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We have performed a comparative study of six classical many-body potentials for silicon (Pearson,
Takai, Halicioglu, and Tiller; Biswas and Hamann; Stillinger and Weber; Dodson, Tersoff 2, and Tersoff
3). Extensive static calculations have been performed using these potentials on Si, clusters (n =2-6),
bulk point defects, elastic constants, polytypes, pressure-induced phase transformations, and surfaces
[(111), (100), and (110)]. Similarities and differences between the six potentials have been identified, and
their transferability as well as their accuracy with respect to experiment and first-principles methods
have been assessed. In general, all of these potentials do a relatively poor job of modeling the energetics
of small clusters as well as the various reconstructions of the Si(111) surface. They provide a fair to good
description of the properties of bulk diamond cubic silicon, its intrinsic defects, and the Si(100) surface.
Besides the fact that none of them models 7 bonding, their inability to be more transferable lies in their
inadequate description of the angular forces. Each potential has its strengths and limitations, but none
of them appears to be clearly superior to the others, and none is totally transferrable. However, despite
their shortcomings we feel that some of these potentials will be useful in large-scale simulations of
materials-related problems. They can give valuable insights into phenomena that are otherwise intract-
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able to investigate either experimentally or via first-principles methods.

I. INTRODUCTION

In recent years, there has been a surge of computer
simulations for complex materials-science-related phe-
nomena, e.g., molecular-dynamics simulations of melting,
epitaxy, and crystal growth. In these types of calcula-
tions or simulations, it is, of course, desirable to use accu-
rate first-principles quantum-mechanical methods.'
However, because they require a large computational
effort to accurately solve the Schrodinger equation, these
methods are currently limited to studies of static proper-
ties for systems involving only a few tens of atoms. Nev-
ertheless, progress, although slow, is being made to cir-
cumvent these limitations.” On the other hand, although
they generally lack the accuracy of the former methods,
empirical interatomic potentials can handle much larger
systems and can be used to study static as well as dynam-
ic properties of such systems.

The theory of interatomic potentials for ionic systems
and metals is rather well established, as indicated by the
remarkable success of some methods, e.g., the shell mod-
el® and the embedded-atom method,* to accurately pre-
dict a wide range of properties. Unfortunately, the
theory for covalent solids is less developed despite the
many attempts of the past several years to model such
strongly bonded materials.

Not surprisingly, because of its technological impor-
tance, silicon has been the prototype material for devel-
oping empirical potentials. About 16 such potentials
have appeared in the literature in the past seven
years.’ ~ %2 Of course, every new potential is claimed by
its originators to be superior, i.e., more accurate and/or
more transferrable than its predecessors. While these
claims are often valid to some extent, such improvements
are almost always achieved by sacrificing other proper-
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ties.'07 13 Also, very often it is not truly clear what

causes the better description. Is it due simply to a more
flexible functional form and/or a better fitting strategy'®
or does the new potential really give a better description
of covalent bonding?'?> Even the question of the range of
interactions in covalent solids is not well understood and
very often longer-range forces®>?* are arbitrarily neglect-
ed for convenience. Due to the complexity of the
structural chemistry of silicon and of the empirical na-
ture of these potentials, the answer to these questions is
certainly not an easy task. We attempt here to partly ad-
dress, albeit indirectly, some of these issues by perform-
ing a comparative study of six of the aforementioned po-
tentials. We will not consider here the so-called valence-
force potentials which can only describe small distortions
from equilibrium. Stoneham, Torres, Masri, and
Schober?® have performed a comparison of eight such po-
tentials for silicon.

The potentials considered in this study are those of
Pearson, Takai, Halicioglu, and Tiller (PTHT),’ Stillinger
and Weber (SW),° Biswas and Hamann (BH),'® Tersoff
(T2 and T3),!>'* and Dodson (DOD).” These potentials
differ in their degrees of sophistication, functional form,
and range of interactions; they thus constitute a good
representative sample of existing potentials. Only a few
comparative studies of some of these potentials have been
performed. In general, these studies involved only a few
of the potentials mentioned here and were limited to
some specific properties of silicon. Khor and Das Sar-
ma2® used SW, DOD, and the first Tersoff potential8 (T1)
in a study of Si(100) surface reconstruction. Li, Chen,
Allen, and Broughton?’ investigated the energy and vi-
brational spectrum of the Si(111) 7X7 surface using SW
and T2. Halicioglu, Pamuk, and Erkoc?® studied Si,—-Si,
and reviewed the results of some bulk and surface proper-
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ties obtained with PTHT, SW, T1, and DOD. Bartelt,
Williams, Phaneuf, Yang, and Das Sarma?® used SW, T1,
and T2 to model the orientational stability of silicon sur-
faces including (100), (111), (112), and (113). Finally,
Bolding and Anderson®® performed an extensive study of
Si,-Si,, and compared the results obtained using their
potential with those obtained via BH, SW, and T2. Their
comparison for bulk and surface properties was more
limited.

Here, these potentials are thoroughly tested in a sub-
stantial region of configuration space, including small
clusters, bulk, and flat surfaces. Except for the bulk pho-
non frequencies, all the results already published by other
researchers have been reproduced in addition to those
newly reported here for consistency and also because very
often, they are incomplete. For instance, the calculations
for the bulk monovacancy are more complete here since,
in contrast to previous studies, we consider and report all
possible configurations.

The calculations for clusters (Si,~Si;) were performed
here with and without the cutoff function. New results
are obtained via PTHT and DOD for Sis;—Sig and via T3
for Si;—Si¢. For Si,, the present work (with PTHT and
DOD) is more complete than the study of Halicioglu,
Pamuk, and Erkoc.?® Bolding and Andersen® performed
calculations on Si,-Si,, using T3 but did not report any
specific result. Moreover, although studies were previ-
ously performed using BH, SW, and T2, we identify here
other minima for Si;—Si;z. We considered several bulk
point defects: monovacancy and four types of intersti-
tials, tetrahedral, hexagonal, bond-centered, and split or
dumbbell. New results are presented for all these defect
structures (PTHT and DOD), for the bond-centered in-
terstitial (BH), and for the split interstitial (BH and T2).
In addition to the three elastic constants of the cubic dia-
mond structure, we also calculated here the pressure
derivative of the bulk modulus B’ and Kleinman’s inter-
nal strain parameter . All calculations related to the
elastic properties are new for PTHT, BH, and DOD and
so are those related to B’ (SW, T2, and T3) and to § (SW
and T3). For the bulk polytypes of silicon, we con-
sidered, in addition to the cubic diamond phase, all struc-
tures for which ab initio data are available. These are
hexagonal diamond, bc-8, B-tin simple hexagonal, the cu-
bic phases, hcp, and the graphitic phase. In contrast to
some previous studies,* the ¢ /a ratios of the B-tin and all
hexagonal phases were optimized. We also calculated the
bulk modulus of those structures for which ab initio re-
sults are available, e.g., bc-8, B-tin, simple hexagonal, and
the graphitic phase. Calculations performed with PTHT
(hexagonal diamond, bc-8, and simple hexagonal), BH
(graphitic phase), SW (bc-8, B-tin, simple hexagonal, and
graphitic phase), DOD (bc-8 and simple hexagonal), T2
(bc-8), and T3 (B-tin and simple hexagonal) are new. Re-
sults for the pressure-induced phase transformations are
also presented. Takai’® reported that cubic diamond
transforms under pressure to the B-tin phase but the ¢ /a
parameter of this structure was not optimized. Also,
Biswas and Hamann'® reported a transition under pres-
sure from cubic diamond to simple cubic; we found here
that this is only the second transition, the first involves a
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compressed hcp structure. All results for surfaces ob-
tained with T3 are, in general, new, as are some other
surface calculations: (110) (all potentials except SW);
(100) 2X1 (PTHT); (100) c2X2 (BH, DOD, and T2);
(100) Pandey defect structure (PTHT, BH, and T2); (111)
2X1 (SW); (111) 2X2 adatom-covered structures (all po-
tentials); (111) (2n +1)X(2n +1) DS and DAS struc-
tures (see Sec. VIB 5) with n =1-4 (all potentials except
for the 7X7 DAS surface with SW and T2). We also
present results for the surface stresses of all these sur-
faces. In general, our results are in agreement with those
already published by other researchers; however, there
are some discrepancies, in particular with those involving
BH.

By a systematic comparison between these potentials,
we identify similarities and differences and attempt to
find and understand their origins. We also assess the
transferability and accuracy of these potentials with
respect to experiment and first-principles methods and
discuss their limits and validity in quantitative modelling
of materials phenomena. This paper does not, however,
address the question of the theoretical justification or
basis of interatomic potentials in semiconductors. This
question has been dealt with by Carlsson.’"® By
highlighting the strengths and weaknesses of these poten-
tials and by presenting such a large number of test results
in a complete and clear manner, it is hoped that it will
help future users to select those potentials best suited for
their needs as well as help future researchers desiring ei-
ther to improve on these potentials or to develop new
schemes.

The potentials are described in Sec. II. The computa-
tional procedure is discussed in Sec. III. Results for
small clusters, bulk phases, and flat surfaces are present-
ed and discussed in Secs. IV, V, and VI, respectively.
Section VII is a review of other potentials not considered
in this work. Finally, a general discussion and con-
clusions are presented in Sec. VIII.

