
PHYSICAL REVIEW B VOLUME 46, NUMBER 4 15 JULY 1992-II

Classification of Abelian quantum Hall states and matrix formulation of topological fiuids

X. G. Wen
Department ofPhysics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 430-7

A. Zee
Institute for Theoretical Physics, University of California San—ta Barbara, Santa Barbara, California 93106 40-30

(Received 3 February 1992)

We give a simple and unified treatment of quantum topological fluids such as the quantum Hall fluid.
We show that the order in such fluids can be characterized by a symmetric matrix K, in terms of which
various physical quantities can be determined. We construct K by a matrix iteration procedure which

may be decomposed into two simple elementary steps. The hierarchy construction is shown to be con-
tained in our matrix iteration construction. The relationship between the vortex basis and the dual elec-
tron basis is clarified. We also show that under certain mild assumptions the generalized hierarchy con-
struction exhausts all possible Abelian fractional quantum Hall states. We identify and determine the to-
pological quantity known as the shift. Our formalism may be relevant for recent experimental data on
multilayered systems.

I. INTRODUCTION

It has become increasingly clear that the fractional
quantum Hall (FQH) states' contain an extremely rich
internal structure. A long-standing problem has been
how to characterize and label the orders in these states.
The answer to this problem is ever more urgently needed
since there are now so many different constructions
available in the literature. It is dificult to see whether
different constructions lead to the same FQH states or
not. We would like to have a unified picture of the
universality classes and the ordering in these states. In
this paper, we present a simple and unified description.

Traditionally, one uses broken symmetries and their as-
sociated order parameters to classify the order and
universality classes of condensed-matter systems. How-
ever, this approach is not applicable to the FQH states.
It was shown that the orders in these states cannot be
classified by broken symmetries and their associated or-
der parameters, because the degeneracy of the ground
state depends on the genus g of the two-dimensional
(closed) space over which these states are defined. Thus,
these states contain a different type of order called topo-
logical order. We will call these topologically ordered
quantum fluids topological fluids for short.

It was pointed out that the simplest topological
fiuids —the Laughlin states with filling factor v= 1j(odd
integer) —contain off-diagonal long-range order for some
unphysical nonlocal operators. This leads to the
Ginzburg-Landau (GL) theory of the Laughlin states.
However, it appears that the concept of off-diagonal
long-range order and the corresponding GL theory do
not provide a general description of the topological or-
ders in the FQH states. In particular, it appears that one
cannot use the off-diagonal long-range orders to describe
the internal structures of the non-Abelian FQH states.

Recently, a general mathematical approach to the
long-distance physics of quantum topological fluids was

formulated based on the Chem-Simons theory, ' build-
ing upon earlier work by a number of authors. Exam-
ples of quantum topological fluids include the quantum
Hall fluid, ' the chiral spin fluid, and the anyon
superfluid. ' Here we will focus on the Hall fluid. Simi-
lar discussions may be given for the other fluids. This ap-
proach has the advantage of making clear which proper-
ties of these topological fluids are general and indepen-
dent of the detailed physics at short distances. It also
provides a unified description of both Abelian and non-
Abelian FQH states. (The Abelian states are defined as
those in which all quaisparticles have Abelian statistics,
while the non-Abelian states are those in which some
quasiparticles have non-Abelian statistics. )

In this paper, we will give a complete classification of
the topological orders (or the universality classes) of the
Abelian FQH states. We will show that all possible
Abelian FQH states are labeled by a symmetric integer
valued matrix K with odd diagonal elements. We will
show that the generalized hierarchical construction dis-
cussed in Refs. 5 and 11 exhausts all possible Abelian
FQH states. (Here we ignore the possibility of pairing be-
tween electrons. See the forthcoming discussion. )

Another purpose of this paper is to extend, clarify, and
elaborate on our earlier discussion.

Let us begin by reviewing briefly some basic facts of
this subject. The long-distance physics of the quantum
topological fluids is described in general by the Lagrang-
ian in (2+ 1)-dimensional space time

1 g txtKtJEt)tzy+
47T I J

We use the compact notation ctEt)P=e" t)gi for two

gauge potentials u„and P„. The ellipses in (1.1) represent
short-distance physics about which this formalism has
nothing to say. If the matrix K does not have any zero ei-
genvalue, the gauge potentials el's are all massive' and
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the fluid is incompressible; for example, the Hall Quid

and the chiral spin Quid. On the other hand, if K has a
zero eigenvalue, some linear combination of the gauge
potentials is massless and the fluid is a compressible
superfluid; for example, the anyon superfluid. The
ground states of these theories are described by nontrivial
global configurations of the gauge potentials az's. The
degeneracy of the ground state is given by

) EB —.

a2

with the modified currents

(2.4)

As we have already discussed in detail in an earlier
work, we are free to integrate out the gauge potentials
at's to obtain the nonlocal (matrix} Hopf Lagrangian'

D =(detK)g, (1.2) (2.5}

II. VORTEX BASIS

The vortices, or quasiparticles, in these fluids are intro-
duced as (massive) sources for the gauge potentials at' s.
We add to the Lagrangian in (1.1) the term

(2.1}

where j„denotes the current of the vortices of the Ith
type. Thus, it is vortex quantization that fixes the nor-
malization of a and hence of the matrix K in (1.1).

These various topological fluids are, of course, also dis-
tinguished by their couplings to the external electromag-
netic gauge potential A„. The elementary excitations in
the chiral spin fiuid (the spinons) are electrically neutral.
On the other hand, the elementary excitations in the Hall
fluid are electrically charged, with a coupling to A„de-
scribed by

1
A g ttE"r}at .2' (2.2)

In previous works, the charges tz's were taken to be
equal to 1. The possibility of setting t~ not equal to 1 was
mentioned by us but not pursued in detail. We consider
this possible generalization here.

