge systems: An ab initio interatomic-force-constant approach
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The vibrational properties of Si-Ge systems are studied theoretically with ab initio techniques.
Full dispersion relations for pure silicon and germanium crystals under several (homogeneous and
epitaxial) strain conditions are obtained from interatomic force constants (IFC's). High-symmetry
vibrations for a few short-period ordered superlattices (SL's) are studied from first principles as
well. In order to study conveniently more complicated systems, such as partially disordered SL's or
homogeneous Si Gez alloys, higher-order IFC's have been obtained that account for the first-order
change in the IFC's of a reference system because of chemical disorder and lattice relaxation. With
our scheme we can easily handle quite large supercells while keeping the same accuracy as a complete
first-principles calculation, which we demonstrate for the homogeneous alloy.

I. INTRODUCTION

It is by now possible to grow atomically controlled
semiconductor heterostructures, and by far the most
studied among epitaxially grown systems are GaAs/A1As
and Si/Ge superlattices (SL's) and alloys for their possi-
ble technological applications. Much effort is presently
devoted to understanding their vibrational properties
both from experimental and theoreticals points of
view. Besides the fundamental interest in the proper-
ties of these peculiar materials, this effort is due to the
possibility of characterizing these materials with use of
Raman spectroscopy.

While many general aspects of phonons in a SL can al-
ready be understood within simple models, a more quan-
titative description and a proper account for strain and
disorder effects is certainly desirable and still lacking.
The limited predicting power of empirical models can
be traced back to the absence of experimental informa-
tion on which they strongly rely. In the case of GaA1As
systems, for instance, almost nothing is experimentally
known on the A1As bulk dispersion, and in the case of
Si-Ge systems very little can be said about the effect of
strain and atomic relaxation.

From the theoretical point of view, ab initio meth-
ods based on density-functional theory in the local-
density approximation offer a unique opportunity to
overcome the lack of experimental information. Over
the last decade ab initio methods have proved to be
very accurate and predictive tools for studying struc-
tural and vibrational properties of real materials. Re-
cently, efficient linear-response techniques have been
introduced which allow us to obtain accurate phonon dis-
persions in the entire Brillouin zone (BZ) for systems of
moderate complexity (such as elemental and III-V semi-
conductors) from the computation of interatomic forces

constants (IFC's).
Direct first-principles calculations of phonons in SL's

are also possible within the same approach but are still
computationally very demanding and are thus limited to
short-period perfectly ordered SL's. ~4 In the special case
of GaA1As systems (SL's and alloys), strain is absent and
the IFC's for the pure materials are very similar. There-
fore it is possible to describe accurately the pure mate-
rials and all their compounds with a unique set of inter-
atomic force constants obtained for the average crystal,
taking into account only the difference in atomic mass
between cations (mass approximation). 1s This approach
has allowed us to study realistically the vibrational prop-
erties of homogeneous Ga, Alq As alloy and the role
played by disorder at the interfaces on the vibrational
properties of their SL's. Instead in Si-Ge and other
mixed systems a simple mass approximation does not
work very welles due to the presence of strain and cor-
rections beyond it are necessary.

In this paper we further develop the IFC's approach in
the case of Si-Ge systems introducing tugher-order IFC's
that take into account the effects of strain. In Sec. II we
analyze the effect of strain on the dispersions of the pure
materials. Both homogeneous (hydrostatic) and epitax-
ial strain conditions are considered and the limited va-
lidity of the mass approximation is examined. In Sec.
III we discuss how higher-order IFC's can be obtained
which account for the effect of chemical disorder and lat-
tice relaxation fitting the IFC's computed ab initio for a
number of different strained crystals and chemical con-
Ggurations. The reliability of the results obtained in this
scheme is then demonstrated in Sec. IV against the accu-
rate calculations of Sec. II and by comparison with direct
calculation for a few selected short-period superlattices.
We also apply our scheme to the study of the homoge-
neous Si Geq alloys. Section V contains concluding
remarks.
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II. AB INITIO CALCULATIONS OF PHONONS
IN SI AND GE UNDER STRAIN

In Ref. 13 it has been shown how accurate phonon
dispersions for semiconductors can be obtained from
first principles using first-order perturbation theory (in
the pseudopotential-plane-wave formalism of density-
functional theory). Here we apply this scheme to the
study of silicon and germanium under strain.