II. POTENTIALS

Following Carlsson’s classification,’! PTHT, BH, and
SW will be referred to as cluster potentials and the last
three as cluster functionals. SW, DOD, T2, and T3 are
first-nearest-neighbor models (second-neighbor interac-
tions are implicitly included in the bond-bending term).
BH and PTHT include interactions up to the third and
seventh shell, respectively. We will sometimes refer to
the former and latter group as the short-ranged and
longer-ranged potentials, respectively.

In order to have the units of energy and length in eV
and A, respectively (and also for our own convenience),
the notation used by the original authors has been
modified. It is, of course, straightforward to recover the
original notation. Moreover, except for the PTHT and
SW potentials, the parameters listed in Table I are, or
correspond to, those given in the original references. The
original parameters of PTHT and SW give a bulk
cohesive energy for diamond silicon of —5.45 and —4.34
eV, respectively. It is convenient for comparison pur-
poses to have a common basis which we choose as the ex-
perimental cohesive energy and lattice parameter of dia-
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TABLE I. Parameters for the potentials. The units are such that energy and length are in eV and A, respectively; 0, is in degrees.

PTHT BH SwW DOD T2 T3
R, 7.3 5.0 3.77118 3.2 3.2 3.0
u 0.312058 2.0951 0.4 0.4 0.3
o 3.9527357
A, 50928.2584 1422922 189.360 881 1614.6 3264.7 1830.8
A, 697.005 028 107.033 8 16.31972277 155.08 95.373 471.18
Ay 12 0.520083 6 4 2.7793 3.2394 24799
Ay 6 0.420693 1 0 1.3969 1.3258 1.7322
Zor Z, 2949.472 19 26.0598 48.614 999 98
z, 1.344 147 8
a or a; 0.3034373 1.2 4 1.3258 1.7322
a; 0.3191903
n 0.6207 22.956 0.787 34
B 0.13420598 0.33675 1.0999X10°¢
n 0.8543 2.80755739 105.2851343
) 3.9588 2.0417 16.218
6, 109.471 221 109.471 221 90 126.745 381

mond silicon (the lattice parameter is predicted almost
exactly by all potentials). Thus for PTHT and SW, both
of the original two- and three-body energy parameters are
multiplied by the same scale factor of 0.85 and 1.07, re-
spectively. The scaling of the energies, in this manner,
does not affect the equilibrium structures previously
determined. Note that vibrational frequencies must be
multiplied by the square root of these factors.

A. Cluster potentials

The cluster potentials model bonding with classical
two- and three-body potentials. The potential energy
function gives the structural energy E, which is written as

E=33"Vylry)+ 3" Vilry ru,ru) -
ij ik

The primes indicate that all summation indices are dis-
tinct. Also because V;(i,j,k) is symmetric with respect
to an interchange of i, j, and k, the more restrictive con-
straint k> j>i in the triple sum must be used with
PTHT. The condition k > j is used with BH and SW be-
cause V; is symmetric in only j and k. The parameters
listed in Table I correspond to these conditions. In gen-
eral, the two-body potential is given by

Valr)=f(r)[ 4,¢,(r)— A,¢,(r)] ,

where f, is a cutoff function and ¢, is a decaying func-
tion of r. The three-body potentials have different forms
and will be given separately for each potential.

1. The PTHT potential

Pearson, Takai, Halicioglu, and Tiller’ used the
Lennard-Jones and Axilrod-Teller potentials for the two-
and three-body terms, respectively. The potential is cut
abruptly to zero at the cutoff radius R,. In our notation,

the functions are

1 if r <R,
fen= 0 otherwise ,
g (n=r ", s=1,2, (1)
Vs(rij’rik’rjk):Z¢(’ij)¢(rik )¢(rjk )g(ehejvek) ’
fe(r)

- s
r3

8(6,,6;,6,)=1+3 cosb,cos0;cosf, .

0; is the angle subtended at atom i by atoms j and k; 6;
and 0, are defined in a similar manner as shown in Fig. 1.

There is, of course, no theoretical justification for using
these potentials (in particular, the Axilrod-Teller poten-
tial) to describe bonding in a covalent material.> These
particular functional forms were chosen for purely prag-
matic reasons and must, therefore, be viewed only as
fitting functions. While the PTHT potential is not flexi-
ble enough (particularly with respect to the second
derivatives), it is appealing because it has only three ad-
justable parameters (four if the cutoff radius is included;
Ay and A, are fixed). This fact can be more appreciated
when binary or ternary systems are considered.

The parameters were fitted to a minimal database con-
taining the bond lengths of the dimer and trimer and the
lattice parameter and cohesive energy of the diamond
structure.’® The parametrization was done using infinite
lattice sums (R, = o ). All results presented in this work
correspond to R.=7.3 A, which yields results virtually
indistinguishable from those obtained using an infinite
cutoff radius. V,(r) is essentially zero at 7.3 A. Reduc-
ing R, to § A, e, including interactions up to third
neighbors only, changes the lattice parameter by less than
0.5%, the bulk cohesive energy by 4% and the elastic
constants by less than 10%. Similar changes are expect-
ed for surfaces, e.g., for the (111) 1X1 surface, the
changes are 2%, 3%, and 9% for the first interlayer con-
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j rjk k
FIG. 1. Illustration of the geometry of a triplet of atoms used
in the definition of the three-body potentials.

traction, the surface energy, and surface stress, respec-
tively. These changes are much larger if the potential is
cut below the third shell. Also, the energetics of those
surface defects which induce strong atomic distortions,
e.g., surface vacancy and some types of steps, are much
more sensitive to the cutoff radius.

The PTHT potential has been extensively used to study
bulk phase transitions,** surface reconstructions,’® 3437
surface point defect formation and diffusion,*®3438 step
reconstruction and interaction,*>*® and their effects on
two-dimensional nucleation.”® The same potential has
been extended to binary and ternary systems, e.g., GaAs,
Si-GaAs, and Al-GaAs.*0~#

2. The Biswas-Hamann potential (BH)

This potential is a simpler version of the original BH
potential.” The three-body potential is separable. Biswas
and Hamann!® used Gaussians for the radial functions
and a Fermi-like function for the cutoff function. These
functions are

-1

r—o .
if r <R,

1+exp

fe(n=

0 otherwise ,
—A 2
p(n=e =, s=12,

2
Vilrijri,60;)= > Zs‘/’s("ij 1, (ry g, (6;) ,

s=1
—a I‘z
Y(r)=e = f(r),

8,(0,)=(cosf; —cosf,)* "1 .

In the original paper,'® o was written as R, suggesting
that it is the cutoff radius; In fact, f,. is 0.5 when r=c¢
(for any value of u) and 0.03 when r=5.0 A. However,
the results do not seem to be sensitive to R, as long as
R, Zo. For instance, the lattice parameter and cohesive
energy of the diamond structure are 5.4126 A and
—4.6267 eV when R, is equal to o; they are 5.4318 and
—4.6045 at 5.0 A and at 3.0 A they are 5.1565 and
—4.9748. All the results presented here were obtained
with R,=5.0 A. V,(r) is essentially zero at this value.
We have not used the separability of the three-body po-
tential. Compared to the original notation, we have
Z =2B,. The fitting database included the cohesive en-
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ergies of a set of bulk phases, the formation energies of
self-interstitials, and the surface energy of diamond
Si(111) 1X1 and of metallic simple hexagonal and cubic
(100) surfaces obtained from an ab initio linearized aug-
mented plane-wave (LAPW) calculation.!® This potential
has been used to study microclusters and bulk point de-
fects,'” amorphous silicon,* cluster and atom deposition
on Si(111),** amorphous and epitaxial film growth on
Si(111).* and surface reconstruction.’’

3. The Stillinger-Weber potential (SW)

The radial function ¢, is given by (1). The other func-
tions are

r—_EE‘l if r <R,

exp
fc ( r) = c
0 otherwise ,
V3(rij,rik,rjk )=Z¢(ru )¢(rik )g(e,) )
Yr)=[f.(n]",
g(6,)=(cos6; —cosb,)*
Compared to the original notation, we have

A,=€ABo?, A,=€Aoc? Z=eA, R,=ao, and u=o.
Note that, besides acting as a cutoff function, f, defines
the attractive branch of V, (since A,=0) and the radial
functions of V;; therefore, the results are very sensitive to
variations in R_. Stillinger and Weber fitted the parame-
ters to the lattice constant and cohesive energy of the dia-
mond structure with the added constraint that the melt-
ing point and the structure of liquid silicon be well de-
scribed. The SW potential is by far the most widely used.
It has been used to study clusters,*®*’ lattice dynam-
ics,2”*%4 bulk point defects,® the liquid®’! and amor-
phous®> ™% states, surface diffusion®®>’ and reconstruc-
tions,2%27:2%37.58.39 §j (100) stepped surfaces,® the liquid-
vapor®' and crystal-melt interfaces,’"%? pulsed melting of
surfaces,* epitaxial growth from the vapor,®~® liquid-
phase epitaxy,’ % and growth of amorphous films via
atom deposition.”” This potential has been extended to
Ge,®""! sulfur,” fluorine,” and the Si-F system.”