The total long-distance Lagrangian of the Hall fluid is
thus the sum of (1.1), (2.1), and (2.2):

1 1aK

saba+

A t sr}a+aj4~ 277
(2.3)

where g is the genus of the two-dimensional closed sur-
face on which the theory is defined. This shows clearly
the topological character of the theory. It also follows
that the determinant of K must be an integer. [In writing
(1.2) we have, of course, assumed an appropriate normali-
zation for the gauge potentials, such that the currents
coupling to at carry integer charges. See (2.1) below. ]

In the simplest cases, the matrix K is 1 X 1 and reduces
to a number k, an integer. For k =1,3, . . . an odd in-

teger we have the Hall fluid with the classic odd denomi-
nator filling fraction v=1/k. For k =2,4, . . . an even
integer we have the chiral spin Quid with statistics pa-
rameter 8/n. =l/k. Thus, satisfyingly, the chiral spin
fluid fills the gaps left open by the classic Hall Quid.

As we will explain, the discussion can now proceed ei-
ther in a vortex basis, in which vortices play a "primary"
role, or in an electron basis, in which electrons (or holes)
play a "primary" role. We hope to make clear the con-
nection between these two complementary bases. Let us
first turn to the vortex basis, following earlier work.

The effective Lagrangian (2.4) contains three types of
terms, of the form AA, Ajz, and jzjJ. These determine,
respectively, the conductance or the filling factor of the
Hall fluid

cT v g tt(K )tjtJ
I,J

(2.6)

and the statistics of such a conglomerate

(2.8)

Earlier we derived these formulas with tz all set equal to
1. The formulas written here are more symmetric look-
ing, with the tz's and the l~'s appearing on equal footing.
The physics involved is also made clearer: the conduc-
tance has to do only with the tz's, the statistics only with
the l~'s, the charge with both.

Let us pause from our general discussion to explain
why we may wish to consider tz's not equal to 1. One
possibility is that the short-distance physics we have con-
sistently ignored, and which we are unable to treat, may
produce bound states. For instance, two electrons may
bind into a charge-2 boson. The filling factor v=2mn/e8
then scales to v=v„~X —,

' X —,'=v„d/4, since the number

density is half of what it was and the charge is doubled.
Thus the v= —,

' state, for example, becomes a v= —,
' state

for which a Laughlin-type wave function may be written
down readily:

(2.9)

This was discussed long ago by Halperin and more re-
cently by us in the language of effective Lagrangians.
The effective Lagrangian (2.3) is then

1 18aeBa+ A (2sBa)+aj .
4m 277

(2.10)

(Note that we cannot simply scale the gauge potential a
because of its coupling to the vortices. ) From (2.7) and
(2.8), we see that the vortex has charge t/k =2/8=1/4
and statistics 0/~=1/k =1/8. Thus, in general, we may
have tt assuming any (integral, presumably) values.

In this basis, which we will call the vortex basis, a vor-
tex of type L is represented by

the charge of a conglomerate consisting of lz vortices of
the Ith type

(2.7)
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((L)—gJ JL (2.11)

by definition. We see from (2.7) and (2.8) that its charge
1s

Setting lJ '=KJL and IJ '=6JL, we see that when an
"electron" of the Lth type moves all the way around a
vortex of the L'th type, the wave function acquires a
phase

q' '= gt (K ')
I

(2.12) y(LL')
LL' '=5 (2.17)

and when it moves all the way around a vortex of type L'
the wave function acquires the phase angle (I)'

y(LL')
(K ')LL (2.13)

For L =L', the statistics angle is defined as the phase an-
gle acquired by the wave function when we move one
vortex halfway around the other, namely

t9(L)
=(K ')LL . (2.13')

The classic Laughlin results that for filling factor v= 1/k
with k an odd integer the vortex has charge 1/k and
statistic ~/k appear as the simplest special cases of (2.12)
and (2.13').

In earlier works, ' we argued that we have to impose
on K the condition that in the excitation spectrum there
is one conglomerate of vortices with the quantum number
of the hole (or the electron). Here we generalize this dis-
cussion.

Given the Lagrangian in (2.4), we are, of course, free to
pick any li we please and compute the charge and statis-
tics of that particular conglomerate of vortices. Here we
note that we can make a particularly judicious choice,
namely

lJ —KJL .

Different choices are labeled by L. In other words, we
choose the columns in the matrix K. [Note that, by
definition (1.1), K is a symmetric matrix, and thus it does
not matter whether we take the columns or rows in K.]

This choice is judicious because we obtain immediately
from (2.7) and (2.8) that the charge of this conglomerate
1S

(We put quotation marks around the word "electron" be-
cause the excitation considered would be a hole or an
electron only if tL=1 and KLL is odd. ) This indicates
that the electron wave function is single valued even in
the presence of a vortex.

III. ELECTRON BASIS AND DUALITY

J vortex ~KJLJ "electron"
L

(3.1)

Then the coupling of the gauge potentials to the vortice
may be written as

JJ vortex ~ J ~JLJ "electron"
J J,L

In other words, we should use the gauge potentials

P„L = XKIL&„I
J

(3.2)

(3.3)

In this basis, the Chem-Simons Lagrangian governing the
gauge interaction (1.1)

4nX =aKsaa (3.4)

In general, we are free to go to another basis by writing
aI=+zWIIaI. In the transformed basis K'= W KW,
t'=tW, and so on. We may be tempted to go to a basis
defined by 8'=K ' if it exists. In this basis, K' would
be just I but t' becomes complicated. In fact, physics
tells us about another natural basis, namely the "elec-
tron" basis. Now that we have learned that an "elec-
tron" of the Lth type consists of a bound state of KJL
vortices of the Jth type, we can go to another basis.
Write

q(L~=iL, (2.15)
becomes

4~x =(PK ')Ksa(K 'P) =-PK "aP-. -
(3.5)

and that when this conglomerate moves all the way
around another conglomerate of type L' the wave func-
tion acquires the phase [compare with (2.13) and (2.13')]

(LL')
(2.16)

2m

—lg KIL'KIJ KJL KLL'
I,J

These formulas indicate the physical meaning of t and K.
We see immediately that there is a hole in the excita-

tion spectrum if some tL is equal to 1 and if KLL is an
odd integer. (This discussion is an improvement over
that in Ref. 4. There we focused on some specific K ma-
trices and were obliged to solve various number theoretic
equations to determine whether or not the hole exists. )

In this paper we will not always impose the require-
ment that the hole or electron exists. Unless specified
otherwise, we will consider more general K matrices in
which only some of the tL's are equal to 1.