The atomic pseudopotentials for Si and Ge used in
this work are the same as in Ref. 13 and reproduce ac-
curately the structural properties of the pure materials
as shown in Table I. In particular, the lattice mismatch
between the two materials is correctly reproduced. This
is essential if we want to account properly for the ef-
fect of atomic relaxation in their compounds. Elastic
constants are calculated using plane waves up to a high-
kinetic-energy cutoff (26 Ry), which is necessary to get
converged results, is whereas all the phonon calculations
are performed with a 16-Ry cutoff, which guarantees a
convergence in the calculated frequencies of 3 cm i or
better. Ten Chadi-Cohen special pointsis are used for the
BZ integration in the diamond structure, and the equiv-
alent sampling when other structures are considered.

We consider three kinds of strained situations corre-
sponding to a possible choice of the three independent
macroscopic distortions in the diamond lattice: (i) Si and
Ge under homogeneous strain, (ii) Si and Ge epitaxially
grown on (001) direction on different substrates, and (iii)
the same for (111)growth direction. In each case IFC's
have been generated following Ref. 13 by Fourier trans-
forming the dynamical matrices computed on a fine grid
in the BZ (corresponding in real space to a fcc supercell
of linear dimension four times larger than the bulk unit
cell). IFC's up to the ninth shell of neighbors are thus
obtained. Inclusion of even larger shell IFC's would not
affect the optical branches, while the agreement with ex-
perimental data would be marginally better in the acous-
tic ones.

In Fig. 1 we show the results for homogeneous strain.
For both silicon and germanium the solid lines give the re-
sults for the crystal at equilibrium (zero pressure). Com-
parison with experimental data shows the reliability of
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FIG. 1. Calculated phonon dispersions of elemental semi-
conductors Si and Ge under hydrostatic strain. Solid lines cor-
respond to the unstrained situation, dashed lines correspond
to silicon (germanium) at the germanium (silicon) lattice con-
stant. The dotted lines are calculated at the virtual-crystal
lattice constant in both cases. Experimental data (diamonds)
are from Refs. 20 and 21.

ab initio calculations. The dashed lines correspond to Si
(Ge) hydrostatically expanded (compressed) to the Ge
(Si) lattice constant. The dotted lines correspond to the
intermediate lattice constant of a Sio sGeo s alloy in both
cases.

From the picture, the efFect of homogeneous strain
on dispersions appears essentially the same for the
two materials. Under expansion (compression) the
transverse-optical branches shift roughly rigidly toward
lower (higher) values. The shifts at the high-symmetry
points, I', X, and I, are —59, —80, and —69 cm
for silicon expanded to the germanium equilibrium lat-
tice constant and +38, +51, and +45 cm 1 for germa-
nium compressed to the silicon one. The transverse-
acoustic branches behave in a more complex way, and

TABLE I. Structural parameters of Si and Ge. Lattice parameter are in atomic units, elastic
constants in Mbar, the internal strain parameter (Ref. 24) g is dimensionless. Experimental data
are given in parentheses.

Si 10.20
(10.26)

B
0.93

(0.992)

C11

1.59
(1.675)

C12

0.60
(0.650)'

C44

0.77
(0.801)

0.53
(0.54)'

Ge 10.60
(10.68)

0.76
(0.768)b

1.32
(1.315)

0.48
(0.494)

0.68
(0.684)

0.50
(0.54)'

J. Donohue, The Structures of the Elements (Wiley, New York, 1974).
H. J. McSkimin, J. Appl. Phys. 24, 988 (1953); H. J. McSkimin and P. Andreatch, Jr. ibid. 35,

