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Single-particle relaxation time of one-dimensional electron gases

A. Gold
Laboratoire de Physique des Solides, Universite Paul Sabatier, 118route de Narbonne, 31062 Toulouse, France

(Received 22 July 1991)

The single-particle relaxation time ~, for the disordered interacting quasi-one-dimensional electron

gas is calculated within a one-subband model. For interface-roughness scattering and alloy-disorder

scattering, we find that the ratio between the transport relaxation time ~, and ~„if they are calculated in

the lowest-order Born approximation, is given by ~, /~, =—.For charged-impurity scattering we derive

'T /7; » 1 for E+~, && 1, where EF is the Fermi energy. Multiple-scattering effects calculated with the
self-consistent Born approximation are also discussed. The density of states versus energy in the pres-
ence of disorder is calculated. We present analytical results, and recent experimental and theoretical re-

sults are discussed.

I. INTRODUCTION

In an electron gas various lifetimes are introduced by a
finite amount of disorder. The transport relaxation time
~, describes the mobility of an electron gas and can be
determined by conductivity measurements. The single-
particle relaxation time ~, describes the decay time of
one-particle excitations and gives rise to a renormaliza-
tion of the density of states. It is widely believed that the
temperature dependence of the Shubnikov-de Haas os-
cillations in two-dimensional electron gases is determined
by the single-particle relaxation time. '

In two-dimensional electron gases the ratio r, /r, can
be strongly enhanced if the random potential is long
ranged. ' For remote impurity doping of
Al„Ga, „As/GaAs heterostructures with large spacer
width a, one finds r, /r, = 1 for 2k~a && 1 and

r, /r, =(2kFa) for 2kFa))1. kF is the Fermi wave
number. Recent experiments ' on two-dimensional elec-
tron gases supported the idea that measurements of ~,
and v, provide important information on the scattering
mechanisms. The strong enhancement of ~, /~, in a two-
dimensional electron gas for a long-range random poten-
tial indicates that even for high-mobility samples the
effects of disorder on the density of states can be much
larger than expected from the transport time. For a re-
view, see Ref. 6.

Electronic properties of quasi-one-dimensional systems
are studied intensively in experiments. For a review, see
Ref. 7. We use the word "quasi" in order to indicate that
the area of the wire is finite. From a theoretical point of
view the density of states (DOS) of quasi-one-dimensional
electron systems has attracted some attention during re-
cent years. ' Electron-electron interaction effects were
neglected in Refs. 8 —10. In recent calculations ' most
attention was given to see how DOS looks like if several
subbands are occupied. ' In one-dimensional systems
the DOS exhibits a square-root divergence at every sub-
band edge. A finite amount of disorder destroys these
square-root singularities of the DOS of the free-electron
gas.

Measurements" ' of the conductivity versus the elec-
tron density of quasi-one-dimensional systems have been
performed. It was argued that the scattering rate in one-
dimensional systems is increased when a new subband be-
comes occupied because of the square-root singularity in
the DOS. Measurements have been interpreted accord-
ing to this argument. ' ' In general, however, the con-
ductivity is not directly expressed in terms of the DOS.

In the derivation of the resistance quantization for the
ballistic transport through narrow constrictions' ' the
DOS of the one-dimensional free-electron gas is used. '

The renormalization of the density of states due to the
finite disorder could give a heuristic argument for the
effects of disorder on the sharpness of the resistance steps
as found in experiments. '

Recently, a model for a quasi-one-dimensional electron
gas confined in a cylinder of radius Ro with infinite bar-
rier height was discussed. ' Analytical results have been
presented for the transport relaxation time. In the fol-
lowing we calculate ~, and we discuss the effect of ~, on
the DOS of a quasi-one-dimensional electron gas.

The paper is organized as follows. In Sec. II we de-
scribe the results for the single-particle relaxation time.
The results for the density of states are given in Sec. III.
We discuss the theory and the theoretical results in Sec.
IV and the experimental results in Sec. V. The con-
clusion is in Sec. VI.