B. Cluster functionals

All the cluster functionals considered here are of the
Tersoff type. In this scheme, bonding is modeled with
pairwise interactions but with the attractive term depend-
ing on the local environment which effectively includes
many-body interactions.»!? The structural energy has
the form

E=3 3" felrj)lA1¢\(r)— A,8,(r;p(5)] . (2)
Lj

where p is a measure of the bond order and is a function
of the effective coordination number ¢ ;j given by

§ij= 2 Vilry,ry,0;),
k=i,j

V3(r,»j,r,-k,9,-)=¢(r,-j,r,~k )g(@,) .
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Note that, in general, p(§;;)7p(&;;). The two-body ener-
gy can be extracted from E by rewriting (2) as

E=13'V(r,)
i
+3 3 4,0, f e (rip)[1=p(E;)] . (3
ij

If [1—p(&;;)] is replaced with a Taylor expansion about
some reference it can be seen how this scheme effectively
includes many-body interactions.”> We will refer to the
second term in (3) as the three-body energy.

Brenner’® showed that the Tersoff formalism is similar
to the embedded-atom method.* The two expressions for
the structural energy can be made identical with the
proper choice of functional forms and parameters.

1. The Dodson (DOD) potential

This potential is a simple modification of the first Ter-
soff potential.> The functions are

m(r —R,) .
= |1—cos | ——— if R,.—u<r<R,
u
S OZ i <R —p @
0 otherwise .
bo(ri=e ', s=1,2, p(g,)=exp(—LL), )
$alra ) felry) | B
(ryora)= | ——— |, g(6;)=—=
v s ¢z(rij)fc(r,-j) 8 n+e 8 cosb;

To determine the parameters, Dodson used the lattice pa-
rameter and cohesive energy of the diamond cubic, sim-
ple cubic, bec, fce, and hep structures, the bond length
and energy of the dimer, and the bulk modulus of the dia-
mond structure. To our knowledge, this potential is
perhaps the least tested compared to the others. It has
been used to study low-energy beam deposition of sil-
icon”” and surface reconstruction.”2%37

2. The Tersoff potentials (T, and T3,

T2 and T3 correspond to two different parametriza-
tions of the same potential. f, and ¢, are given by Egs.
(4) and (5), respectively. The other functions are

p(&)=+gp) 71

Wrry )= fory )exp[a3(r,»j—r,-k 11,

2 2
(6,)=B+L — 1 :
& b 8% 82+(cosh; —cosb,)?

The potential parameters were determined by fitting to a
database containing the cohesive energy, lattice parame-
ter, and bulk modulus of the diamond structure, and the
cohesive energy of bulk polytypes of silicon.!'3 For T3,
an additional constraint was added in order to reproduce
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the three elastic constants to within 20%."3 T2 and T3
were used to study microclusters,?® lattice dynam-
ics,'13%%7 pulk point defects,'>'>7® the liquidlz’13 and
amorphous'®>* states, surface reconstructions,'?!$27.2%37
and low-energy beam deposition on Si(100) 2X 1.7 This
potential was also extended to carbon® and to the sys-
tems Si-C and Si-Ge.?1-#?

C. Discussion

The two-body functions V,(r) are plotted in Fig. 2.
The open circles correspond to an accurate ab initio cal-
culation (based on MRCI, a multireference
configuration-interaction approach) of the energy of the
ground state of Siz‘;83 The T2 and T3 curves are very
similar for » <2.7 A. The attractive branches of the BH
and SW curves are also similar over the range
2.4<r<3.0 A. While the shapes of these curves are
different, in general, they all have about the same depth
with the exception of DOD, which is much stronger.
The PTHT curve is the steepest with the largest curva-
ture at the equilibrium bond length; this is reflected in the
large values of the vibrational frequency of the dimer and
the bulk elastic constants. Note the small bump on the
curves of the cluster functionals; this is due to the abrupt
cutoff function.

The angular dependence g (8) of the three-body poten-
tials is shown in Fig. 3. The PTHT function is very
different from the others; it is the only function which is
negative for 6> 117° resulting (in a few cases) in negative
three-body energies for configurations with large bond
angles. The DOD curve is a monotonic decreasing func-
tion of 6 with a minimum at 180° like the PTHT curve.
The other curves have the same shape with a minimum at
0=06,. The T2 curve has a very shallow minimum at
6=90° and is symmetric with respect to that angle. For

1

0.75 F
1 | PTHT

-0.75

Va(r) (eV)

-2.25 1

1

-3.75 . .
1.5 2.5 3.5 4.5 5.5
1 (A)
FIG. 2. Comparison of the two-body potential functions
V,(r). The open circles correspond to the ab initio calculation
of Ref. 83.
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BH, since a; and «a, are almost equal,
g1(0)1+(Z,/Z,)g,(0)] is plotted to show the effect of
the cos’6 term, which is negligible as shown in Fig. 3. A
better comparison of the three-body potentials is provid-
ed in Fig. 4, which shows the variations of the three-body
energy with angle 6 for a triplet of atoms i, j, and k (Fig.
1) with r;;=r; =2.351 A (the equilibrium bond length of
the diamond phase) and 8;=6. The three-body energy
for the cluster functionals is defined as the second term of
(3). What is actually plotted in Fig. 4 is the contribution
of atom i to the total three-body energy of the triplet.
There is no curve for T2 because this energy is essentially
zero (on the scale of the plot) for the apex atom in an iso-
celes triangle; the total three-body energy does not, how-
ever, vanish (for 8 <40°) because of the contribution of
atoms j and k. One immediate consequence of this is that
T2 will favor triplet configurations leading to an equila-
teral triangle thus making the total energy almost com-
pletely controlled by the two-body potential. PTHT is
the most repulsive for small angles less than about 45°,
and SW and DOD are stronger than the other potentials
for > 135° and 50° < 6 < 140°, respectively. One very im-
portant result to be discussed later is that all these poten-
tials handle rather well small angular distortions around
the tetrahedral angle and, to a lesser extent, those leading
to angles somewhat larger than 109°, but with the excep-
tion of T2, they completely fail when dealing with small
angles ( =80°). This is fully reflected in the curves of Fig.
4. Finally, the large variations displayed by these func-
tions makes a comparison between the potentials very
difficult, indeed.

2(8)

PTHT
1.0
-2.0 1 Il [ i —l
0 30 60 90 120 150 180

0 (deg)

FIG. 3. Comparison of the angular variation of the three-
body potentials g (6) (an isoceles triangle was used for PTHT).
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3.0

2.5

2.0

1.5

1.0

3-Body Energy (eV/atom)

0.5

0.0

_0.5 1 L 1 1 1
0 30 60 90 120 150 180
0 (deg)

FIG. 4. Three-body energy (in eV/atom) vs angle 0 for a trip-
let of atoms forming an isoceles triangle. 6 is the apex bond an-
gle between the two equal bond lengths fixed at the equilibrium
bond length of the diamond structure of silicon (see text).

III. COMPUTATIONAL PROCEDURE

Unless indicated otherwise, all results presented here
are static, i.e., T=0 K. In the static limit, we use the so-
called potential approximation where we only deal with
the mechanical equivalent of the true thermodynamic
properties.’* The total energy was minimized using a
conjugate gradient technique. The minimization is
stopped when the force on each atom is at most 0.001
eV/A (typically 10~ eV/A). Note that, in general, ener-
gies converge more rapidly than stresses. For surface cal-
culations, we used fixed atoms to simulate a rigid under-
lying substrate and used enough moving layers to mini-
mize the interaction between the exposed surface and the
moving-fixed interface.

The surface energy per unit area ¥ is defined as

y=%(E —NE.), (©)

where E is the total energy for the simulation of N atoms
with bulk cohesive energy E, and A4 is the area of the ex-
posed surface.

The total stress 7,5 is given by

. _13E
PV de,5

where V is the volume of the system, @ and B represent
any two of the Cartesian coordinates, and €,z is the La-
grangian strain tensor. Since the total potential energy
and the stresses are given as a sum of contributions of
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each atom in the system, it is natural to define an atomic
energy e (i) and stress x,4(i) such that

E=3 e(i) and TUB:LVEXaﬁ(i)'

While the definition of the atomic energy and stresses ap-
pears to be arbitrary, the availability of the energy and
stress distributions can be very helpful in analyzing com-
plex defect structures.**3? Also, they are helpful in as-
sessing any finite-size effect that can be present in the cal-
culation. For example, well away from a defect, e.g., a
surface, the atoms must be representative of the bulk en-
vironment; this can be readily checked by looking at
these distributions.

A two-dimensional surface-stress tensor o,z can also

be defined to further characterize the surface?%¢
1 d(Ay) d
== S8V =yt L 7
Tap™ 4 0€,p o 0€,p @)

where 8,5 is the Kronecker 8. For a liquid, the strain
derivative in (7) vanishes, and the surface stress, called
surface tension, is numerically equal to the surface free
energy. For a solid surface, dy /d€,5 can be positive or
negative and can thus lead to a tensile or compressive
surface stress. Also, as shown for the (100), (110), and
(111) 2X1 surfaces, 7,4 is not necessarily isotropic.

Unless indicated otherwise, all surface energies and
stresses will be given in eV/1X 1 cell (for simplicity, we
will sometimes drop the per 1X1 cell). To obtain y and
Oap in eV/A 2, divide by the area of the 1X 1 primitive
surface cell. Also, surface energy will refer to the value
calculated from (6); the relative energy of a relaxed or
reconstructed surface is, in general, its surface energy rel-
ative to that of the ideal 1 X1 surface.