3312 (1964).' G. S. G. Cousins, L. Gerward, J. Staun Olsen, B. Selsmark, and B. J. Sheldon, J. Phys. C 20, 29
(1987).
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local minima are formed under compression at the sym-
metry points X and L. All shifts are in agreement
with those that can be deduced from the experimental
Gruneisen parameters and are practically equal and
opposite for the two materials when the difference in
the atomic masses is taken into account. The longitu-
dinal branches change differently along different direc-
tions. Along the 6 line they are well described by a rigid
scaling of the frequencies in such a way that longitudinal
and transverse modes are degenerate at I'. This is an
obvious effect of the degeneracy of optical and acoustic
branches at X. As an effect of their different behavior,
the crossing point along the 6 line of the longitudinal-
and transverse-optical branches changes under strain.

We have then considered Si and Ge under the strain
induced by growth on a substrate of different lattice pa-
rameter. In such epitaxial geometry the substrate Bxes
the in-plane lattice constant whereas the perpendicu-
lar one is left free to accomodate as much strain as is
possible. The most studied substrate orientation is the
(001) direction, and we have considered this one and the
(111)direction, which give ris" together with the homo-
geneous strain considered abov" to three independent
strain patterns. We exhaust in this way the possible in-
dependent choices in a cubic material. For both (001)
and (111) growth directions we have considered three
in-plane lattice constants corresponding to silicon, ger-
manium, and Sio sGeo. s substrates. The structural pa-
rameters we have obtained by the requirement of zero
stress in the growth direction are listed in Table II. In
the case of (111) growth direction the atomic positions
are not completely determined by the macroscopic lattice
constants since the bonds formed in the (111) direction
are not equivalent to the other bonds; there is in this
case an internal degree of freedom that has to be deter-
rnined requiring that no force acts on atoms. The atomic
relaxation is described by the internal strain parameter,
defined in Ref. 24, and the value is also given in Table II.
In Figs. 2 and 3 we show the phonon dispersions obtained
for (001) and (111)directions, respectively. The labeling
of the symmetry points is kept as similar as possible to
the one for the undistorted situation. In the (001) dis-
persions Z denotes the end point of the 6 line parallel
to the growth direction, whereas in the (111) case L, is
the same for the A line. Again, solid lines correspond
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FIG. 2. Calculated phonon dispersions of elemental semi-
conductors Si and Ge grown on a (001) substrate. Solid lines
correspond to the lattice-matched situation, dashed lines cor-
respond to silicon (germanium) grown on a germanium (sili-
con) substrate. The dotted lines are calculated for a Sia, 5Geo, 5

substrate in both cases.

to the unstrained situation (the experimental data are
not reported in this case), the dashed lines correspond
to silicon (germanium) grown on a germanium (silicon)
substrate, and the dotted lines correspond to the inter-
mediate situation of a Sio sGeo s substrate.

The effect of strain can be analyzed in terms of the
results for homogeneous strain. In fact the strain tensor
appropriate to a given epitaxial geometry is a combina-
tion of a homogeneous and a traceless part. The main
effect is due to the homogeneous part as described above,
the effect of the traceless part being to remove the degen-
eracy along the 6 and A symmetry lines. For instance,
for silicon grown on a Ge substrate in the (001) direc-
tion we have a —27-cm average shift in the optical
frequencies at I', which is consistent with the value ob-
tained for the corresponding homogeneous strain alone in
our calculation and from experimental Griineisen22 pa-
rameters (—24 cm ). The traceless part gives rise to

TABLE II. In-plane a~~ and perpendicular a~ lattice parameters (in a.u. ) for Si and Ge grown in the (001) direction on
different substrates as obtained by zero perpendicular stress condition. For (111)substrates the internal strain parameter (Ref.
24) ( is also given.