~tsaa= WtsaK 'p= assap, -
(3.6)

with s =K 't.
We note also that in this basis the vortex is represented

by

m(L'=KmJ (3.7)

The vortex of the Lth type may be thought of as a
conglomerate or KJL' "electrons" of the Jth type. Evi-

The matrix K has exchanged places with its own inverse
K '. We have discovered the duality" between the vor-
tex basis and the "electron" basis.

In this basis the "electron" is represented by
mJ '=5JL, where mJ ' corresponds to lJ ' in the vortex
basis. Note, however, that the coupling to the elec-
tromagnetic gauge potential A„becomes complicated:
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dently, we have from (2.14) and (3.7) the orthonormality
relation

m(L) y (L') g LL'
vortex ' "electron" (3.g)

IV. COMBINING INCOMPRESSIBLE FLUIDS

4m', =a'K, saba', (4.1)

with E, an m, Xm, matrix, for s =1,2, . . ., W. Each
fluid contains m, gauge potentials ai, I, =1,2, . . . , m, .

S

The physical assumption is that the long-distance interac-
tion between these fluids involves only the electromagnet-
ic interaction and thus only the total electromagnetic
current

One of the messages conveyed in Ref. 4 is that, given a
bunch of quantum topological fluids, we can put them to-
gether and construct another topological Quid. Suppose
we have W topological fluids, each of which is described
by

struction of the matrix E. Given some matrices K„we
can construct a different matrix E. To start this itera-
tion, we can choose K, to be simply 1X1 and equal to
odd integers. This construction may be referred to as the
matrix iteration construction.

V. EXAMPLES OF INCOMPRESSIBLE
TOPOLOGICAL FLUIDS

Before proceeding with a general discussion, we will

give some specific examples of our construction. For the
sake of simplicity, let us now take all the ti's to be equal
to 1. It turns out that even with this dramatic
simplification, we can reach most of the FQH states dis-
cussed in the literature. The matrix T collapses to the
pseudo-identity matrix

(5.1)

~""'~.X X tr, a
s=1I =1

(4.2)

(In some contexts we may wish to relax this assumption. )

We then argue on general grounds that the effect of the
interaction on the long-distance physics is uniquely deter-
mined to be that of a Chem-Simons terms involving the
"total" gauge potential a„,=g, gt at. (This follows

S S

from gauge and scale invariances. ) Thus, the composite
fluid is described by the Lagrangian

namely the matrix in which every entry is equal to 1.
Sometimes we will find it necessary to write C, to indi-
cate the ~ by ~ pseudo-identity matrix.

Our iterative construction in (4.5} may be decomposed
into two steps as follows. In what we will call step A, we
put two matrices together to form a new matrix

K1 0
K'K2 +K 0 E (5.2)

2.

4m' = g a'K, EBa'+pa„,saba„, .
In step B, we add the pseudo-identity to a given matrix

(4.3)
K~E+C . (5.3)

4nX =aKeBa, (4.4)

Here p is an unknown real number characterizing the in-
teraction.

Lest we get overwhelmed by notational complexity, let
us note the simple case in which each component fluid is
just a classic I/(odd denominator) Hall fluid. In that
case, m, = 1 and E, is an odd integer k, . This case, with
the further simplification that all the ti =1, was studied

S

in Ref. 4.
We can write the Lagrangian (4.3) as

According to (2.6), the filling factor is given by
v=+1 z(K '}tz. Thus, in step A, we have trivially

V=V1+V2, (5.4)

(K+C) '=K ' —(1+vx) 'K 'CK (5.5)

where vl and v2 are the filling factors corresponding to
the Quid defined by E1 and E2, respectively. In step B,
we have to invert the matrix (K+C}. This can be done
easily, with

with the composite matrix E given by

K =Eo+pT . (4.5)

as the reader can verify irnrnediately using the properties
of C. Here vz denotes the filling factor corresponding to
K. The new filling factor v is given by gt J(K+C)tJ'.
We find easily that

Here Ko is a block diagonal matrix with the blocks K„
s = 1,2, . . . , W. To avoid having indices on indices let us
replace the index tI, ) by I C ). (Thus we write, for exam-
ple, tc, with C taking on g,~,m, different values. ) With
this notation, we have explicitly

EcD =KocD+ptgtD . (4.6)

This defines the matrix T.
Thus far in this paper we were able to proceed without

having to use an explicit form for the matrix K. Equation
(4.5) should now be regarded as defining an iterative con-

v '=v~'+1. (5.6)

These two exceedingly simple formulas (5.4) and (5.6) tell
us that in step A we add the filling factors and that in
step 8 we add to the inverse filing factor. (Thus, we may
wish to refer to step A as combining incompressible fluids
"in series" and to step B as combining incompressible
fluids "in parallel. ")

We mention in passing that we can always go from E
to ( —K) by time reversal or parity. Combining this with
step A, we can obtain a matrix
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1 0
0 —K

with the filling factor v= 1 —vz.
Let us start with the 1X 1 matrix K equal to 1 and ap-

ply step B repeatedly. After p steps we reach

K =1+p
corresponding to

v '=1+p .