For point defects, we calculated defect energies both at
constant volume and constant zero pressure. For both
cases, the reference is the perfect diamond lattice (pres-
sure P =0; atomic volume Q=(1,) so that the formation
energy, E, is given by

E;=E—(N*t1)E, ,

where E is the total energy for the simulation of (N+1)
atoms, +1 for a single interstitial and —1 for a monova-
cancy. We used a large cell containing (980+1) atoms
and the Cartesian coordinate system was taken as
X=[110],y=[001], and 2=[110]. Periodic boundary
conditions are applied in all three directions in order to
simulate a bulk environment. For the constant volume
calculation, the cell with a defect has to be compressed
(vacancy) or expanded (interstitial) to bring the atomic
volume to the equilibrium value (2,. This is done by scal-
ing the lattice parameter by the factor (1+1/N)'/3. For
N =980, the change in lattice parameter is only +0.03%
but it is +0.5% for N =64. To simulate a constant pres-
sure one would normally use molecular-dynamics or
Monte Carlo methods. But these methods are much
more time consuming than a static method. If one is only
interested in studying pressure effects at zero temperature
on equilibrium structures, it is desirable to devise a static
method where the volume is a variable. We have imple-
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mented the conventional method used in isobaric Monte
Carlo simulation®’ into our static program code.

In the “constant volume” static method, the objective
function is the total energy E {r} and the variables are
the 3N atomic coordinates {r} in the system of N atoms.
The volume ¥V of the computational cell is held fixed. In
the constant-pressure version, the enthalpy H{p,V}
=E{p,V}+P,V is minimized. There are now (3N +1)
variables, which are ¥V and the 3N dimensionless atomic
coordinates, {p=V "!*r}. The externally applied pres-
sure P, is set to zero in this work. Note that, like the
atomic coordinates, the periodic boundary vectors must
be scaled by ¥ ~!/3 at each iteration step. In practice, we
found it necessary to constrain the volume to vary within
a prescribed range.

Because very often experimental data are lacking, peo-
ple involved in atomistic computer simulation rely heavi-
ly on results obtained from first-principles calculations,
not only for comparison purposes but also for use as in-
put for the parametrization of the interatomic potential.
In this work, only the properties of Si, and those of the
perfect diamond lattice are directly compared to experi-
ment. Other bulk and surface properties are compared to
results obtained from ab initio calculations using mostly
the self-consistent pseudopotential method within the lo-
cal density functional theory (simply abbreviated DFT
from now on). Results for Si;—Sis are compared with
those obtained from an ab initio molecular-orbital calcu-
lation.®

Very often the ab initio data are obtained from
different sources, i.e., different techniques or calculations
performed with different input calculational parameters.
While the DFT method is certainly one of the most accu-
rate theoretical tools for the calculation of the ground-
state properties of solids,"® it is important to keep in
mind such differences in the data when making compar-
isons. Furthermore, for the parametrization of the in-
teratomic potential, it is critical to use consistent and
compatible data especially when used in conjunction with
some experimental data, which is often the case. While
several input calculational parameters can affect the re-
sult of the calculation (care is generally taken to minimize
the effect of most of them), the plane-wave cutoff energy
E, is the limiting factor. Structural parameters, e.g.,
the lattice parameters, are weakly dependent on E ,, but
energies converge more slowly below about 10 Ry.% %2
Typically, E, is about 6 Ry. The effect of E,,, can be
appreciated by considering the calculation of the energies
of adatom-covered Si(111) surfaces. Northrup’® per-
formed a calculation at 6 Ry, and he successfully deter-
mined that the T, adsorption site is energetically favored
over the H; site (both sites have threefold symmetry but
the T, adatom has a second-layer atom directly below in
contrast to the H; adatom which does not). He also
found that the V'3 X V'3 structure was more stable than
the 2 X2 structure. In fact, the opposite was found to be
true by Meade and Vanderbilt who performed a more ac-
curate calculation at 12 Ry.”! Other examples are pro-
vided by the formation energies of bulk point defects in
silicon for which extensive calculations lead to uncertain-
ties of up to 2 eV (Refs. 21, 32, and 94-96) and by the en-
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ergy of buckled and symmetric dimers on the Si(100) sur-
face for which seemingly similar calculations lead to op-
posite results (see Sec. VI).

IV. CLUSTERS

The only accurate experimental data for silicon clus-
ters are the bond length, bond energy, and vibrational
frequency of Si, (Ref. 97) and the binding energy of Si;.*
No experimental data on the structures of Si, (n =3) is
available. However, accurate ab initio calculations have
been performed on microclusters.®®°® Raghavachari (KR)
performed an ab initio molecular-orbital calculation and
considered several configurations and electronic states for
each Si, cluster (n=2-6) in order to determine the
ground-state structures.®® The ground-state structures
were found to be somewhat compact with an average
bond length of about 2.28 A (shorter than the equilibrium
bond length of the diamond structure) and bond angles in
the range 60°-90°. These structures are significantly
different from the configurations derived from microcrys-
tal fragments. These latter lie much higher in energy
than the former. The lowest-energy structure for Si;—Siq
are the isoceles triangle, rhombus, trigonal bipyramid,
and edge-capped trigonal bipyramid, respectively. Each
cluster can be formed from the previous one by attaching
an extra atom at an edge- or face-capped site. These Si,
structures are three-dimensional in nature for n =5. At
the level of theory considered, and based on the experi-
mental data of Si, and Si;, KR estimated that only about
80% of the binding energy of these clusters is recovered.
He, thus, scaled the binding energy of all the clusters by
the same factor of 1.2. The energies given in Tables II
and III are the scaled values.

Several studies on small silicon clusters were per-
formed using some of the potentials considered here.
Halicioglu, Pamok, and Erkoc?® used the PTHT, SW,
and DOD potentials for a limited study on Si,—Si,.
Biswas and Hamann'® used their potential along with a

2257

combination of steepest descents and simulated annealing
techniques to determine the low-energy structures for Si,
clusters (n =3-6,10,32). A molecular-dynamics simula-
tion of Si, clusters (n=3-17,32) was performed by
Blaisten-Baroja and Levesque using the SW potential.*®
Both neutral and positively charged clusters were exam-
ined. Feuston, Kalia, and Vashista*’ also used the SW
potential to study the fragmentation of Si, clusters
(n =2-14) with a molecular-dynamics technique. Bold-
ing and Andersen”® performed a calculation on Si,-Si,
using BH, SW, T2, and their own potential.

We have performed our own calculations on Si,-Sig
using all six potentials along with a static method. For
each potential, except SW, calculations were carried out
with and without the cutoff function. Because simple
minimization energy techniques are not adequate for
finding global minima, we have considered many
configurations for each cluster; this includes all
geometries considered in previous studies as well as
several other structures such as a planar C,; form for Si;
(edge-capped rhombus) and a Cs, form for Sig (pentago-
nal pyramid) as illustrated in Fig. 5. Moreover, many
asymmetric structures derived from each of these
configurations were optimized. Our results of the calcu-
lations with the cutoff function are summarized in Tables
II and III. Since the energy of atoms infinitely separated
is taken as zero, the binding energy Ej is the absolute
value of the total potential energy as given in Sec. II.

A. Si, and Si,

The equilibrium bond length r,, binding energy D,,
and vibrational frequency w, of the Si, dimer, as obtained
from the six potentials, are shown in Table II. Most po-
tentials used r, in the fitting database; it is, therefore, well
reproduced by most of them. The largest discrepancy of
5% in r, occurs with SW. D, is less well described with a
discrepancy ranging from 12% for DOD to —29% for
SW. The best description of w, is obtained with DOD;
PTHT overestimates it by 50% and the other potentials

TABLE II. Equilibrium properties of Si, and Si;. r, and r (A) are the bond lengths, D, and Ep (eV)
are the binding energies, wy, (cm™!) is the vibrational frequency, and 6 (degrees) is the bond angle.
Values in parentheses correspond to a mechanically stable configuration lying higher in energy. In the
second column, the experimental values are for Si, (Ref. 97) and KR corresponds to the ab initio results

for Si; (Ref. 88).

Experiment/KR ~ PTHT BH SW DOD T2 T3
Si,
D, 3.24 2.38 2.49 2.32 3.61 2.62 2.67
r, 2.246 2.295 2.233 2.352 2.192 2.313 2.295
o 510.98 794 463 462 521 467 471
Si,
Ey 7.7 5.29 5.39 474 7.04 7.87 5.33
(~7.6) (5.23) (4.63) (6.05) 4.81)
) 77.8 180 60 60 180 60 126.75
(60) (60) (109.47) (60) (60)
r 2.17 227 2.42 2.56 2.20 2.31 2.30
(2.26) (2.39) (2.35) (2.40) (2.50)
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underestimate it by about 10%.