II. THE SINGLE-PARTICLE RELAXATION TIME

A. Theory

In this paper we calculate the self-energy X(q, E) of the
Green's function G (q, E)= 1/[E —

q /2m +X(q, E) j for
wave vector q and energy E. Planck's constant h/2~ is
set equal to 1. m is the electron mass. Many-body effects
are neglected and we consider only the contribution of
the disorder to the self-energy. G(q, E) is the Green's
function for electrons in the lowest subband. The energy
is measured from the subband energy. Within the model
of a cylindrical wire the one-subband approximation is
fulfilled for electron density N (2/Ro. '
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=2 Im[X(k =k+,E =EF ) ] . (2)

In the self-consistent Born approximation X(q,E) is ex-
pressed as

X(k E) ~ & IU(q)l'&
G( +k E)

e(q)

The conduction-band edge for the free-electron gas is at
energy E =0. & I U(q)l & is the averaged squared random
potential and e(q) is the screening function due to the
Coulomb interaction of the electrons. E(q) was calculat-
ed in the random-phase approximation. '

In order to get analytical results we calculate the self-
energy in mass-shell approximation: X(k =kz, E =EF).
EF is the Fermi energy. For details, see Ref. 3. The
single-particle relaxation time is defined as

1

(2qkF —
q ) +(m/w, „)

(4a)

The main contribution to the integral in Eq. (4a) comes
from q-2kF and q-0. To evaluate the integral in Eq.
(4a) we use an approximation, which was used before for
two-dimensional systems and is discussed in Ref. 3, and
we find

C. General results: Self-consistent theory

If we use G(q+k, E) with X(q+k, E)=i/2r„on the
rhs of Eq. (1) we get for the renormalized single-particle
relaxation time in mass-shell approximation

2m "
& IU(q)l

dq
e(q)2

Sy

For the lowest-order calculation we use the symbol v,
and the r in ~,„ is for renorrnalized, which means that
multiple-scattering effects are included. We restrict our
calculation to low temperature T «EF, see Eq. (10a).

B. General results: Lowest-order theory

For quasi-one-dimensional electron systems we get an
analytical result for r, because the q sum in Eq. (1) corre-
sponds to a one-dimensional q integral which can be
calculated with the help of Im[G (q, E) ]
=Im[1/(E —

q /2m +i0)] We fi.nd

kF & I
U(2kF)I'&

& IU((})l'&+ (3a)
2E~ [e(2kF, T) ] [e(0,0) ]

kF & IU(2k~)l &
& IU(0)I2&

EF2 e(2kF ) e'(0)

CO 1
X dx

2 2 22x —x + 1 2EFvsy

With Eqs. (3a) and (4b) we receive

cos[arctan(1/2EF ~,„)/2]

[1+I/(2EJ;~, „) ]'~

For weak disorder (2EF~,„))1) we get

3 1
Sy S 32 2

I+
(EF~, )

For strong disorder (2EF~„&&1) we find

(4b)

(6a)

In Eq. (3a) we have introduced the temperature-
dependent screening function because of the well-known
singularity of e(q, T =0) for q =2kF. ' Analytical results
for e(2kF, T «EF) can be found in Ref. 21, see also Eq.
(39) in Ref. 19. In one-dimensional systems forward-
scattering [corresponding to momentum transfer q =0,
the second term on the right-hand side (rhs) of Eq. (3a)]
and backscattering [corresponding to momentum transfer
q =2kF, the first term on the rhs of Eq. (3a)] are possible.
Forward scattering does not contribute to the scattering
time

1/r, =kF & I
U ( 2kF ) I & /[ E~ [e(2k~, T) ] ] .

By comparing I /w, in Eq. (3a) with I /w, we get

1 [&(2kjiT)] & IU(Q)l'&
2 [e(0,0)]' & I U(2k, )l'&

(3b}

On the one hand, the relation between ~, and ~, seems to
be quite simple. On the other hand, one could argue that
~, and ~, are expressed in terms of Fermi's golden rule:
The density of final states and the m.atrix element for
1/~, are the Green's function and & I U(q}l &, respective-
ly. The density of final states and the matrix element for
1/~, are the density-density relaxation function and

q & IU(q)l &, respectively. The densities of final states
and the matrix elements are quite different for ~, and v,

(6b)

Equation (6a) tells us that the lowest-order Born approxi-
mation overestimates the effects of disorder: v,„&7,.
With & I U(q)l & ~N; (N; is the impurity density) we get
for weak disorder: 1/~, ~N;. With Eq. (6b) we find for
strong disorder: 1/r, „~N; ~ . This result was found be-
fore for a short-range random potential where the
Fourier transform of the random potential does not de-
pend on the wave number. ' For a two-dimensional
electron gas we derived I/~, „~N ~, see Eq. (34) of Ref.
3.

