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Conductance fluctuations in quantum wires with spin-orbit and boundary-roughness scattering
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Conductance fluctuations in quantum wires with spin-orbit interaction and in those with boundary-
roughness scattering are studied. In a length region much smaller than the localization length, a strong
spin-orbit interaction reduces the fluctuation nearly by 2

and boundary roughness causes fluctuations
quite different from those for bulk scatterers. Once the localization effect becomes important, the fluc-
tuations exhibit an almost universal length dependence if scaled by the localization length, irrespective
of the kinds of scatterer and the symmetry of the system.

I. INTRODUCTION

Narrow wires can be fabricated by introducing a
confining potential in a two-dimensional electron system
at a modulation-doped GaAs/AI„Ga&, As heterostruc-
ture. In such quantum wires, the width is smaller than
the mean free path and comparable to the Fermi wave-
length, leading to the presence of well-defined one-
dimensional (ID) subbands. In metallic wires, on the oth-
er hand, the electron motion is classical and also diffusive
even in the transverse direction because the width is
much larger than the man free path and the Fermi wave-
length. Thus, conductance fluctuations in quantum wires
can be quite different from those in metallic wires which
have been shown to be universal by various methods in-

cluding perturbation calculations, ' numerical calcula-
tions, ' and also analytic argument based on the
random-matrix theory. ' In a previous paper, fluctua-
tions in quantum wires were studied both in the presence
and in the absence of a magnetic field. ' The purpose of
this paper is to study effects of spin-orbit interaction and
boundary-roughness scattering.

There are three different universality classes for the
symmetry of systems: orthogonal, unitary, and symplec-
tic. ' The orthogonal case corresponds to systems in the
presence of time-reversal symmetry, where the Hamil-
tonian is represented by a real symmetric matrix and the
corresponding wave function can be chosen as real.
When a magnetic field is applied, the time-reversal sym-

metry is broken, and consequently wave functions be-
come complex because the Hamiltonian becomes a com-
plex Hermitian matrix. We have another symmetry
called symplectic in the presence of spin-orbit interac-
tions and the time-reversal symmetry. Perturbation cal-
culations in metallic wires have shown that the fluctua-
tion is reduced by 1/&2 in the presence of a magnetic
field and by —,

' in the presence of strong spin-orbit interac-
tion.

Recent experiments have demonstrated that in long
quantum wires scattering from boundary roughness gives
rise to a large positive magnetoresistance. ' This positive
magnetoresistance is similar to that observed in metallic
thin films for which classical explanation is possible. The

classical theory assumes that each electron is reflected
specularly with the probability p and otherwise scattered
into a random direction. In the absence of a magnetic
field, the roughness itself cannot produce a nonzero resis-
tivity because straight trajectories parallel to film surfaces
have an infinite mean free path and dominate the current.
In the presence of a magnetic field, the resistivity be-
comes nonzero because all electrons follow a curved tra-
jectory and are scattered at collision with the boundaries.

A quantum-mechanical calculation of boundary-
roughness scattering gives results analogous to those of
the classical theory. ' In the absence of a magnetic field
it causes a peculiar current distribution among 1D sub-
bands such that most of the current is carried by low-

lying subbands. This singular behavior nearly disappears
and the current is almost equally shared by different 1D
subbands in magnetic fields, leading to the positive mag-
netoresistance. Conductance fluctuations in the case of
boundary-roughness scattering is expected to be quite
different from those for bulk scatterers.

In this paper we study conductance fluctuations in
quantum wires with strong spin-orbit interaction and
boundary roughness within a lattice model. In Sec. II nu-
merical results showing effects of spin-orbit interaction
are presented after a brief description of the model and
method. Effects of boundary-roughness scattering are
discussed in Sec. III. A summary and conclusion are
given in Sec. IV.

II. SPiN-ORBIT INTERACTION

A. Model and method

In contrast to a continuum model used in Ref. 17 we
use a square-lattice model because it is quite convenient
and handy in treating various effects such as spin-orbit
interaction and boundary roughness. In particular,
effects of spin-orbit interaction can easily be introduced
by the model same as that adopted in the study of sym-
metry effects on localization, which simulates actual
two-dimensional systems in n-channel inversion layers on
surfaces of III-V semiconductors or at GaAs/
Al Ga, As heterostructures. It is described by the
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Hamiltonian:

&=ps;c; c; —g g V(i, o ,j",o')c; c (2.1)

concentration of scatterers with 5-function potentials, if
we choose the parameters as follows:

V, Vz

—V
V = —iV2

—iVz

V)
(2.2)

with V, and Vz being spin-diagonal and off-diagonal ele-

ments, respectively, and

1 0
il)=

Effects of scatterings from bulk impurities are intro-
duced through randomness of site energy c; distributed
uniformly with width U( —U/2 e;+4V U/2). This
lattice model corresponds to the wire containing high

I

where V(i, o",j,o') = V„or V depending on the direction
of the nearest-neighbor site in the x and y direction. We
have, in matrix form,

2U2
n, V.o=a ((e;+4V, ) ) = (2.4)

where n; is the concentration of scatterers in a unit area,
Vo is the strength, and a is the lattice constant. Al-
though dominant scatters in GaAs/Al„Ga& As systems
are believed to have long-range potential, ' which may
cause a considerable reduction in effects of scattering in
narrow wires; the present short-range model is expected
to be sufficient for the study of fluctuations.

In the following, we measure almost all the quantities
in units of corresponding quantities in 2D, i.e., energy is
measured in units of the Fermi energy EF and length in
units of the Fermi wavelength A,F. In a 2D system
without randomness (e;= —4V, ), the energy of an elec-
tron with wave vector k=(k„k») is given by an eigenval-
ue of the following 2X2 matrix:

4V, —2V, ( cosk„a+ cosk a) —2V2(i sink„a+ sink»a)
—2V2( i sink, a—+ sink»a) 4V, —2V, (cosk„a+ cosk»a) (2.5)

For small k a and k a, this becomes

gzk 2/2m
&(k)= —2iri k, ( ik„+—k»)/2m

—2iii k, (ik, +k )/2m

/2m
(2.6)

with m being the effective mass and

2 '2
V) 1gz

2ma EF

Vz 1 AF k,

EF 2a a kF

(2.7)

The energy takes a minimum along the circle defined by
k =k, instead of k =0. We choose k, /kF as the parame-
ter characterizing the strength of spin-orbit interaction.
The presence of such a k-linear term was first pointed out
by Ohkawa and Uemura in n-channel inversion layers
on narrow-band-gap Hg, Cd, Te. It is quite difBcult,
however, to obtain a reliable estimate of the absolute
magnitude of the k-linear term.

The strength of bulk impurity scattering is character-
ized by the mean free path A. The randomness parame-
ter is easily shown to be related to A through

1/2

(2.8)
EF m'a'A

L

The calculation of the conductance proceeds in the way
analogous to that described already in the absence of
spin-orbit interaction based on the multichannel ver-
sion of Landauer's conductance formula.

B. Results

In the numerical calculation we choose A/A, F=50
which is close to that in Ref. 17 and A.~/a =8. The typi-

cal number of samples is 10 . It has been checked that
the results obtained in the present lattice model are same
as those of Ref. 17 in the absence of spin-orbit interac-
tion.

Figure 1 shows an example of calculated conductance
as a function of length measured in units of A for
2W/)(. +=5.25 corresponding to the channel number 5.
Two different averages, arithmetic and geometric, are
shown together with the localization length a ' obtained
by fitting a straight line to the (lnG ) versus L curve, i.e.,
a= —B(lnG ) /2dL. (Note that the localization length is
twice as large as that defined in Ref. 17.) The initial de-
crease of the conductance in the near-ballistic regime
(L /A -1) does not depend on the strength of spin-orbit
interaction, corresponding to the fact that the mean free
path itself is not affected by the spin-orbit interaction.
With further increase of the length, the conductance in
the presence of spin-orbit interaction decreases much
more slowly than in its absence, which leads to the in-
crease of the localization length by a factor of about 3.

In the limit of large channel numbers N, the localiza-
tion length has been shown to be given by a ' ~N, P
where P is the so-called level-repulsion exponent (P= 1

for orthogonal, 2 for unitary, and 4 for symplectic univer-
sality classes) in the random-matrix theory. ' For sys-
tems with more general values of X„analytic considera-
tions based on a Fokker-Planck equation for the distribu-
tion function of the conductance gave
a ' ~ (PN, +2—P). The present numerical result is
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FIG. 1. Calculated conductance vs length in the presence
(squares, k, /kF =0.1) and absence (circles) of spin-orbit interac-
tion for wires with channel number 5. Two different averages,
arithmetic (filled symbols) and geometric (open symbols), are
shown. The vertical arrows denote the localization length a
The dotted lines represent the straight lines corresponding to
the localization length.
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in good agreement with this analytic expression which
shows that the localization length for P=4 is three times
as large as that for P= l in the case of N, =5.