Si

Si

10.20
1.000

(001) substrate
Sip 5Gep. 5

10.40
0.966

Ge

10.60
0.932

Si

10.20
1.000
0.53

(111)substrate
Sip.5Gep 5

10.40
0.972
0.51

Ge

10.60
0.947
0.48

Ge 10.20
1.068

10.40
1.033

10.60
1.000

10.20
1.055
0.55

10.40
1.026
0.52

10.60
1.000
0.50
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above in the general case. We have then coped with this
problem in a different way, as described in Sec. III.

III. HIGHER-ORDER INTERATOMIC FORCE
CONSTANTS

In order to go beyond mass approximation we need to
describe the efFect on the dynamical matrices of the dif-
ferent chemical environment and atomic relaxation. Let
us consider the total energy as a function of the atomic
displacements (UR} with respect to the diamond sites
(R}, and a set of Ising-like variables (oR}, such that
oR = +1 if the atom sitting at the site R is Si and
oR = —1 if it is Ge. The vibrational force constants for
a given atomic configuration —i.e., for a given distribu-
tion of fo'R}—are defined as the second derivatives of
the total energy with respect to atomic displacements,
computed at the equilibrium positions

0 r X Lz r L X

FIG. 3. Calculated phonon dispersions of elemental semi-
conductors Si and Ge grown on a (111)substrate. Same con-
vention as in Fig. 2.

a longitudinal-optical —transverse-optical splitting of 3.7
cm, which is roughly half of the experimental result
but in agreement with a previous ab initio calculation. ~s

The disagreement between theory and experiment is in
part due to the large strain considered for which contri-
butions to the splitting nonlinear in the strain are impor-
tant and is reduced by a factor of 2 in the less strained
case of Si grown on Sip sGep s. A much larger splitting
(as large as 29 cm ~ for Si grown on Ge) appears for the
(111)growth direction, where the effects of the homoge-
neous and traceless part of the strain are of comparable
size. Again the agreement with experiment is good for
the average shift, and not as good (a 30%%uo overestima-
tion) for the splitting, partly due to nonlinearity. Similar
results are obtained for germanium.

We discuss now the validity of mass approximation. As
the effect of strain can be quite large, it is clear that it
is not possible to find a unique set of IFC's that describe
all situations. Different strain conditions require different
sets of IFC's. The effect of a different chemical environ-
ment is less pronounced. If we limit our attention to
pure materials at equilibrium, the use of the IFC's of the
virtual crystal at equilibrium is not too bad (within 10—
15 cm ~) and gives very good results (3—5 cm ~) if the
dispersions obtained with the mass approximation are
scaled with the ratio of the material and virtual-crystal. l
plasma frequencies. The same happens if a distorted
material is approximated with the IFC's of the virtual
crystal under the same distortion. So, at least for Si-Ge
systems where the chemical difference between the two
atoms is quite small, 25 a unique set of IFC's can describe
vibrational properties at fixed strain condition. Unfortu-
nately this is of little help because in a real case we are
interested in atomic configurations in which the chemical
environment changes from site to site, and hence, due to
the local atomic relaxation, the strain condition changes
as well with the position. There is no simple satisfactory
way to implement the nice scaling properties described

~(R Rr. ( })
B'~((UR } (oR})

BURBUR~

where (UR, }are such that

B~((URo} (oR}) 0
BUR

(2)

BzZ
+2

Bo'RBuR
2

O'RUR

+
BURBUR'

QRQR/ + I ~ ~

(3)
or equivalently

Z((UR}, (O'R})= 8'p + ) Ko'R
R

+2 ) [J(R—R')oRoR
R,R'

+2F (R —R') oRURI

+4(R R )URURI] +
(4)

where the ellipses represent higher-order terms, and
where all the derivatives are taken at the equilibrium
positions (UR = 0}of the virtual crystal (oR = 0}. By
truncating this expansion at a given level one has a con-
trolled approximation to the energetics of the system and

In the pseudopotential approach it is possible to con-
sider the (crR} as continuous variables rather than just
+1, assuming that for a given o the corresponding atom
is represented by the pseudopotential V (r) = [(1 +
o')/2] Vs;(r) + [(1—o')/2] VG, (r), which reduces to the pre-
vious definition at the end points and interpolates lin-
early in between.