(5.7)

(5.8)

K =I+pC . (5.9)

From (5.3) and (5.6) we see that v ' =m '+p or the
hierarchy state with filling fraction v=m/(mp+ I) (in-
cluding —', , —,', —,', . . . for p =2).

To describe the hiearachy construction, let us start
with the lowest level. Start with a 1 X 1 matrix K =p2+ 1

and use step A to construct

As mentioned earlier, for p even we have an excitation
with the quantum numbers of the electron. These are the
classic Laughlin odd-denominator fluids.

Alternatively, we can also start with K = 1 and first ap-
ply step A repeatedly until we get the m X m identity ma-
trix before applying step B repeatedly. We obtain the
m Xm matrix

B
K~K+C

—1 0
0 K+C

—1 0
0 It+C+(p+1)C (5.15)

P1
P2

(5.17)

(In the last step, the two C matrices differ in their dimen-
sions by one. )

According to (5.4) and (5.6), the inverse filling factor
changes to

v ' = [(vx '+ 1) ' —1] '+(p + 1)=p —vx . (5.16)

(Note that in particular for p =0, we have v= —v)~'. In
other words, we have solved the following problem:
given an incompressible fluid characterized by a matrix K
and a filling factor vz, find an incompressible fluid with
filling factor equal to the inverse of the filling factor of
the given fluid. )

By iterating, we reach the most general hierarchical
states with filling factor

—1 0
0 p2+1 (5.10) Explicitly, starting with the 2X2 E matrix in (5.13) we

obtain on the next step

with filling factor

P2v= —1+(p~+ 1)
p2+1

(5.11)

p1 p1+1 pl+1
K= p, +1 p, +p2+2 p, +p2+3

p1+ 1 p1+p2+3 p1+p2+p3+4
(5.18)

and then step B to construct

—1 0 1 1E=
0 +1 +(p)+1)

p1 p1+1
p1+1 p1+p2+2 (5.12)

E =(p, +1)C'„"+ g (p„+2)C„'"' I, —
3=2

where C,'"' is a a X ~ matrix with

(5.19)

If one insists, one can also write down the general K
matrix we reach with the iteration in (5.16):

with filling factor

P2

p2+1

or

+p1+1=p1—1

P2

(„) 1, I J=A, A+I, . . . , a

0, I,J =others .

In other words,

(A)
0 0

C~ 0 C

(5.20)

(5.21)

V—
1

P1
P2

(5.14)

(For p, odd and pz even, these states include v= —', ,
2—„.. . . )

As an illustration of the power of our method, we now
see how to continue this construction. We describe the
construction (in an obvious notation) starting with a ma-
trix K as follows:

with C the (a.—A +1)X (a.—A + 1) pseudo-identity ma-
trix. [Here we have only shown that the matrix K gives
the filling fraction of the hierarchical states. At the end
of the next section we will show that the effective Chern-
Simons theory with K in (5.20) is identical (after a field
redefinition) to the effective Chem-Simons theory for the
standard hierarchical states derived in Ref. 5.] In this
way, we have demonstrated that the hierarchy construc-
tion is contained within the matrix iteration construction.
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The simplest FQH state which does not belong to the
hierarchy construction is given by

odd integer for I =J
integer for IXJ .K ':K— (6.3)

3 1

1 3
Furthermore, in order for the electrons to carry unit
charge, t must satisfy

with filling factor v= —,'. This state may be obtained by
having quasiparticle pairs condense on top of the v=

3

Laughlin state. '

VI. CLASSIFICATION OF ABELIAN HALL STATES

g(K ')zjtz= 1 for all I .
J

This equation implies that

J—g KJL
L

(6.4)

(6.5)

In Ref. 5, a class of generalized hierarchical states was
constructed. The effective theory is given by (2.3) with E
and t satisfying

K&& =odd integer,

Kz~ ~~» =even integer,hi

Kzz = integer for IAJ,
h

(6.1)

Notice that all the charges t~ vanish except for t", . We
will call this basis the hierarchical basis, as indicated by
the superscript h. We will refer to the previous basis, in
which all the ti's are equal to 1, as the symmetric basis.

Even though the K given here is almost arbitrary, it is
still not clear whether these generalized hierarchical
states cover all possible Abelian fractional quantum Hall
states or not. Here we will derive the effective theory of
the most general Abelian fractional quantum Hall states.
We will show that the generalized hierarchical states
indeed represent the most general Abelian FQH states.

Our first working assumption is that (a) the effective
theory of Abelian FQH states is described by a Lagrang-
ian of the form in (2.3). However, this assumption alone
is not enough. For arbitrary choices of K and t the La-
grangian in (2.3) may not describe an electron system. So
the problem we are facing is not how to derive the
effective theory of an electron system, but the reverse,
how to determine whether an effective theory is con-
sistent with the underlying electron system or not. This
leads us to our second working assumption: (b) In order
for the effective theory to describe an electron system, the
effective theory must contain a independent electron
operators, where s. denotes the rank of K. (Here we ig-
nore the possibility of electron pairing. ) This require-
ment is a more stringent version of the requirement dis-
cussed in Ref. 4. We will discuss why we need ~ electron
operators later.

To implement (b), it is convenient to work in the elec-
tron basis as discussed above:

1 — 1aKcBa+ AtcBa+aj .
4~ 2' (6.2)

We have used the tilde to remind ourselves that we are in
the electron basis and that jz represents the current of the
Ith electron. As discussed above, we have the dual rela-
tion K =K

In order for the electrons to have Fermi statistics, we
must have

Given the effective theory in the electron basis, we now
need to determine the allowed quasiparticle excitations.
A generic quasiparticle is described by a current of the
form

Jp= gcsJrp
I

(6.6)

(The cz's are, of course, the analogs of the lz's in this dual
basis. ) Since the electron wave function must be single
valued (even in the presence of the quasiparticle), the
phase induced by moving an electron around the quasi-
particle must be a multiple of 2m. . According to the ana-
log of (2.8), this requires er to satisfy

g (K ')rzcJ=integer for all I .
J=1

(6.7)

Correspondingly, there are ~ fundamental quasiparticles
whose currents are given by

jr = pc~ j'z for L =1, . . . , a. .
I

(6.9)

The currents of any other excitations, including the elec-
tron excitations, are linear combinations of the currents
of these fundamental quasiparticles with integer
coefficients.