The corresponding result for the fluctuation is given in
Fig. 2. In the absence of spin-orbit interaction the fluc-
tuation increases first, takes a maximum, and starts to de-
crease gradually with the wire length. ' In the presence
of spin-orbit interaction, the fluctuation is reduced by a
factor close to —,

' for the length region much smaller than
the localization length and larger than the mean free path
(called universal region hereafter), but with further in-
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FIG. 2. Calculated conductance fluctuation vs length in the
presence (squares, k, /kF=0. 1) and absence (circles) of spin-
orbit interaction for wires with channel number 5. The vertical
arrows denote the localization length a '. The horizontal dot-
ted lines represent the fluctuations calculated perturbationally
for metallic 1D wires.
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crease of the length it gradually becomes larger and takes
a maximum around the localization length. This feature
is similar to that in weak magnetic fields. '

This length dependence may be more clearly under-
stood if we look at the distribution function of the con-
ductance. Figure 3 shows calculated distribution func-
tion corresponding to length aL ——' —' —' 1

t e universal region the conductance nearly obeys a nor-
ma aussian distribution around the mean value. The
width of the distribution is narrower in the presence of

e 1str1 utlonspin-orbit interaction than its absence. Th d' 'b

unction undergoes a qualitative change when its left tail
reaches the origin G =0. Because of the difference in the
amount of the fluctuation, this change takes place at

i erent lengths, aL & —,
' in the presence of spin-orbit in-

or onger wiresteraction and aL 5 —,
' in its absence. For 1

aL ~ 1, the distribution function is nearly independent
of the symmetry and close to that in a 1D

In 1D wi
a wire.

n wires an exact expression was derived by Abri-
kosov for the distribution function of the conductance.

igure 4 shows the average conductance and fluctuation
as a function of length and Fig. 5 gives the distribution

eng region whereunction in a 1D wire. There is no le th
t e conductance obeys a normal Gaussian distribution
an t e distribution function clearly changes its feature
around a crossover length L, Sa '/2 where its left tail
reaches the origin. The fluctuation takes a maximum at a
length slightly larger than L, .

For wires much longer than the localization len th
(aL»1)&, the conductance and its fluctuation are essen-
tially the same if the length is scaled by the localization

symmetry. This can easily be understood because the
conductance in the strong localization regime consists of
s arp peaks at energies of localized states which are dis-
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FIG. 5. Exact distribution function of the conductance in
one-dimensional wire for several values of aL.
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'
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suggests that this universality already prevails hvais w en

Figure 6 shows calculated fluctuations for different
values of k /k . The flF. e uctuation takes a small maximum
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FIG. 7. Calculated conductance fluctuation vs length in the
presence (squares) and absence (circles) of spin-orbit interaction
for wires with channel number 10. The vertical arrows denote
the localization length a '. The horizontal dotted lines
represent the fluctuations calculated perturbationally for metal-
lic 1D wires.

tion function g (x) is normalized to unity and

g (0)= 1/v'tr5.
Figure 8 shows calculated conductance for wires with

boundary roughness as a function of the length normal-
ized by the arithmetic average of the mean free path of
each subband in the absence (8'/R, =O) and presence
(W/R, =0.5) of a magnetic field, where R, is the classi-
cal cyclotron radius. In the Boltzmann transport theory,
the conductivity is proportional to the arithmetic average
and takes a minimum around a magnetic field corre-
sponding to W/R, -0.5. ' The reduction in the mean
free path from A/A, ~ —11.8 for W/R, =O to A/A~-4. 6
for W/R, =0.5 shows that the resistivity is enhanced
from its zero-field value by more than double in the
Boltzmann transport theory.

The conductance for 8'/R, =O does not agree with
that for 8'/R, =0.5 in the near-ballistic regime
(L /A & 1) even if scaled by the mean free path except at
I. =0. This is to be expected because of the singularly
strong dependence of the mean free path on 1D sub-
bands. In the limit of short-range boundary roughness
(fi/AF «1) the Boltzmann transport theory predicts that
r„' ~ n for W/R, =0 where r„ is the relaxation time of
subband n. Because of an extra n dependence due to the
velocity v„ the mean free path A„=~„U„exhibits even
stronger dependence than n . In fact, the actual calcu-
lation reveals that in the case of 2W/XF =5.25 the mean
free path of the lowest subband is about two orders of

in the near-ballistic regime (1-aL & 2) particularly for
weak spin-orbit interaction. This arises because electrons
pass through the system before being a6'ected by spin-flip
scattering for such short wires. In other length region,
the fluctuation does not depend on k, /kF appreciably as

long as k, /kF@0. This demonstrates that the symmetry
is a key factor of determining fluctuations and localiza-
tion.