The ab initio calculations predict that the lowest-
energy configuration for Si, is an isoceles triangle with an
apex bond angle of 77.8° and bond length of 2.165 A,
which indicates strong multiple-bonding character.®® It
was also shown that the linear structure is only a saddle
point on the potential energy surface of Si; and that there

is also a low-lying state which lies only a few kcal/mol
higher in energy; its structure is an equilateral triangle
with bond length of 2.263 A. None of the potentials pre-
dicts the correct ground-state structure of Si; (see Table
II). As expected from Fig. 4, PTHT, T3, and DOD pre-
dict a trimer with bond angle of 180°, 126.75°, and 180°,
respectively, i.e., the angle at which the three-body ener-

TABLE III. Properties of Si;—Sis. The first three most stable structures are given in the order of decreasing binding energy. For
each structure, the first entry is the binding energy Ej (eV), the others are bond lengths (A), and angles (degrees). KR correspond to
the ab initio results of Ref. 88. The asterisk indicates that this structure is known not to be a minima on the quantum-mechanical sur-
face. The different structures along with the corresponding structural parameters are illustrated in Fig. 5. The acronyms are
tetrahedron (7T ); edge-capped rhombus (ECR); corner-capped triangle and rhombus (CCT, CCR); pentagonal, square, and distorted
pentagonal pyramid (PP,SP,DPP); flat and elongated trigonal bipyramid (FTB,ETB); orthorhombic bipyramid (OB); edge- and face-
capped trigonal bipyramid (ECTB,FCTB). For the linear structures, the numbering of atoms is from one end to the other.

KR PTHT BH SW DOD T2 T3
Si,
Rhombus Rhombus Square* Square* Linear* T, Square*
12.85 8.48 8.93 8.69 10.48 15.71 8.64
ri,=2.30 2.37 2.34 2.39 r;,=2.20 2.31 2.38
ri3=2.40 2.59 ry3=2.21
D,, Square* T, T, Square* Rhombus Chain
11.53 8.44 8.25 7.13 9.73 13.10 8.00
2.34 2.56 2.72 2.33 2.31 r=2.30
2.31 0=126.75
T, CCT* CcCT* Chain Rhombus Square* Linear*
9.71 8.33 7.38 6.95 9.53 10.49 7.41
2.46 r;;=2.26 2.30 2.35 2.40 2.31 2.32
ri;=2.36 2.45 109.5 2.55 2.34
Sis
FTB ECR Pentagon Pentagon Pentagon ETB Pentagon
16.70 12.04 12.08 11.57 14.25 20.40 12.44
rp,= 3.26 rp= 2.34 2.28 2.35 2.28 2.37 2.32
ra= 2.34 riy= 2.56 2.35
res= 2.78 ryy= 2.37 3.84
ETB Pentagon ESP* FTB Linear FSP CCR
15.62 11.88 11.90 11.46 13.91 20.13 11.27
2.48 2.31 2.47 3.25 rp= 2.20 2.34 2.38
2.40 2.64 2.50 ry;3=2.21 2.32 3.50
3.86 3.29 2.30
FSP CCR FTB ESP* CCR FTB FTB
13.90 11.65 11.82 11.01 13.09 16.98 10.95
ry,=2.48 r,=2.34 3.02 2.46 2.36 3.50 3.36
ris=2.36 ry4 =2.59 2.46 2.85 3.15 2.34 2.45
ris=2.26 3.48 2.21 2.34 3.00
ECTB Hexagon Wedge Wedge Hexagon Octahedron Hexagon
21.91 15.31 15.81 15.15 18.38 26.52 15.79
2.28 Fip=2.53 2.60 2.25 2.37 2.30
ris=2.40 2.40
Hexagonal chair PP PP DPP Linear FCTB* Asymmetric
15.98 14.72 15.71 15.12 17.34 26.22 14.83
2.41 rp=2.41 ri2=2.20 3.19
2.50 ri6=2.63 ry3=2.21 3.26
V34 =2.21
Asymmetric Asymmetric Asymmetric PP OB Wedge
14.63 15.46 15.07 16.40 23.95 14.33
rp=2.47 3.26 3.34 2.43 2.54
r34=2.63 3.63 3.36 2.53 2.43
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FIG. 5. Illustration of the geometry of some structures for
Si,—Sis. These are the rhombus (1), the corner-capped triangle
(2), the chain (3), the D,, structure of Ref. 88 (4), the flat trigo-
nal bipyramid (5), the corner- (6) and edge- (7) capped rhombus,
the square pyramid (8), the edge- (9) and face- (10) capped trigo-
nal bipyramid, an asymmetric structure (11), a distorted (12) and
regular (13) pentagonal pyramid, the orthorhombic bipyramid
(14), and the wedge or trigonal prism (15). In the elongated
form of the trigonal bipyramid, atoms 1, 2, and 3 are bonded to
each other and the apex atoms are widely spaced.

gy is a minimum. These three potentials correctly pre-
dict the second minimum; they, however, overestimate
the bond length. Not surprisingly, as noted in the previ-
ous section, T2 predicts an equilateral triangle as the
ground-state structure of Si;. SW and BH were expected
to predict an isoceles triangle with a bond angle equal to
the tetrahedral angle as the lowest-energy structure,
which turned out to be an equilateral triangle. BH like
T2, do not, however, predict a second minimum. With
T2, the bond length and binding energy of Si; are con-
stant at 2.31 A and 5.25 eV for angles larger than 88°.
The calculation performed without the cutoff function
shows that, for this potential, there is, in addition to the
same global minimum, a shallow local minimum corre-
sponding to a linear structure with E5=5.2463 eV and a
bond length of 2.31 A (the maximum between these two
minima occurs at 120° with E5 =5.2419 eV).

B. Si4, Sis, and Si6

The first three lowest-energy structures for Si,—Siq are
presented in Table III. Some of the structures are illus-
trated in Fig. 5. The hexagonal chair and the chain are
crystal fragments when 6=109.5°. In the corner-capped
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triangle, r3, is slightly different from r;3. The rhombus
in the corner- and edge-capped rhombus is somewhat dis-
torted. For both the trigonal bipyramid and square py-
ramid, there are two different geometrical arrangements,
a flattened and an elongated form. r;5<r, in the flat
square pyramid and 7,5 > r, in its elongated form; atoms
1, 2, and 3 are bonded to each other in the elongated tri-
gonal bipyramid while they are not in the corresponding
flattened form. The wedge is a symmetrical stacking of
two equilateral triangles. The orthorhombic bipyramid
can be viewed as two edge-sharing distorted tetrahedrons.
With PTHT, atoms 1 and 2 are bonded to each other in
the asymmetric structure. For the linear structures, the
numbering of atoms is from one end to the other as in
Ref. 88.

Let us first discuss the ground-state structures. Only
PTHT correctly describes the ground-state structure of
Si,, i.e., the rhombus. This structure is predicted to be a
local minimum on the potential energy surface by DOD
and T2. With BH, SW, and T3, it is not a minimum. For
Sis, the quantum ground-state structure, e.g., the flat tri-
gonal bipyramid, is a local minimum with all potentials
(E5=10.78 eV with PTHT and 12.03 eV with DOD).
The edge-capped trigonal bipyramid, which is the global
minimum on the quantum potential energy surface is
only a local minimum on the surface generated with
PTHT (Ez=14.18 eV), BH (15.26), SW (14.95), DOD
(14.89), T2 (23.08), and T3 (13.13). For the first three po-
tentials, the structural parameters of the optimized struc-
tures are very different from those of the quantum struc-
ture.

For a potential to be useful in studies of clusters, it
should, as pointed out by Bolding and Andersen,? give at
least a fair representation of the entire potential energy
surface. That is, it should not only fairly describe the en-
ergies and structures of global and local minima but also,
and perhaps more importantly, not predict spurious mini-
ma (minima which do not exist on the quantum potential
energy surface). In addition to the global minima, there
are three, three, and one known local minima on the ab
initio potential energy surface for Siy, Sis, and Sig, respec-
tively. Not listed in Table III are the pyramid (Ez =9. 14
eV) for Si,, and the pentagon (Ez=12.10 eV, r=2.39 A)
for Sis. KR also reported that for Sis, the linear structure
and the tetrahedral crystal fragment lie higher in energy
than all the other structures and that the former has a
larger Ep than the latter.3® It is not known whether these
two structures are minima.

For Si,, all potentials predict that the tetrahedron is a
minimum while the D,; structure is not. The pyramid is
predicted to be a local minimum only by SW; however,
its apex angle is 109.5° (a crystal fragment) compared to
the value of 78° for the quantum structure. This struc-
ture is degenerate in energy with the chain (another crys-
tal fragment). For Sis, structures that are predicted to be
minima are the elongated trigonal bipyramid by PTHT
(Ep=10.75 eV), T2, and T3 (9.83 eV); the flat square py-
ramid by T2; and the pentagon by all potentials (for T2,
Ez=13.12 eV, r=2.31 A). For Sig, only BH and SW
predict that the hexagonal chair is a local minimum;
however, the bond angle is 107.2° and 109.5°, respective-
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ly. The value for the optimized quantum structure is
93.6°.

We now consider the spurious minima. KR deter-
mined that the following are not minima on the quantum
potential energy surface: for Siy, the corner-capped trian-
gle (E;=10.63 eV), the square (10.61 eV; r=2.32 A),
and the linear structure (8.75 eV); for Sis, the elongated
square pyramid (16.16 eV; r;,=2.30 A, ri5s=2.50 A); for
Siq, the face-capped trigonal bipyramid (21.87 eV) and the
tetragonal bipyramid (21.48 eV). The following struc-
tures are thus spurious minima: the square, the corner-
capped triangle, and the linear structure (all potentials);
the elongated square pyramid (all potentials except T2);
face-capped trigonal bipyramid (DOD, T2, and T3); the
tetragonal bipyramid (T3). Finally, we should mention
that, with all six potentials, we have found many more lo-
cal minima (about 15 overall for each potential) which, in
general, are close in energy.