Now let us change back to the vortex or quasiparticle
basis. According to (3.3), we substitute az =QJKrzaz in
(6.2) and obtain, using (6.4),

1 1aKeBa+ A er)a+aj
4m 2' (6.10)

This is the same as (2.3) except that K satisfies (6.3) and
the t~'s are all equal to 1. In an earlier work, 7 we as-
sumed tz =1.

We have reached one of the central results of this pa-
per: the most general Abelian FQH states of unpaired
electrons are described by the effective theory (6.10) with
K satisfying (6.3). In other words, the topological orders
in the Abelian FQH states are labeled by integer valued
symmetric matrices with odd diagonal elements, up to an
equivalency condition K —8' KS' with 8'an element of

The set of all cj's satisfying (6.7) forms a a-dimensional
lattice, with the basis vectors of the lattice given by c' '.

(6.8)
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Iar 8'IJaJ, (6.11)

with Wtj =5tJ —5t+ i z an element of SL(lr, Z), a transfor-
mation that also appears in Ref. 4. In other words,

SL(ir, Z) which leaves the vector t=(1, 1, . . ., 1) invari-
ant. The determinant of 8'must be equal to 1 in order to
preserve the ground-state degeneracy.

Next we would like to show that this condition is not
only necessary for the effective theory to describe an elec-
tron system, but also sufficient. We will show that all
possible effective theories of the Abelian FQH states
describing an electron system could be realized through
the generalized hierarchical construction discussed in
Ref. S and described above. We simply make a field
redefinition to transform from the symmetric basis:

0

(6.15)

Let us now apply this operation to the matrix K in (5.19),
or (5.12), and (5.18). We obtain

P1

1 p2 1

1 p3

I
a1 a1=a1 —a2, a2-+ a2 =a2 —a3 ~ ~ ~

a„~a' =ak .
(6.12)

(6.16)

Under the transformation, I( ~K"=O' ER'and t"=t8',
with

h+IJ +IJ++I—1,J—1 +I—1,J +I,J—1 (6.13)

—1 2 —1

—1 2
(6.14}

Evidently, a K matrix in the symmetric basis (6.3) is
transformed into one in the hierarchical basis. Similarly,
the charge vector with tr =1 for all I is transformed into
one with t, =5I1. We can, of course, transform in the op-h

posite direction. We have thus demonstrated our state-
ment above regarding how the topological orders in the
Abelian FQH states are classified.

The physics behind this transformation was already
stated in, for example, Ref. 4 (and was made particularly
clear in the derivation given in Ref. 7). In the hierarchi-
cal basis, the gauge potentials a1, . . . , a„,, are
differences of the gauge potential in the symmetric basis
and thus correspond to electrically neutral excitations.

This hierarchical basis, in which only t, is nonzero, is
clearly convenient for certain purposes. Given a K, the
transformed K, namely K" as defined in (6.13), can be
constructed readily: for every entry in E, we add to it its
neighbor to the "northwest" and subtract from it its
neighbors to the "north" and to the "west." Notice that
this operation when applied to the identity matrix I pro-
duces

1 p

precisely the matrix found in Ref. 5, and the matrix
which defines the standard hierarchical construction.

We would next like to say a few words on why we need
K independent electron operators. If we had less than K

electron operators, the condition (6.7) would become
i(K ')tjcz =integer only for I= 1, . . . , a' for some

This is not enough to fix cJ on a lattice. In this
case, excitations with arbitrarily small charge would be
allowed. Such excitations may be continuously connect-
ed to the ground state and would be, we believe, gapless.
This argument suggests that in order for the effective
theory to have finite energy gap, we require the presence
of a different electron operators. (Of course, we also re-
quire detKAO in order for the gauge fiuctuations to have
finite gaps. )

More generally, we may have pairing and perhaps even
charge-3 bound states and so on. In that case, with K,
electron operators, K2 pair operators, and so on, with

K, +K2+ . =K, we will have a set of conditions general-
izing (6.7).

VII. CHARGE AND STATISTICS

We saw earlier that the physical properties of the Hall
fluid, namely the conductance, and the charge and statis-
tics of the vortices are all determined directly by K
Let us now continue the general discussion in Sec. IV,
where we showed that given the matrices E„
s = 1,2, . . . , W; we can construct the matrix
E Eo +p T. Because T is a simple projection, we can, in

fact, invert E explicitly. We note that

2 —1

—1 2
( TK p

'
) ( TK p

' }=o T ( TK p
' ),

where we defined

(7.1)

a matrix close to the Cartan root matrix" ' for the sim-
ple unitary Lie algebras, and when applied to the (gen-
eralized) pseudo-identity matrix C'„"~ defined in (5.22)
produces

O' T ——ti'( TK p ) = g tcKp~~ tD =t w,
C, D

(7.2}

which we recognize from (2.6) as g, o.„the sum of the
conductances of the component fluids. Here
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MC g KOCDtD
—1

D
(7.3)

[in some sense the dual of the charge vector tD, and, as
the astute reader would recognize from (2.7), the charge
of the "elementary" vortices in each of the component
fluids]. Using (7.1) we see that the inverse of K is given
by

K '=K p
1+po T

SCO 'm, ', (7.4)

or, more explicitly,

+CD +OCD
p (7.5)

Given (7.4) we can now compute various physical
properties of the composite fluid. Using (2.6) and (7.1)
we obtain the conductance

0' —gtcKcD tD

=trm

sence of interactions, that is, with p =0, we see that the
conductance, charge, and statistics of the composite fluid
are just equal to the sum of the conductance, charge, and
statistics of the component fluids, of course. In (7.6) and
(7.7), the effect of the interaction is clearly summarized
by a multiplicative factor indicated by the quantity in the
curly brackets. Notice that statistics, being a binary or
quadratic quantity in contrast to charge, is corrected by
the interaction with a term proportional to the square of
the total charge.