Equation (5) interpolates between weak and strong dis-
order. Multiple-scattering effects will decrease the trans-
port relaxation time: ~„&~, . Therefore, we expect that
v.„/~,„&~, l~, . A similar result was found for two-
dirnensional systems. However, we believe that
multiple-scattering effects are more important in interact-
ing one-dimensional systems because of the singularity of
the screening function for q =2kF.

D. Results for interface-roughness
and alloy-disorder scattering

For interface-roughness scattering' and alloy-disorder
scattering & I U(q)l & is finite for all wave numbers and
e(q) is diverging for q =0. With Eq. (3b) we get
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G(2k~) =1/2g„. (9c)
2

We conclude, that, similar to two-dimensional disordered
electron gases with electron density going to zero, the ra-
tio ~, /~, is of order unity for quasi-one-dimensional elec-
tron systems in case of interface-roughness scattering or
allow-disorder scattering. However, the ratio does not
depend on the electron density, which is different for
disordered electron systems in higher dimensions.

For alloy-disorder and interface-roughness scattering
in a d-dimensional electron gas (d = 1,2, 3) and E' going
to zero one gets r, /r, =d/(d+1). The result for d =2
was already found in Ref. 3.

E. Results for charged-impurity scattering

For charged-impurity scattering we assume that im-
purities are located at a distance R from the center of the
cylindrical wire. One gets

We conclude from Eq. (9) that local-field corrections are
very important for 2k'Ro(&1 and reduce r, /r, For
g, =1 the reduction factor is 4. In silicon wires with

g, =2 the local-field correction is less ™portant: The
reduction factor is —", . The conditions n.k~T &&2 e'E~
and 2kFRp «1 correspond to

[g„ksT/2ne'R']'~ «Na~«g„a /~Ra. (10a)

Numerical results for r, /r, versus electron density for
GaAs wires (g„=l, a"=100 A, and R'=5.6 meV) and
for charged-impurity scattering are shown in Fig. 1.
r, /r, increases very rapidly with increasing density due
to the q =2k~ dependence of the random potential
[e(2kF, T=0.02R')=I for N&5X10 cm ']. The re-
sults shown in Fig. 1 are for T =0.02R *= 1.3 K. Condi-
tion (10a) transforms for T=0.02R* and Ro
=a*=100A to

(~ U(qRO «1)
~

)" N[ln( qRO/2)) f(qR) 4.2X10 «N «3.2X10 cm (lob)

and

e(q &(2k+) ~ po(E~)ln(qRO/2)

and the range of validity of Eq. (9) is small. However, for
smaller wire radii (Ro(a*) or (and) lower temperatures
(T &0.02R*) Eq. (9) is useful.

~ N;+ EF~,
2 g N

(ga)

Detailed results for ~, have been given in Ref. 19. For
N;=Nand EFr, )&1 one finds r, /r, »1. Equation (Sa)
can be rewritten as

3

&s 2&t 4g„'
(gb)

a* and 8 * are the effective Bohr radius and the effective
Rydberg, respectively, defined with the effective mass and
the dielectric constant of the background.

At low temperatures ~k~T &&2 e'EF we can derive
analytical results. kz is the Boltzmann constant and
c =0.577 is Euler's constant. We get for 2kFRp «1 and
R «Rp
~r 1 1 2

2 e'E=—+—[1—G(2k')] ln )1/2.
2 8 mk~ T

For 2kFRO& 1 and 2kFR &)1(R))Ro)we find

(9a)

S

k~R=—+ exp[4kFR][1 —G(2k+)]~ln2[k+RO]2'
2 e'EF

Xln ))1 .
~k, T (9b)

G(q) is the local-field correction. In the Hubbard ap-
proximation' we get for 2kgR p «1