PTHT and DOD favor planar structures. In fact,
PTHT and DOD give rather similar descriptions of the
structures of the small Si, clusters. This is consistent
with the similar monotonic angular variations of the
three-body energy for relatively larger angles. The most
similar potentials are BH and SW. Both predict the same
ground-state structure for each cluster. BH give slightly
larger binding energies and smaller bond lengths than
SW. T3 is also close to BH and SW. It predicts the same
ground-state structures (with similar bond lengths and
binding energies) for Siy and Sis. There are more similari-
ties between T3, BH, and SW if all minima for Si,, Sis,
and Sig are considered. That BH and SW and, to lesser
extent, T3 are similar can also be traced back to the be-
havior of the corresponding three-body potentials as
shown in Fig. 4. Note the tendency for T3 to also favor
planar structures. As expected from our earlier discus-
sion, T2 favors structures that lead to triplets forming an
equilateral triangle or close to it. For example, for Siy,
the tetrahedron and rhombus are actually four and two
edge-sharing equilateral triangles, respectively. All three
minimum energy structures and also the trimer structure
have the same bond length of 2.31 A, i.e., the equilibrium
bond length of the dimer. It is this discrimination in
favor of structures having equilateral triangles as their
building blocks that leads to three-dimensional
configurations in agreement with the ab initio calcula-
tions. In fact, T2 is the potential that provides the fairest
overall agreement with the ab initio calculations.

In order to compare the cluster binding energies, a plot
of the binding energy per atom versus the number of
atoms in the cluster is shown in Fig. 6. The curve labeled
KR corresponds to the scaled energies of the ab initio cal-
culations. The similarity noted above for BH, SW, and
T3 is also apparent in the binding energy. The PTHT
curve is very similar to that of these potentials. The
DOD potential, which showed similarities with PTHT
for the structures of the Si, clusters, leads to larger bind-
ing energies than PTHT because its two-body potential is

stronger. Compared to the scaled ab initio results,
PTHT, BH, SW, DOD, and T3 generally underestimate

the binding energy of the Si, clusters, while T2 overesti-
mates it. Note that, for T2, the energy per atom is in-
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FIG. 6. Binding energy per atom vs the number of atoms in
the cluster in Si,—Sis. The curve KR corresponds to the ab ini-
tio results of Ref. 88.

creasing with a relatively large slope, and it is already
4.42 eV for n =6, i.e., very close to the bulk cohesive en-
ergy. This is a direct consequence of the fact that the
bond bending forces are very small; thus T2 favors close
packed structures because the total energy is almost to-
tally controlled by the two-body potential. A best fit with
the KR curve can be obtained for the binding energies by
using a scaling factor of 1.43, 1.40, 1.47, 1.15, 0.85, and
1.39 for PTHT, BH, SW, DOD, T2, and T3, respectively.
However, this will also change the bulk and surface ener-
gies, and it will not change the fact that the equilibrium
configurations are, in general, in disagreement with the
ab initio results. To compare the relative stability of
these clusters, and thus look at the possibility of magic
numbers, one needs to perform a calculation of the frag-
mentation energy E. This is the smallest energy in-
volved in the dissociation of Si, into Si,_,, +Si,,. An
accurate determination of Eg involves the investigation
of all possible fragmentation channels. KR determined
that E corresponds to the process Si,—Si, ;+Si and
confirmed the presence of the magic numbers 4 and 6.5
Using SW, Feuston, Kalia, and Vashishta*’ also found
the same fragmentation process for Si,(n =2-14) and
that SW do give the magic numbers 4, 6, and 10. The
kind of extensive study performed in Ref. 47 is beyond
the scope of this work. However, assuming the same pro-
cess as in Refs. 47 and 88, we find, for Si,-Si,, Si, is more
stable than the other clusters with BH, SW, and T2.
PTHT and T3 give more stability to Sis. With DOD, no
cluster shows extra stability as indicated by the almost
linear curve in Fig. 6.

All the results presented thus far were obtained with
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the cutoff function included with the potentials. We have
also performed the same calculations with no cutoff; the
cutoff function in SW is an integral part of the potential.
The two-body potential function without the cutoff func-
tion, i.e., g (r)=V,(r)/f.(r), is essentially zero at r =R,
for PTHT and BH. g (R.)/q(r,) is 0.42, 0.47, and 0.54
for DOD, T2, and T3, respectively. As expected, there is
very little or no change in the results obtained with
PTHT and BH. For the cluster functionals, there are lit-
tle changes in the structural parameters, somewhat larger
variations in the binding energies (particularly for T3),
and some minor changes in the relative position of the
minima. The global minimum of Si, is now the rhombus
for T3 and that of Sis is now the flat square pyramid for
T2. The largest variations were obtained with T3 but
they are not large enough to change the overall picture
presented thus far.

Finally, it should be mentioned that while our results
agree with the works of Refs. 20, 28, 46, and 47, there is
some conflict with the work of Biswas and Hamann.!”
First, the binding energies listed in Ref. 10 are consistent-
ly slightly larger (less than about 0.1 eV/atom) than the
values presented here. The structure of Si; is in total
disagreement; they found an isoceles triangle with 6=79°,
r=2.29 A, and Ez3=5.10 eV. Our result agrees with
that of Ref. 20. With BH, we found all minima reported
in Refs. 10 and 20 and many more. Our results for T2
are in agreement with those of Ref. 20 and here again we
found other minima.

In summary, the ab initio calculation®® predicts that for
Si;-Sig, there are overall 12 structures that are minima
and 7 that are not (there are probably many more than
that). Considering these 19 structures and using a
simpler version of the rating scheme of Bolding and An-
dersen,”® a potential will predict (m,n) minima with
0=m =12 and 0=<n =7 being the number of correct and
spurious minima, respectively. The rating of the ab initio
calculation is (12,0). It is (8,4), (8,4), (6,4), (7,5), (7,6), and
(6,6) for T2, SW, BH, PTHT, T3, and DOD, respectively.
The most serious limitation of these potentials is that
they predict many spurious minima that are either global
or close in energy to the correct global and local minima.
A positive note is that, in general, these potentials do pre-
dict, like the ab initio calculations, that the structures de-
rived from crystal fragments are not energetically favor-
able even though the potentials were built from crystal
data. Within the framework of classical interatomic po-
tentials applied to covalently bonded materials, it is the
delicate balance between the radial and bond-bending
forces that determines the equilibrium structure and the
energetics of any system of atoms, e.g., clusters, bulk
phases, or surfaces. The fact that these potentials do not
describe correctly the equilibrium structures of the sil-
icon clusters indicates that such a balance is not adequate
at this point.

V. BULK PHASES
A. Crystal stability

., In addition to the cubic diamond structure (a =5.429
A; E,=—4.63 eV/atom), silicon may exist in several
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simple and complex metastable structures.’® These
phases have been observed experimentally, and most of
them result from pressure-induced phase transforma-
tions. They are hexagonal diamond, which has tgle same
density as cubic diamond (¢ /a =1.653; a =3.80 A), B-tin
(c/a=0.552; a=4.686 A), bc-8 (x=0.1003;
a=6.636 A), simple hexagonal (c¢/a=0.94; a=2.527
A), hep (c/a=1.698; a=2.444 A),” and fcc.!® Hexag-
onal diamond is formed with a combination of high-
pressure and heat treatments.? The bc-8 structure is ob-
served upon unloading to atmospheric pressure from the
high-pressure SB-tin phase.!! The other phases are the re-
sult of high-pressure phase transformations in the pres-
sure range 0—800 kbar.”>!® They occur in the sequence
cubic diamond — pB-tin—simple hexagonal—hcp—fcc
with increasing pressure.

Accurate DFT calculations have been performed on
these structures as well as on some other hypothetical
phases, e.g., simple cubic, bee, and graphitic structure.®
The DFT database has been very useful not only as input
for the parametrization of the potentials but also for
comparison purposes when experimental data are una-
vailable as is often the case. To test for crystal stability,
and as further comparison between the potentials, we
performed calculations for all the structures mentioned
above as well as for several two-dimensional structures.
The axial ratio ¢ /a of hexagonal diamond, B-tin, simple
hexagonal, hcp, and graphitic silicon as well as the inter-
nal parameter x of bc-8 were optimized. The results for
the optimized structures are shown in Table IV. In the
DFT calculations the c/a ratios of the hexagonal dia-
mond hcp and graphitic structures were not opti-
mized.?* 192

All potentials but PTHT predict the cubic diamond
phase as the most stable structure. The major result here
is the unfortunate finding that with PTHT the lowest-
energy phase is the simple hexagonal structure instead of
cubic diamond. The axial ratio of 2.87 is so large that
there is negligible interaction between the hexagonal lay-
ers. The second-lowest-energy structure is not even cubic
diamond but a squared two-dimensional structure with
a=2.32 A and AE=E_ —E, (cubic diamond)= —0.22
eV/atom. This finding stresses the need, when testing for
crystal stability, for considering all plausible phases in-
cluding planar structures. When PTHT was first
developed, crystal stability was tested with a minimum
number of structures.’® This situation is certainly not
unique. As an example, the same problem occurred with
the first potential developed by Tersoff.® Despite this
pathology, we will continue in the next sections to
present results obtained with PTHT because, as we will
show throughout, this potential yields in most cases simi-
lar results to those obtained with DOD.