We can then expand the total energy with respect to
all variables, (UR} and (crR}:. M M
~((UR},(oR})= ~p + ). UR + &R

UR OR

B'Z
+ s ) OROR'

R R, (B&RBoR
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can study its vibrational properties as well as its thermo-
dynamics within this approximation. The energetics of
Si-Ge systems is well described25 by terms up to the sec-
ond order that can be computed with our efficient linear-
response techniques. For the vibrational properties this
is not the case. In fact, truncating the energy expansion
at the second-order term yields the virtual-crystal force
constants for all configurations, i.e. , we recover the mass
approximation. This happens to be an excellent approx-
imation for GaA1As systems s i~ but not for the SiGe
system as discussed before.

The natural way to go beyond mass approximation is
then to retain also the following order in the Taylor ex-
pansion of Eq. (4), i.e. , the third-order derivatives of the
total energy

3
= +&'l(R- R",R'- R"),

UR llR' UR"

3f =F~'l(R- R",R'- R"),
BURBUR'BPR"

B38 = J~i&(R —R",R' —R"),
BUR Bo'Rl Bo'R~1

= L(R —R",R' —R").
B&RB&R'B&R"

The IFC's for a given configuration are then given by

4I„„)(R,R') = 4(R —R')

+) 4' (R —R",R' —R")UR
R//

+F&'l(R —R",R' —R") . (6)

All the third-order derivatives could in principle be
obtained directly from a linear-response calculation for
the virtual crystal, 2s but it is easier to extract these
higher-order IFC's (HIFC's) from fits of Eq. (6) for a
number of independent configurations. In order to fit
4~ii, the IFC's of virtual crystal under three indepen-
dent distortions —homogeneous, traceless distortion in
the (001) and (111)directions —have been considered. As
for F~i&'s, we have fitted the IFC's of Si, Ge, and zinc-
blende SiGe with atoms frozen at the atomic positions of
the virtual crystal. Additional general constraints have
been used to reduce the number of independent param-
eters. These constraint are of three kinds: (i) we require
permutation symmetry of the order of the derivatives in
Eq. (5) to be satisfied; (ii) we impose the acoustic sum
rule (ASR) for a generic configuration, which implies

) 4~ l(R —R",R' —R") =0,
R.

) F& l(R —R",R' —R")=0,
R

for all R' and R"; (iii) we require that the first-order
variations C~ ~ and F~ ~ correctly describe the efFect of
rotations,

) ) 4~ l
p (R —R",R' —R")e~ p(R' —R")p

R' p~

= ) e~ 4 p(R —R') + ) e~ p4 (R —R'),

) ) F~ l (R —R",R' —R")e (R' —R")
R// ~ p

=) e~ F (R —R'),

where e~p~ is the Levi-Civita tensor.
Finally we require the efFect of strain and chemical

disorder to be only local and we allow 4~i& and F~i& to
be nonvanishing only for those triplet of sites that con-
tain at least one first-nearest-neighbor pair and at most
second-nearest-neighbors ones. This restriction is proba-
bly not serious for F~~~ since the other quantities F and
J that correspond to derivatives with respect to aR are
very short ranged. zs This approximation is less justified
for 4~i& since it is well known that in Si and Ge the
IFC's are quite long ranged along the bond chains in the
(110) planes (which is an essential feature to explain
the characteristic flatness of their acoustic branch). We
do not expect the HIFC's we will obtain to give com-
pletely satisfactory results in this region.

All these constraints are imposed by least square min-
imization. The resulting HIFC s reproduce the ab ini-
tio results within 3—5 cm, when used for the fitted
structures. This is essentially the agreement between the
ab initio calculation itself and the experimental results,
when available. We note in passing that the experimental
results for the strain-induced splitting in optical modes
at I' point23 turn out to be somewhat better reproduced
with the HIFC s than in the original ab initio calcula-
tions.