(Ref. 19). f(x) is a form factor with f(0)=1. N; is the
(one-dimensional) impurity density. p()(EF) is the DOS of
the one-dimensional electron gas if no disorder is present:
po(E~&0)=(2mg„/REF)' and po(EF &0)=0. g, is
the valley degeneracy. With Eq. (3a) we get

F. Homogeneous background doping

We assume that charged impurities are distributed
homogeneously either inside the wire (Bl) or outside the
wire (B2). For homogeneous background doping one
finds the following for the random potential (~ U(q) ~ )

22

& IU(q)l'& =NB)(B2)RO F81(B2)(q)
2EL

100

50

20

10.
gVl

5

2

0.5
0.5 2 5 10 20

N(10 crn')

FIG. 1. Ratio of the transport relaxation time ~, and the
single-particle relaxation time T, vs electron density N for
charged-impurity scattering according to Eq. (8a). The radius
of the wire is Ro and impurities are located at the distance R
from the center of the wire.

Ns, and Ns2 are the (three-dimensional) background dop-
ing densities. eL is the dielectric constant of the back-
ground. Fs, (q) and Fsz(q) are form factors. For vanish-
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ing wave numbers we find

Fz, ( qR p « 1 ) = 8 ln [qR p /2]

and

F»(qRp «1)=8/[qRp]' .

For background doping in the wire (Bl) we derive

2
~r 1 m. Ng~R o—=—+ EFw, .

2 2g„N

(1 lb)

(1 lc)

(12a)

&.0

0.8

0.6
Cl

CL

QJ 0.4
CL

0.2—

Compare Eq. (12a) with Eq. (8a). We get for 2k+Rp « 1

1 1 2 e'EF—=—+—[1—G(2k&)] ln & 1/2,
2 8 F wk, T

(12b)

III. THE DENSITY OF STATES

The DOS p(E) at the energy E is given by

p(E) = ——g Im[G(q, E+i 0)] .
2

q

(13)

The factor 2 in Eq. (13) accounts for the spin degeneracy.
With G(q, E)=1/(E —

q /2m+i/2~, „}we get

cos[arctan(1/2E~, „)l2]
[1+1/(2Er,„) ]'p(E )0)=pp(E) (14)

The weak-disorder result (2E&, &) 1) is written as

which is identical to Eq. (9a). With Eq. (12a) and the re-
sults for ~, given in Ref. 19 the ratio ~, /~, can be calcu-
lated.

For (82) the backscattering contribution to the single-
particle relaxation time is divergent within the mass-shell
approximation because of Fs2(qR p « 1)~ 1/q . In d =2
a divergence was found for homogeneous background
doping in the lowest-order theory. This infrared diver-
gence could be treated within the self-consistent theory in
mass-shell approximation. This strategy does not work
for (82) in d = 1 and a more sophisticated theory must be
used to get meaningful results.

0.& 05 t

«sr
FIG. 2. Density of states p(E) in units of the free-electron

density of states po(E) vs energy E in units of ~,„, the renormal-
ized single-particle relaxation time. The solid line represents
Eq. (14). The dashed and dotted lines represent the weak-
disorder result, Eq. (15a), and the strong-disorder result, Eq.
( l Sb), respectively.

IV. DISCUSSION: THEORY AND RESULTS

2. Our analytical results for the DOS are also in qualita-
tive agreement with the numerical results of Ref. 9 for
the lowest subband.

With Eq. (14) we conclude that for E )0 the DOS of
the disordered system is smaller than the DOS of the
clean system. This effect is explained as follows. For the
free-electron gas the conduction edge E& is at Ec=0.
Due to disorder the conduction-band edge is shifted to
lower energies: Ec (0. Therefore, for E &0 the density
of states of the disordered system is smaller than for the
clean system. A similar argument was given for two-
dimensional systems.

For two-dimensional systems we found for 2E~, ))1:
p(E) =pp[1 —I l(2mE~, )], see Eq. (49) in Ref. 3.
po=m/m is the DOS of the free-electron gas in two di-
mensions. We conclude that the effects of disorder on the
DOS are larger for two-dimensional systems than for
one-dimensional systems, see Eq. (15a).