Crystal stability is the first requirement any potential
must fulfill for it to be useful.!® If the potential gives as
the most stable structure a phase other than the experi-
mentally observed one, it cannot be used, in general, par-
ticularly for melting and growth simulations. However,
it can, perhaps, be used for a limited number of structural
calculations in regions of phase space away from the
pathological configuration; but one has to remain skepti-
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cal of such calculations. When the most stable structures
are planar structures, as in the case with PTHT, one can
easily foresee situations where the use of such a potential
could lead to trouble. For example, in an unconstrained
simulation involving (100) or (111) surfaces and where the
lateral dimensions are relaxed, the layers making up the
slab could break away if the temperature is high enough
to overcome the energy barrier preventing bond break-
ing. In fact, this pathology is perhaps responsible for the
results of the simulation of thin amorphous silicon films
on crystalline silicon substrates performed by Erkoc, Hal-
icioglu, and Tiller.!® They found that the dominant
structural feature was a dense free surface skin with a
void layer underneath for Si(100) and (111) substrates.

A good fit to the energy of the hexagonal diamond
phase is important because there are direct implications
on the energies of stacking faults and of the Si(111) 7X7
surface. The DFT calculation shows that AE=0.016
eV/atom in agreement with the observation that the cu-
bic and hexagonal diamond phases are closely related and
with the small experimental stacking fault energies in sil-

icon along the (111) direction, e.g., 50-60 erg/cm?.'%
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BH give the best fit with a c /a ratio slightly greater than
the ideal value in agreement with the experimental value.
PTHT give a vanishingly small AE. The other short-
ranged potentials, being first-nearest-neighbor models,
give, as expected, a zero AE.

The bc-8 structure is of particular interest because it
provides information about bond-bending forces. This
phase has a bcc structure with 8 atoms per unit cell; it
has two structural parameters, the cubic lattice parame-
ter a, and the internal parameter x. It consists of distort-
ed tetrahedra with small changes in bond lengths. As in
cubic diamond, each atom in bc-8 has four neighbors, but
there are two different types of bonds resulting in two
slightly different bond lengths and thus two distorted
bond angles, about 99° and 118°.!°1:197 A} potentials de-
scribes the structural parameters fairly well; however,
with the exception of T2, they overestimate the energy.
T2 gives a very small relative energy implying very weak
bond-bending forces as already indicated in the previous
section. SW, DOD, T2, and T3 correctly predict the bulk
modulus; PTHT and BH overestimate it just as they do

TABLE 1V. Equilibrium properties of optimized bulk silicon structures. AE=E_ —E_ (diamond)
and E_ is the cohesive energy (eV/atom). a (A) and B (Mbars) are the lattice parameter and bulk
modulus, respectively. x is the internal parameter of the bc-8 structure; it is given in units of a. In the
DFT column, the results for bc-8 and graphite are from Refs. 101 and 102, respectively, the values of B
for simple hexagonal and B-tin are from Ref. 103, and the remaining data are from Ref. 89. The experi-
mental values of E, and a for diamond are —4.63 eV and 5.429 A, respectively.

DFT PTHT BH SW DOD T2 T3
Diamond E, —4.67 —4.63 —4.6045 —4.63 —4.63 —4.6304 —4.6297
a 5.451 5.435 5.432 5.431 5.432 5.431 5.432
Hexagonal AE 0.016 0.0012 0.012 0.0 0.0 0.0 0.0
Diamond a 3.858 3.846 3.841 3.840 3.841 3.841 3.841
c/a 1.633 1.630 1.639 1.633 1.633 1.633 1.633
bc-8 AE 0.13 0.311 0.238 0.201 0.207 0.026 0.245
a 6.67 6.682 6.730 6.591 6.588 6.579 6.644
x 0.1003 0.1034 0.1015 0.1016 0.1054 0.1018 0.1008
B 0.96 2.73 2.05 0.85 0.96 1.10 1.03
B-tin AE 0.266 0.576 0.218 0.213 0.350 0.455 0.327
a 4.822 5.243 5.113 4.969 4.978 4.987 4.905
c/a 0.552 0.464 0.522 0.561 0.521 0.518 0.524
B 1.19 2.71 3.08 4.43 297 3.40 1.38
Simple AE 0.293 —0.559 0.191 0.403 0.371 0.527 0.469
Hexagonal a 2.639 2.405 2.762 2.833 2.634 2.613 2.699
c/a 0.94 2.866 0.956 0.918 0.997 0.985 0.967
B 1.06 3.11 3.61 1.29 1.40 1.38
Simple AE 0.348 0.447 0.158 0.293 0.388 0.343 0.318
Cubic a 2.528 2.549 2.609 2.612 2.529 2.501 2.544
bce AE 0.525 0.916 0.312 0.300 0.479 0.644 0.432
a 3.088 3.165 3.236 3.245 3.153 3.126 3.084
hcp AE 0.552 0.110 0.052 0.321 0.637 0.551 0.761
a 2.735 4.094 3.973 3.647 2.800 2.730 2.756
c/a 1.633 0.591 0.685 0.884 1.633 1.633 1.633
fcc AE 0.566 0.950 0.255 0.423 0.628 0.548 0.761
a 3.885 3.984 4.075 4.147 3.960 3.861 3.897
Graphitic AE 0.710 0.3177 0.3847 0.6715 0.3625 0.5087 0.5131
Silicon a 3.895 4.123 4.145 4.073 4.094 4.101 4.096
c/a 2.726 1.215 1.232 1.193 1.193 1.198 1.233
B 0.50 2.738 2.076 1.667 0.944 1.003 0.984
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for cubic diamond (see Table V).

The B-tin structure is also of interest because it is the
first phase the diamond structure transforms to under
pressure. This phase has four nearest neighbors and two
second-nearest neighbors at a slightly larger distance
making the effective coordination number Z .4 equal to 6.
SW give the best overall description (excluding the bulk
modulus). Only T3 correctly predicts the bulk modulus.
All but SW underestimate the ¢ /a ratio and only BH and
SW describe the energy fairly well.

The graphitic phase is important because (i) it is the
only undercoordinated structure (with respect to cubic
diamond) and (ii) it gives a measure of both the tendency
of silicon for rehybridization from sp? to sp? as observed
on some surfaces and also of 7 bonding, which was found
by first-principles calculations to be weak in silicon com-
pared to carbon.!” Note again that in the DFT calcula-
tions, the ¢ /a ratio was not optimized.®® The value of
2.726 for graphite was used. Our results for this value
are AE=0.34, 1.09, 1.27, 0.39, 0.70, and 0.072 eV/atom
and @ =3.92, 3.99, 4.10, 3.95, 4.01, and 3.99 A for PTHT,
BH, SW, DOD, T2, and T3, respectively. Note the excel-
lent agreement obtained with T2 and T3. The optimized
structures, as obtained with these potentials have a much
smaller axial ratio of about 1.2, remarkably about the
same for all potentials. The energy is also comparable for
PTHT, BH, and DOD and for T2 and T3. Z is 5 for
the atom having neighbors directly above and below in
the adjacent layers.

PTHT and BH predict a compressed hcp structure
with an axial ratio of 0.59 and 0.69, respectively. In this
structure, Z 4 is 8 instead of 12 for the ideal hcp struc-
ture; this structure is very close in energy to the cubic
and hexagonal diamond phases. SW also predict a hcp
structure with a ¢ /a ratio of 0.884, smaller than the ideal
value of 1.633; Z ¢+ is only 6 in this case. For the ideal
hcp structure the results are a =2.81, 2.88, and 2.93 A
and AE=0.92, 0.26, and 0.42 eV/atom for PTHT, BH,
and SW, respectively. The lower energy of the
compressed structure is due mainly, particularly for
PTHT, to a lower three-body energy.

The energy of all the structures is compared to the
DFT results in Fig. 7. In this figure, the energy of the
graphitic structure corresponds to the nonoptimized ¢ /a
ratio of 2.726. Also, for PTHT, BH, and SW, the energy
of hcp corresponds to the ideal ¢ /a ratio. Only DOD
shows the same trend in energy (up to the hcp phase) as
the DFT results. This is not surprising because Dodson
included more structures in the fitting database than the
other potentials. PTHT do a poor job in describing the
energy of these phases. Only SW, DOD, T2, and T3 pre-
dict the bc-8 structure as the next-lying phase after cubic
and hexagonal diamond, and only SW and DOD predict
B-tin as the fourth phase. All potentials correctly predict
that the equilibrium atomic volume of cubic diamond is
larger than that of the other phases (excluding the nonop-
timized graphitic structure). They also predict the in-
crease of bond length with increasing coordination (the
dependence is approximately logarithmic). However, the
bond lengths are, in general, somewhat larger (particular-
ly with SW and BH) compared to the DFT results.
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FIG. 7. Comparison of cohesive energy for various bulk sil-
icon structures. For the graphitic and hcp structures, see text.