IV. TESTING HIGHER-ORDER INTERATOMIC
FORCE CONSTANTS

To assess the reliability of the HIFC's it is obviously
not sufficient to compare with the fitted structures but
they have to be checked against calculation in structures
other than the fitted ones. This is done in Table III and
Fig. 4.

In Table III we compare the frequencies calculated
ab initio and with the HIFC's for some high-symmetry
points in Si and Ge under homogeneous strain. Hom this
table we see that the HIFC's reproduce the aI5 initio re-
sults within a few cm —sometimes worse, as expected,
in the acoustic region —over a range of distortions which
corresponds to frequency shifts of several tens of cm
Analogous results are obtained for the other strain con-
ditions considered in Sec. II and the general description
of the phonon dispersion relations is quite satisfactory. A
more stringent test of the soundness of HIFC's is given by
the results for short-period SL's where the chemical envi-
ronment is qualitatively difFerent from the bulk case. We
have considered some very short-period SL's matched to
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TABLE III. Phonon frequencies calculated at high-symmetry points I', X, L, for Si and Ge under homogeneous strain.

The considered lattice parameters are given in atomic units. In each case the first entry refers to the calculation with the

higher-order IFC s, the second one (in parentheses) to the ab initio calculation.

I'LTO

XTA
XLOA
XTO
LTA
ILA
LTO
LILO

10.20

519 (517)
136 (145)
414 (414)
471 (466)
103 (110)
376 (378)
497 (494)
423 (419)

Silicon
10.40

488 (487)
152 (158)
391 (389)
431 (425)
114 (118)
369 (368)
462 (458)
384 (379)

10.60

456 (458)
166 (165)
367 (366)
386 (386)
123 (123)
341 (342)
424 (425)
362 (358)

10.20

343 (342)
60 (60)

273 (274)
324 (324)
49 (50)

235 (237)
334 (334)
292 (293)

Germanium
10.40

325 (321)
74 (74)

260 (257)
301 (296)

58 (58)
231 (230)
314 (310)
270 (266)

10.60

307 (303)
85 (81)

245 (241)
276 (273)
65 (63)

226 (223)
293 (289)
247 (243)
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Sio.sGeos. The phonon dispersions for (Si)q/(Ge)2 SL's
grown in the (001) and (111) directions are shown in

Fig. 4. In the (111) direction there are two unequiva
lent SL's according to the stacking of the layers:zs RH1
if the (111)bonds are homopolars (Si-Si or Ge-Ge), RH2
if they are heteropolars (Si-Ge). In Fig. 4 the solid line is
given by HIFC's whereas diamonds indicate the results
of ab initio calculations for high-symmetry points. Also
in this case the agreement is very good and hence we

conclude that HIFC's yield a safe approximation for the
vibrational properties of complex Si-Ge systems.

As a final test of our approach we consider the vibra-
tional properties of homogeneous Si~ Ge alloys. Their
Raman spectra are known for a long timezs to exhibit
three strong peaks at 300, 400, and 500 cm ~, cor-
responding to Ge-Ge, Si-Ge, and Si-Si bond vibrations,
respectively. Recently a detailed investigations0 of epi-
taxially grown and polycrystalline Si-Ge alloys has de-
termined accurately the position of the main peaks and
of additional weak structures in the frequency region be-
tween 400 and 500 cm, corresponding to Si vibrations
in chemically different local environments. We will cal-
culate Raman spectra for free-standing Siq Ge alloys
at the same composition as in Ref. 30.