3 1
p(E &0)=pp(E) 1—

32 (E~, )
(15a) A. Theory

For E~,„=l we get p(E &0)/pp(E)=0. 92. The strong-
disorder result (2Er,„«1)is expressed as

p(E )0) =pp(E)[E~,„]'~ (15b}

In the strong-disorder regime the DOS does not explicitly
depend on the energy [p(E &0) ~ ~,'„]and this was also
found in numerical calculations, see the dashed line in
Fig. 1 of Ref. 9.

p(E) Ipp(E) versus E~,„ is shown in Fig. 2. For
E~,„& 1 (E~, &0.92) the effects of disorder on the DOS
are small and the weak-disorder result Eq. (15a) is in very
good agreement with Eq. (14). For E~,„&0.4
(Er, &0.28) the strong-disorder result Eq. (15b) is in
reasonable agreement with Eq. (14). With Eq. (14) and
Eq. (5) we conclude that p(EI; ) Ipp(E&) =r, lw, „, see Fig.

In this paper we have chosen the strategy to calculate
the DOS within a simple approach but with a realistic
model for the disorder and the interaction potential. Our
calculations have been performed in the self-consistent
Born approximation. The additional approximation,
which was performed by going from Eq. (4a) to Eq. (4b),
is justified by deriving the correct weak-disorder result
and the correct strong-disorder result, as discussed in
Sec. II C. Impurity bands cannot be described within the
Born approximation. Therefore, we think that our calcu-
lation provides a good estimate of the density of states if
the Fermi energy is located in the conduction band. In
the calculation of the self-energy and the DOS we used
the mass-shell approximation in order to get analytical
results. A more complete theory, the self-consistent t-

matrix approximation, will be described in Ref. 23.
Multiple-scattering effects were calculated by neglect-
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ing the effects of disorder on the dielectric function. A
complete self-consistent calculation is difficult because
the knowledge of the effects of disorder on the dielectric
function implies that the localization problem has been
solved for an interacting electron gas. However, the lo-
calization problem for interacting electrons is not yet
solved. Therefore, we think that our result given in Eq.
(5}only represents a first step to the full solution.

B. Results: Single-particle relaxation time

In our paper we presented results for the single-particle
relaxation time in quasi-one-dimensional systems. We
compared the single-particle relaxation time with the
transport time, calculated in lowest-order Born approxi-
mation. It is well known that the transport time is sensi-
tive to "weak-localization" effects, which are stronger in
one than in two dimensions. Therefore, it might turn
out that the measured transport time is smaller than the
transport time calculated in Born approximation, see our
discussion in Ref. 19. However, the single-particle relax-
ation time, which determines the density of states, is in-
sensitive to "weak-localization" effects. It remains to be
seen whether the arguments on "weak localization" really
can account for the transport properties of interacting
electrons in wires. Many more experiments are needed
before this question can be answered.

We do not discuss the implications of the localization
theory in this paper because we are considering the
single-particle relaxation time. One argument should be
given, however: Our theory on ~, is expected to be valid
for all temperatures T «EF and for EF in the band-tail
regime. The band-tail regime can only be estimated from
a more complete theory, which can describe impurity
bands.

Between the localized regime and the ballistic regime a
parameter space should exist where diffusive transport is
possible. In this regime the transport relaxation time ~„
as calculated in Ref. 19, should have a physical meaning.
Due to the lack of a complete localization theory for in-
teracting electrons this parameter range cannot presently
be specified. It remains to see more experimental results
to get an idea where the different, however incomplete,
theories, can be applied. Nevertheless, we believe that
our analytical results are helpful for the experirnentalists
to determine the parameter range of the different re-
gimes.

An effect of a structure factor S(q) for the impurities
has recently been discussed in Ref. 25 for two-
dimensional systems. We assumed that the impurities are
distributed randomly: S(q) =1. However, a structure
factor could easily be introduced in our theory by replac-
ing N~ by N,.S(q).

gued that when a new subband becomes occupied, the
scattering rate is enhanced due to the large DOS at the
subband edge. Our calculation provides a better under-
standing of this heuristic argument. In conductivity mea-
surements the density-density relaxation function is
probed (via the density of final states). Because of
~, =r, /2 for interface-roughness scattering and alloy-
disorder scattering one could argue that the density of
states is probed. However, a more complete analysis
must include intersubband scattering.