It is useful to have these formulas in a basis-
independent form and written for arbitrary t. In particu-
lar, in the basis in which only t& =1 is nonzero we have
v=cr =K))'. For example, for the K given in (6.16} we
see immediately that v is given by the ratio of two quanti-
ties of the same form, namely the determinant of K with
its first row and first column deleted, and the determinant
of K itself. We obtain (5.17) readily.

It is also useful to specialize these general formulas
[(7.6), (7.7), and (7.9)] to our two elementary iterative
steps A and B and with the ti's all taken to be =1. In
step A, with

p
1+pc T

2O'T

1 1

p +( I/g, o, ) 1+po T

The charge of a conglomerate of vortices made up to ID
vortices of the Dth type comes out to be

q =gtcKCD'ID

E) 0
E)E2~K =

2 J'

we have, trivially,

v=v&+v27 q =q&+q2,

In step B, with

K~K+C,

8) 82+

(5.2)

(7.10)

(5.3)
XtcKocDID

g q, (l)

(t w)(l w)1+pa T

1

1+po T
(7.7)

we have

v q 9 Q qq~ 71+v' 1+v ' a m 1+v (7.11)

We have recognized

I w=gtcKoc'DID =gq (I)
S

(7.8)

—&ICKocD ID— (I w)1+po T

1=—g 8,(l)—
7r

p
1+pa T S

(!) '2

to be the sum of the charges of the vortices in each of the
component fluids. Finally, the statistics of this
conglomerate of vortices may be computed:

8—=QI, KCD ID

It is interesting to note what relationships between q, 8,
and v are preserved by these steps. Thus, for example, if
we have excitations whose charge q and statistics 8/m. are
equal to the filling factor v, this is preserved by step A

(trivially) and by step B. In particular, since the hierar-
chy states may be reached using steps A and B, we con-
clude that in the hierarchy state there is always at least
one excitation whose charge q and statistics 8/n are
equal to the filling factor v. As another example, we note
that step B also preserves the relationship 8/m. =q /v
(mod 2).

Using (7.10) and (7.11) and referring to (5.16), we can
easily write down how the charges and statistics of exci-
tations in the hierarchy construction iterate:

=—g 8, (1)—p(1+po T )q
1

S

(7.9) = —v(qx —1 —
vtr ) (7.12)

In deriving (7.7) and (7.9) we have used the fact that Ko '

is block diagonal.
These three rather compact formulas (7.6), (7.7), and

(7.9) tell us how to sum conductance, charge, and statis-
tics when we put topological fluids together. In the ab-

and

e ~ac —1+[v '(p + 1 }q q~ ]/( 1+v)r ) . —(7.13)
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VIII. WAVE FUNCTION

is given by

sc, (z, )=pre (z ")Prc~(z,' ), (8.1)

where the coordinate [z, ) is the union of {z,
' "

j and

jz '). We have assumed that the electrons in gs- and
1

carry different flavors so that we do not antisym-
2

metrize between z "and z
The operation K~K+pC corresponds to adding p

unit of flux to the electrons. Therefore

0K+ c(zi ) II(z' zj ~ 4(zi )

i &j
(8.2)

In the state labeled by K +pC, when an electron zi moves

around z, the wave function acquires an additional phase
e' compared to what would have been the case were
we discussing the state labeled by K.

The two operations A and B in (5.2) and (5.3) can gen-
erate a rather general set of matrices starting from the
simple Laughlin states. From (8.1) and (8.2) we see that
the wave function of the FQH state described by K can
be written in compact form:

Thus far, we have studied the internal topological
structures in the Abelian FQH using the effective Chern-
Simons theory. While one advantage of the effective
theory approach is that we do not have to deal with
specific variation wave functions, it is important for cer-
tain purposes to study actual wave functions. In the fol-
lowing we will discuss the representative wave functions
of the universality classes of the FQH states labeled by
the matrices E.

The representative wave function for the FQH state la-
beled by E can be constructed using the generalized
hierarchical construction discussed in Refs. 5 and 11.
Here we will present a simpler and more transparent
wave function. We simply ask what the two steps, A and
B, in our matrix iterative construction correspond to in
the language of wave functions. In combining different
topological fluids, we may think of the electrons in the
different fluids as carrying different "flavors. " In the end,
of course, we may wish to antisymmetrize in all the elec-
tron coordinates. In reality, the flavor quantum numbers
may arise from different subbands, spins, and Landau lev-

els.
Let Px be the wave function of the FQH states labeled

by E. Then corresponding to step A the electron wave
function described by the "sum" of K, and K2,

K1 0
K1K2 —

0

Note the electrons in (8.3) have a different flavors. For
instance, the wave function for any 2 X 2 matrix

K11 E12

K12 K22

K 11 K12 0 1 1

+K12 (8.4)

3 2K=

is constructed by combining (8.1) and (8.2). For general
~, we can verify that the quantum numbers of the excita-
tions derived from the wave function in (8.3) agree with
the quantum numbers determined directly from E.

The FQH state described by K can be viewed as con-
taining ~ components of incompressible fluid described by

(I) Ka
the Laughlin wave function 11; J(z ' —z' ') ". The off-

diagonal elements of E describe the coupling between the
different fluids. The coupling is of the charge flux cou-
pling type; i.e., the electrons in the Ith fluid behave like
flux tubes with KzJ units of flux to the electrons in the Jth
fluids. When z,.' ' moves around z'. ' the wave function ac-

i 2mK~J
quires the phase factor e ' . This gives us a simple and
direct picture of the internal structure of the general
FQH states.