Figure 7 gives calculated fluctuations for a wider wire
with 28'/A, F=10.25 corresponding to channel number
10. All the features are the same as those with
2 W/A, F = 5.25 except that the universal region in the ab-

sence of spin-orbit interaction has become much clearer
and the reduction due to the spin-orbit interaction has
become further close to —,'.

III. BOUNDARY ROUGHNESS SCATTERING

The model of boundary roughness is chosen as exactly
the same as that described in Ref. 21. The wire is
separated into narrow sections whose length takes ndo
(n =1,2, . . . , nd) with probability nd . Within each sec-
tion, the left and right boundaries are shifted by +n4o
(n =1,2, . . . , nz) with probability q/n~ and left unshift-
ed with probability 1 —2q. This gives the following corre-
lation function of roughness b, +(x) of the left boundary
and b, (x) of the right boundary:

(6+(x)A+(x') ) =&trfib, g (x —x'), (3.1)

with correlation length 5=(2nd + 1)do/3&tr and average
displacement b, =q (nz +1)(2n~ +1)b o/.3The correla-
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FIG. 8. Calculated conductance vs length in the presence

(squares) and absence (circles) of a magnetic field for wires with

channel number 5 having strong boundary roughness scattering
(the correlation length 5/A, F-0.12 and the mean deviation

4/A, F-0.18). Two di6'erent averages, arithmetic (filled sym-
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magnitude larger than that of the highest subband. The
decrease in the near-ballistic regime is likely to be deter-
mined by the harmonic average of A„which is much
smaller than A.

Figure 9 shows the corresponding fluctuation as a
function of length. The fluctuation takes a sharp max-
imum in the near-ballistic regime (l. /A & 1) and starts to
decrease around the localization length in both absence
and presence of a magnetic field. There is no universal
region where the fluctuation remains independent of L
presumably because the wire is still too narrow.

Figures 10 and 11 give the results for a wider wire with
channel number 10 ( 2 W/A, ~ = 10.25). The magnetic-field
reduction in the mean free path is much larger than that
for 2W/XF=5. 25. The universal region appears in the
region A «L &a ', where the fluctuation in the absence
of a magnetic field is clearly smaller than that of 1D me-
tallic wires but that in its presence is close to that of 1D
metallic wires. The singular enhancement of the fluctua-
tion in the near-ballistic regime is more profound for wid-
er wires than narrower ones.

In short wires, mixing among different 1D subbands
due to scattering is not appreciable and each channel may
be regarded as almost independent. The transmission
probability of the low-lying subbands has a sharper distri-
bution with peak close to unity because of the large mean
free path, while that of the higher subbands has a broader
distribution with peak at much smaller than unity. This
is presumably a main origin of the singular enhancement
of the fluctuation in the near-ballistic regime. The
enhancement may be related to the suggestion by
Higurashi, Iwabuchi, and Nagaoka, ' who claimed that
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FIG. 10. Calculated conductance vs length in the presence
(squares) and absence (circles) of a magnetic field for wires with
channel number 10 having strong-boundary roughness scatter-
ing (the correlation length 5/A, +-0.24 and the mean deviation
6/A, F-0.18). The dotted lines represent the straight lines cor-
responding to the localization length.

the fluctuation can be enhanced considerably in the
near-ballistic regime even for bulk impurity scattering
within a lattice model containing a peculiar anisotropy.
In our model, which simulates actual quantum wires
much better, however, such enhancement has not been
obtained for bulk scatterers. '
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IV. SUMMARY AND CONCLUSION

The conductance of quantum wires has been calculated
within a lattice model in the presence of strong spin-orbit
interaction and boundary-roughness scattering. The re-
sults are summarized as follows.

(i) The spin-orbit interaction reduces the fluctuation to
nearly half of that in its absence in the universal region
much larger than the mean free path and smaller than the
localization length. This agrees with the conclusion ob-
tained in perturbation calculations for 1D metallic wires.
When the length becomes larger, the fluctuation in-
creases, takes a maximum around the localization length,
and then decreases with increasing length. This feature is
quite similar to (but much more pronounced than) that in
the presence of a weak magnetic field. This is closely re-
lated to the fact that the distribution function of the con-
ductance becomes essentially that of a 1D wire when the
length is comparable to or larger than the localization
length.

(ii) Owing to the peculiar nature of boundary-
roughness scattering, the conductance fluctuation exhib-
its behavior different from that for bulk impurities when
the length is smaller than the localization length, i.e., a
singular enhancement of the fluctuation in the near-
ballistic regime and the reduction in the universal region
from that of 1D metallic diffusive wires. When the locali-
zation effect becomes important, the fluctuation becomes
the same as that for bulk impurity scattering if the length
is scaled by the localization length.
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