We calculated the single-particle relaxation time and
the density of states in the lowest subband of quasi-one-
dimensional electron systems. If intersubband scattering
and screening effects are neglected the results for the
r, /r, and the DOS also hold for the second, third, etc.
subband with corresponding shifts of the subband edges.
In recent experiments on Shubnikov-de Haas oscil-
lations in Al„Ga, „As/GaAs heterostructure wires with
many occupied subbands it was found that ~, /~, »1.
The experimental results presented in Refs. 26 and 28 in-
dicate that the scattering mechanism in the
Al„Ga, „As/Ga As hetero structure wires is due to
charged-impurity scattering. It was also noted that the
ratio r, /r, in the most narrow structure was higher than
in the wider structures. From our analysis we conclude
that the additional confinement by going from two-
dirnensional systems to quasi-one-dimensional systems
should increase the ratio r, i~, in case of charged-
impurity scattering: (i) r, /r, = (2k+a) for d =2 and

2k+a »1 and (ii} r, /r, ~ (kFR )exp(4kFR) for d =1 and
2k~R &&1 (with 2kFRO &&1). However, we would like to
note that for a real understanding of the magnetotrans-
port experiments a rnagnetotransport theory is necessary.
Such a theory was not the topic of this paper.

Interface-roughness scattering' was discussed to de-
scribe experimental results in Al„Ga& „As/GaAs quan-
tum wires. Alloy-disorder scattering is the dominant
scattering mechanism in wires made from
InQ 53Gap 47As/InP. Experimental results on the
single-particle relaxation time in these structures are
highly desirable in order to test the importance of
interface-roughness scattering and alloy-disorder scatter-
ing.

B. Ballistic transport

The structures, where the resistance quantization for
ballistic transport in constricted geometries was found in
experiment, ' ' were made from Al Ga& As/GaAs
heterostructures. In these structures ~, /~, »1 due to re-
mote doping or homogeneous background doping. It
was argued in Ref. 16 that the large mean free path I, is
the reason for observing the steps. We argue that the
necessary condition for observing the steps is

V. DISCUSSION: EXPERIMENTS l, =kF~, /m»L, . (16)

A. Di8'usive transport

Subband-energy distances in quasi-one-dimensional
structures have been estimated from measurements of the
conductivity versus the electron density. " ' It was ar-

L, is the length of the constriction. Resistance steps
occur when a new subband becomes occupied. The Fer-
mi energy in the new subband is then very small. There-
fore, the renorrnalized single-particle relaxation time
could be important: l,„=kF~,„/m. The mean free path l;
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for inelastic collisions must a1so be large: I, ))I,. Of
course, Eq. (16) represents only a heuristic argument.

Experimentally it was observed that the sharpness of
the resistance steps is not strongly correlated with the
mobility values of the samples. ' This could be an indica-
tion of the importance of the single-particle relaxation
time. The single-particle relaxation time for two dimen-
sions was discussed in connection with the resistance
quantization in Ref. 32. However, the two-dimensional
single-particle relaxation time was used.

In the two-dimensional electron gas in silicon metal-
oxide-semiconductor structures one finds ~, /~, & 2." We
suggest that if ~, is the relevant parameter to observe the
steps then one will not find these steps in presently avail-
able silicon structures. If ~, is the relevant parameter
then it should be possible to observe the resistance quant-
ization also in constrictions of silicon material.

VI. CONCLUSION

A disordered interacting quasi-one-dimensional elec-
tron gas was studied in this paper. The aim of the paper
was to present analytical results for the single-particle re-

laxation time r,„and the density of states p(E). For weak
disorder we derived ~,„=~, and we found for interface-
roughness scattering and alloy-disorder scattering
~, =~, /2. For charged-impurity scattering we got

for EF~, ))1. Multiple-scattering effects for
strong disorder have been calculated. We discussed
analytical results for r,„[Eq. (5)] and p(E) [Eq. (14)]
which interpolate between weak and strong disorder.

Present experiments" ' ' are performed on sys-
tems where many subbands are occupied. We hope that
our analytical results will be useful for the yet to be real-
ized (experimental) situation that the diffusive transport
properties of a one-subband system are studied. Recent
experimental results' ' ' ' ' suggest that experirnen-
tal studies of one-subband systems are possible.
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