After presenting the above simple picture, we would
like to make a few remarks. In the effective theory the
number of electrons in each fluid is conserved indepen-
dently. However, in reality the electrons are allowed to
hop from one fluid to another (e.g. , transitions between
different Landau levels are allowed). Although the
multifluid picture is a convenient way to understand the
structures in the FQH states, experimentally we may not
be able to see a clear-cut signal of many distinct collective
modes due to different fluids. But we believe that the
concepts of the topological order and of the use of the
matrix K to label different topological orders are
rigorous. Several physical measurements and characteri-
zations of K are proposed in Ref. 3 (for a review see Ref.
17) by using ground-state degeneracy and edge excita-
tions.

The FQH states of identical electrons are also labeled

by K. In this case electrons have only one flavor, of
course. It is tempting to obtain the wave function labeled

by K by antisymrnetrizing gx. (z ') in (8.3). But in some
cases, upon antisymmetrization, the resulting wave func-
tion may vanish. This happens when K =Ep or
K=Kp+2pC, where Kp has no negative elements and

g~ J(KO ')~J & 1 (filling fraction larger than 1). For ex-

ample, we cannot construct the —', FQH state by antisym-

metrizing the wave function (8.3) with

I=1 i &j
because the wave function vanishes upon antisymmetriza-
tion. To obtain the wave function of the —,

' FQH state, we

have to put some electrons in the second Landau level.
We start with

1 0
0 1
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which corresponds to two filled Landau levels with a
wave function we denote by y2(z,. ). The matrix of the —',
FQH state

3 2

2 3

is obtained by adding 2C to

p l

l

(where we assume the two layers to be identical, so
E&t =E2z). Such a class of states has filling fractions
v =2/p + l. A series of stable filling fractions with
v, +,—v,

' =
—,
' was observed in Ref. 19. This series may

be described by the construction given here.

IX. SHIFT

Following Haldane we will now study FQH states on
a sphere. Let us recall briefly some basic facts. A mag-
netic monopole is placed at the center of the sphere: by
the Dirac quantization condition, the number of flux
quanta N& passing through the sphere must be an integer.
To describe an electron moving on the sphere, we use spi-
nor coordinates u =cos8/2e'~~, v=sin8/2e '~~; the
electron wave function is

driven
in terms of the (2N&+1)

basis functions u, u v, . . . , v . In order to put a
N~ N~

—
N~

FQH state on a sphere, the number of electrons N, and
the number of the flux quanta N& passing through the
sphere must be related in a specific way.

1
N =—N —Se (9.1)

S is another quantum number that characterizes the
internal structures of the FQH states. We refer to S as
the shift.

For the simplest v = 1 /m Laughlin states
g~ g(z; —

z~ ), the corresponding wave function on the
sphere is obtained by replacing (z; —z ) with (u;u —u, u, )
and (g; —gj) with (u, v —v;u ),

1 0
0 1

This leads to the Jain wave function g, (z; —z. ) yz(z, )

for the —', FQH state.
The wave functions in (8.3) are relevant to multilayered

electron systems, ' ' for which we identify the flavor in-
dex as the layer index. Our approach, developed in this
paper, provides a simple way to calculate the quantum
numbers of the quasiparticle excitations. For a two-
layered system, the simplest wave functions are given by
(8.3) and (8.4) with

N&=m(N —1) . (9.3)

(For instance, f contains a term proportional to
u t

' "v,.) Comparing with (9.1), we see that the shift S
is equal to m.

As another example, we find that for the —', FQH state
obtained from the standard hierarchical construction and
the Jain construction, S is equal to 4. To obtain this re-
sult, it is convenient to use the hierarchical wave func-
tions in Refs. 1 1 and 5. The hierarchical wave functions

fx "(z; ) corresponding to the matrix

p, l
K"=

l p2

are given by

N(

~."(;)=f ad'~,
j=1 i &j

N(
x

N

g(z; —z)'
N N(

ri rI( &)' F
i=1 j=l

(9.4)
—( 1 /'4 ) I ~, I

'
where F is a positive function depending on e
~g;

—
g~ ~, etc. The detailed form of F does not affect the

topological orders in the FQH states. Note here that K"
is the matrix in the hierarchical basis with tt =5t&. Thus

p, is odd and p 2 is even. The wave function on the
sphere has the form

N

u; vj v;uj
N~

g p(u;, u, )=f +du, du,
i=1 i &j

N(

i &j
N NC

X g g(u;u —u;u~)' F .
i=1 j=1

(9.5)

p2(N( 1)+lN, =0 . — (9.6)

According to what we said above, the number of the flux
quanta N& is the combined power of ( u;, v; ) (for fixed i ):

N~ =p, (N, —1)+1N( .

From (8.6) and (8.7) we determine the shift S:

(9.7)

S=p, —l (9.8)

The —', FQH state is described by

We have replaced (g; —
g ) by (u;v, —u;ut), etc. In order

for the integral to be nonzero, we require the total power
of ( u;, u; ) to be zero for each i:

N
g~ + (u;vj —v;uj) (9.2) 3 —1

—1 2

To determine N&, we simply find the combined powers
with which u 1 and v 1 appear in the wave function.
Clearly,

in the hierarchical basis and thus we find S =4.
Here we would like to remark that S =p 1

—l=K 1 1 K 12 is not invariant under the transforms
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S=4—L . (9.9)

From the above example we see that, in general, knowing
K is not sufficient to determine the shift S.