We describe a disordered alloy with a supercell geom-
etry in which Si and Ge atoms are randomly distributed
according to the considered composition. This is con-
sistent with the experimental picture of bulk Siq, Ge,
as a model random alloys~ and with previous theoreti-
cal finding2s s2 ss of no clustering or ordering in the bulk
alloys at room temperature. The lattice parameter is as-
sumed to vary with composition according to Vegard's
law. Our simulation cell contains 512 atoms periodi-
cally repeated throughout the space. Dynamical ma-
trix and forces on atoms are computed from HIFC's and
atomic positions are relaxed iteratively until equilibrium
is reached. Standard diagonalization of the dynamical
matrix at equilibrium then yields phonon frequencies and
displacement patterns for our sample. Raman spectra
have been calculated as in Ref. 16, neglecting the differ-
ence in polarizability between Si and Ge and assuming
the same symmetry-selection rules as in an undistorted
diamond lattice. The Raman strength for incident and
scattered lights polarized along e and e+, respectively,
is then given, up to a multiplicative constant, by

I,F( ) ) ~ ~((d& ld

v

0
X r z

x ) s(R) ~e p~~s cpu~(R), (10)
FIG. 4. Calculated phonon dispersions of short-period

Sip/Geq (001) and (111)SL's. In the (111)direction two SL's
are possibl= RH1 and RH2—depending on the layer stack-
ing. Solid lines are obtained with HIFC s, diamonds show the
result of a direct ab initio calculation.

R,,cx,P,p

where the sum runs over all supercell modes, u" (R) is
the displacement pattern for the vth one (with frequency
u„),and s(R) is +1 and —1 in the two fcc sublattices of
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TABLE IV. Peak frequencies, in cm, for the main Raman-active modes in relaxed Si~ Ge
alloys as obtained in this work for three composition (x = 0.28, x = 0.55, x = 0.77). Experimental
values from Ref. 30 are given for comparison.

0.28 Theory
Expt.

Ge-Ge

295
287

Si-Ge

409
404

Si-Si

501
502

Weak peaks

440, 451,(475)
247,430

0.55 Theory
Expt.

297
290

410
407

485
482

430,449, (468)
428, 446, (468)

0.77 Theory
Expt.

300
295

405
404

466
468

425,443,460
425,443,459

the diamond structures. In the actual calculation the b

function is substituted with a 2-cm -wide Lorentzian.
In Fig. 5 the resulting Raman spectra are shown for

the three compositions considered (z = 0.28, z = 0.55,
and z = 0.77). To reduce statistical errors three random
configurations are considered for each composition and
the spherically averaged Raman intensity, ~ = s(~*'"+
o*"+ o&"), is computed. The agreement with the ex-
perimental results is quite satisfactory. Peak positions
(arrows in the figure indicate their experimental values)
and shapes are well reproduced by our calculation even

x = 0.28

Si, Ge

for the weak structures in the 400—500-cm region. The
relative intensity for Ge-Ge, Si-Ge, and Si-Si peaks are
not well reproduced due to the equal polarizability ap-
proximation. For a detailed comparison, in Table IV
we report the peak positions as obtained in our calcula-
tion together with experimental data; the position of the
shoulders near the main Si-Si peak is given in parentheses
and is only tentatively assigned. The spectral features are
very well reproduced for Si-Si and Si-Ge vibrations and
are slightly worse for Ge-Ge ones, especially in the Si-rich
sample. The almost perfect agreement with experiment
for the weak structures is certainly somewhat fortuitous
but nevertheless remarkable. A complete study of the
vibrational properties of the Siq Ge~ alloy will be pre-
sented elsewhere. a

V. CONCLUSIONS

200

x = 0.55

x = 0.77
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In this paper the vibrational properties of Si-Ge sys-
tems have been studied extensively. A set of higher-
order interatomic force constants have been obtained
from a density-functional calculation of interatomic force
constants for different strain conditions and chemical
environments. Using these force constants, complex
systems —such as partially disordered SI 's or homoge-
neous Si~Ge~ alloys —can be easily studied, keeping es-
sentially the same accuracy of a complete first-principles
calculation. We have applied our approach to the homo-
geneous Si Geq alloys for a number of compositions,
using large supercells to simulate disorder. The com-
puted Raman spectra agree quite well with experimental
data. This is a quantitatively accurate description of the
vibrational properties of Si~ Ge alloys that has been
obtained theoretically. Our approach can be of great
usefulness in the interpretation of experimental data for
Si/Ge SL's, allowing us to account for the effect of inter-
face roughness and atomic intermixing.
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