For general K", we find the generalizations of (9.6) and
(9.7) to be

K~W KW with WESL(2, Z). This impiles that the
FQH states described by equivalent effective Chern-
Simons theories may have different shifts S. This result is
expected, since, as we will now explain, the shift depends
on short-distance physics not incorporated into our
long-distance effective theories. Consider the v= —,

' FQH
state formed by the electron pairs. The effective Chern-
Simons theory for such a state is identical regardless of
the internal angular momentum L of the electron pair.
However, it is known that the shift depends on the angu-
lar momentum ' according to

S~(v)S) +v~S~ )/(v)+v~), (9.17)

as is also clear from the definition (9.1) of S. Under step
A we have

Ny N SI
1

VI
(9.18)

for I =1 and 2. Using N, =N,'+N, and combining the
two equations in (9.18) we obtain (9.17) immediately. Un-
der step 8, we have, less obviously,

In general, (9.11) and (9.16) give different shifts even
when K and K" are related by the equivalence transfor-
mations (6.13). Depending on the short-distance physics,
the wave function corresponding to K" may be more ap-
propriate than the wave function corresponding to K.

Using (9.16) we can verify that under step A of our ma-
trix iteration scheme we have, obviously,

N~+K11
hK 22

KKK
h

N,
N(2)

N(K)

(9.10)

S—+S+1 . (9.19)

This is evidently consistent with, for instance, the result
that for the simple Laughline states S=v '. We may
also derived (9.19) immediately by inspecting the explicit
wave-function construction given in (8.2).

This may be derived from the appropriate generalization
of (9.5). Solving (9.10), we obtain the shift for hierarchi-
cal wave functions:

y [(Kh) —)] Kh
I

(9.11)

where v= [(K") ']» is the filling fraction.
We can also try to put the wave function in (8.3) on the

sphere:

(9.12)

To extract the number of flux quanta N&, we simply ex-
amine the combined power of (u,( ', v ') as explained ear-
lier:

N& =Krr(Nr 1)+ X KrrNr .
JWI

(9.13)

Solving the a equations contained in (9.13), we find

Nr = g Krr '(N~+ Krr ) .
J

(9.14)

This may be interpreted as the number of the Ith kind of
electrons. The total number of electrons is thus

X. CONCLUSION

We have presented a simple and unified description of
Abelian fractional quantum Hall states. In particular, we
have answered the question raised in the beginning of this
paper, namely the question of how to characterize and
classify the topological orders and universality classes of
these states. The answer is that they are labeled by the
symmetric matrix E. The matrix E incorporates the to-
tality of physical information contained in the long-
distance physics of these topological fluids.

In particular, the conductance (or filling factor), the
charge and statistics of the excitations, and the degenera-

cy of the ground state (on topologically nontrivial closed
spaces) are all determined by K. Up to this point in this
paper we have not mentioned the edge excitations in a
Hall fluid confined to a finite area. The number of
branches is obviously given by the rank or dimension of
E.

In discussions of the Hall effect, people still talk as if
the filling factor v alone characterizes the quantum Ha11

state. As is made clear by our formalism and as is al-

ready well known to some, this is certainly not the case:
many K matrices may lead to the same v.

As an example, let us consider what is perhaps the
best-known state of the all, the v= —,

' state. The simplest

such state is that given by K =3. Now consider the
states defined by 2 X 2 matrices

N, = g Nr = g Krr '(N~+ Krr ) .
I I,J

(9.15) 5 3 11 7K:
3 3 y 7 5 y ~ ~ ~ ~ (10.1)

S=—g(K )rrKrJ
1

I,J
where, as always, v= Xr rKrr .

—1

(9.16)

Comparing with (9.1), we see that the shift is given by The reader can easily verify that these states are all v=
3

states and contain an excitation with charge q
=

—,
' and

statistics 0/m. =
—,'. However, these states are certainly not

equivalent to the simple K =3 state. They have two
branches of edge excitations rather than one.
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Consider also

4 3 7 5

3 3 y 5 4 y ~ ~ ~ (10.2}

also corresponding to v= —,
' states. These states, however,

are not reachable in the hierarchical construction. In
particular, they do not satisfy (6.3) and thus do not con-
tain two electron operators.

This example also illustrates that, in general, it is not
instantly obvious whether two states are equivalent or
not. In fact, the two K matrices displayed above are part
of an infinite series defined by

r +2r +4 r +r+3
r +r+3 r +3 r =0, 1,2, . . . , (10.3}

but it is easy to verify that all these matrices are
equivalent in the sense defined earlier, namely up to
W I(.S with (1 1) W =(1 1). Note also that while all the
states defined by the E matrices displayed above have the
same filling factor, excitations with the same charge and
statistics, and the same number of edge excitation edge
branches, they are not all equivalent, as we can see readi-
ly by taking their determinants and using (1.2). The
ground-state degeneracy for two of the states displayed
above is 3, while for the other two states it is 6g. This
example makes particularly clear the topological charac-
ter of these Quids.

Another example is given by the v= —,
' state mentioned

at the end of Sec. V. Using (2.7) and (2.8) we find the
charge q =(l, +12)/4 and 8/m =[3(lzt+l22) —21,12]/8.
Thus, this v= —,

' state contains an excitation of charge 4

and statistics 8/m =—,'. This state is thus definitely not the

same as the paired electron v= —,
' state mentioned in Sec.

II. Furthermore, one of these v= —,
' states has two

branches of edge excitations while the other has only one.
Another v= —,

' state with two branches of edge excitations
is described by

2 2K=

[this is an example of a state reachable by iterating with
steps A and 8 but not satisfying (6.3)]. This state, howev-
er, does not contain a charge- —,

' excitation.
We have also determined the topological quantity we

refer to as the shift S. It depends on short-distance phys-
ics as well as the physics contained in E.

In summary, we have shown that the topological order
in the Abelian FQH states can be characterized by a sym-
metric matrix K. We give a matrix iterative construction
for K. The iteration may be decomposed into two ex-
tremely elementary steps. In particular, the hierarchy
construction is contained within this matrix iterative con-
struction. The relation between the vortex basis and the
dual electron basis is clarified. The matrix E correspond-
ing to the generalized hierarchy construction is identified.
Finally, the topological quantity known as the shift is
studied.
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