B. Phase transformations

As a further test and comparison, we finally discuss
pressure-induced phase transformations. We have stud-
ied all possible phase transformations (mainly from the
cubic diamond structure to all the other bulk phases) us-
ing the procedure outlined in Ref. 89. Only T3 predicts
correctly that cubic diamond will first transform to the
B-tin phase at a transition pressure of 127 kbar. The
transition volumes (normalized to the experimental equi-
librium volume of cubic diamond) are 0.903 (cubic dia-
mond) and 0.715 (B-tin). This agrees fairly well with the
experimental values of 88-125 kbar,'® 0.918, and
0.710,% respectively. T3 also predicts a [-tin to bc-8
transformation at 47 kbar compared to the DFT result of
76 kbar.!°! The first transformation from cubic diamond
is predicted to be to the compressed hcp phase by PTHT
and BH, to bc-8 by SW and T2, and to simple hexagonal
by DOD. The cubic diamond to 3-tin phase transforma-
tion is predicted to be (in the order of increasing transi-
tion pressure) the third transformation by PTHT [286
kbar, 0.93 (cubic diamond), 0.77 (B-tin)], the fifth by BH
(155, 0.93, 0.84), the second by SW (217, 0.86, 0.82), the
fourth by DOD (205, 0.85, 0.76), and the fifth by T2 (270,
0.84, 0.73). Biswas and Hamann'? found that cubic dia-
mond would make a transition under pressure first to
simple cubic. We found this transition to occur after the
cubic diamond to hcp transition using their potential.

C. Elastic and vibrational properties

The description of the elastic properties (in particular,
the shear constant C,,) constitutes a stringent test for the
potentials. We have calculated the elastic constants using
the homogeneous deformation method.® The results are
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TABLE V. Elastic and vibrational properties of silicon. The bulk modulus and elastic constants are
in Mbars, the phonon frequencies in THz. B’ is the pressure derivative of the bulk modulus, C%, is the
theoretical value obtained for C,, in the absence of internal strain, and § is Kleinman’s internal strain
parameter; values in column 2 are from Refs. 89, 110, and 112, respectively. The experimental values
for B and the elastic constants are from Ref. 109. The phonon frequencies were taken from Refs. 111,
34, 10, 27, and 13 for experiment, PTHT, BH, SW and T2, and T3, respectively.

Experiment PTHT BH SW DOD T2 T3
B 0.99 2.788 1.692 1.083 0.884 0.98 0.98
B’ 4.2 7.82 5.66 2.93 4.27 4.58 4.30
Cy 1.67 2.969 2.042 1.616 1.206 1217 1.425
Ch 0.65 2.697 1.517 0.816 0.722 0.858 0.754
Cus 0.81 0.446 0.451 0.603 0.659 0.103 0.690
cl, 111 2.190 1.049 1.172 3.475 0.923 1.188
¢ 0.74 1.03 0.74 0.63 1.06 0.83 0.67
vialX) 4.4 45 5.6 6.7 2.7 9
Vro(X) 13.9 19.3 14.5 15.9 15.3 16
Vioa(X) 12.3 13.8 12.2 13.1 11.7 12
viro(T) 15.3 18.3 16 18.1 16.5 16

presented in Table V. The cluster functionals were all
fitted to the bulk modulus B; it is thus well described.
They also describe well the pressure derivative of the
bulk modulus B’. SW provides a good fit to B but
significantly underestimates B’. PTHT and BH overesti-
mate C,;,C,,B’, and B. DOD and T2 underestimate
C,; by about 28%; SW and T2 overestimate C,, by about
the same amount. All potentials underestimate C,,; the
worst fit is provided by T2, PTHT, and BH. For T2, this
indicates once again the very weak bond-bending forces.
Note that they also underestimate the second shear con-
stant (C,,-C,,). Also, none of the potentials correctly
describe the negative Cauchy discrepancy (C;, —Cy,).
PTHT and DOD overestimate significantly Kleinman’s
internal strain parameter .23 This is reflected in the
large value of (C9, —C,,). CY, is the value of C,, in the
absence of internal displacement.110 BH, SW, and T3 pro-
vide a good fit to CY, and . This shows that such a good
fit does not necessarily result in an accurate value of Cg,.
Tersoff developed T3 in order to improve on the elastic
constants. T3 indeed describes the elastic constants
better than does T2. SW also gives a good description.
This is in fact quite remarkable considering that SW was
not directly fitted to any elastic constants. For all poten-
tials, the elastic constants satisfy the mechanical stability
conditions indicating that the cubic diamond structure is
stable against all elastic homogeneous deformations.
The vibrational properties influence small distortions
from equilibrium and are thus also important. In Table
V are listed the phonon frequencies corresponding to four
modes, the transverse acoustic at X, TA(X), the trans-
verse optic at X, TO(X), the longitudinal optic and acous-
tic at X, LOA(X), and the longitudinal-transverse optic
at I'. The phonon spectrum for DOD is not available.
BH gives the best overall description of these phonon fre-
quencies.'® For PTHT, despite a very poor description of
the elastic constants, the phonon frequencies agree fairly
well with experiment with the exception of vg(X). Note
the almost perfect agreement for v,(X). The full pho-
non spectrum has been determined by Pearson.>* At the

zone boundary, the acoustic modes are well described.
However, the optical modes are too stiff; besides a larger
zone-center frequency, the modes increase with increas-
ing wave vector, instead of decreasing. The fact that
PTHT and BH give a better agreement with experiment
for the transverse acoustic mode at X than the other
shorter-range potentials is consistent with the observa-
tion that long-range interactions are necessary for an ade-
quate description of this mode.''> While SW also do a
fairly good job with these phonon frequencies, the spec-
trum extends to higher frequency compared to experi-
ment. T2 gives a poorer overall description of the pho-
non spectrum than SW. wv;,(X) is underestimated
significantly.?” T3 gives a description comparable to
sw.!3

D. The universal energy relation

All properties of the cubic diamond structure present-
ed thus far probe only a very small region around equilib-
rium. It is desirable to seek information about the behav-
ior of the potentials in regions well away from equilibri-
um. Recently, Rose, Smith, Guinea, and Ferrante'!
showed that the binding energy versus distance relation
for a condensed system, independent of its bonding char-
acter, could be described by a universal energy relation
(UER) given by

%

E(a*)=E.(14+a*—fa*3)e ° ,

where a*=n(r/r,—1) and =(9BQ,/|E.|)"/?. Here r
is the first-nearest-neighbor distance and  is the atomic
volume, while the subscript e indicates equilibrium
values. The coefficient f; was fixed to a value of 0.05,
which was determined from the thermal expansion of
copper.!!* This led to a value of 4.74 for B’ in silicon
compared to 4.2 for the experimental value. A value of
0.0052 for f5 leads to an exact fit, whereas ;=0 gives
B’'=4.25; f, was set to zero in this work. In general,
good agreement was found between the universal energy
relation and experimental data as well as the first-
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FIG. 8. Comparison of energy vs first-nearest-neighbor dis-
tance for the cubic diamond structure.

principles calculations. The UER not only accurately
models the region of moderate uniform compression, but
it also provides information about the behavior of the
crystal under moderate uniform expansion where experi-
mental data is lacking.

The energy versus distance curves are shown in Fig. 8.
Compared to the UER curve, BH and PTHT indeed do a
poor job. The repulsive branch of the curve is well de-
scribed by the short-range potentials. The cluster func-
tionals also do a good job for expansion up to a bond
length of about 2.8 A. Note that the UER suggests that
the potential is long range; however, the accuracy of the
UER has not been demonstrated for large expansions.
According to first- pr1n01ples calculatlons, the range of
the two-body potential is about 5 A (see Fig. 2). More-
over, the many-body term should fall off much more rap-
idly with distance than the two-body term. It thus seems
reasonable to assume that the range of the potential
should be no more than about 5 A.

To further characterize the behavior of the energy-
distance curve, we consider a theoretical property defined
in Ref. 114 as a limit on the tension at which the crystal
would rupture. This negative pressure Py is the value at
the minimum of the pressure versus distance equation. It
was found that, for most crystals, Pp is typically
10-20 % of the bulk modulus. Compared to the UER
value of —0.16 Mbars, Py is —0.17, —0.14, —0.16,
—0.34, —0.36, and —0.53 Mbars for PTHT, BH, SW,
DOD, T2, and T3, respectively. The corresponding
strain €x is 9, 13, 20, 26, 26, and 20%, respectively while
the UER value is 15%. The large overestimate of P and
er exhibited by the cluster functionals is due entirely to
the short range and abrupt cutoff (Figs. 2 and 8).
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E. Bulk point defects

In general, point defects involve large atomic displace-
ments and rebonding around them. They provide infor-
mation about bond-breaking energies and are important
for testing the ability of the potentials to model such
large atomic displacements. Several calculations or simu-
lations of intrinsic defects were previously performed us-
ing BH, SW, T2, and T3. Using SW, Batra, Abraham,
and Ciraci®® performed an extensive molecular-dynamics
simulation (at zero pressure and temperature and in a cell
containing 800 atoms) for four types of self-interstitials;
the tetrahedral (I;), the hexagonal (Iy), the bond-
centered (Ig), and the dumbbell or split (Ig) interstitials.
Biswas and Hamann!? calculated the energy of formation
of I;,I, and the vacancy. Tersoff, using T2,'? calculated
“upper-bound” values for the energies of I,Iy,Ip, and
the vacancy; with T3, he reported energies for the same
defects and also for Ig,Iy, the split vacancy, and the sad-
dle point for the concerted exchange mechanism of Pan-
dey.!" Using the procedure outlined in Sec. III, we have
performed our own calculation for Iy,Iy,Ip,Is, the va-
cancy, and the split vacancy. We have calculated defect
energies at constant atomic volume (2=(1,) and at con-
stant pressure (P =0). The volume relaxation reduces
the formation energies by less than 0.1 eV. This is be-
cause our cell is very large and extends to the 24th shell
from the defect. For a (64+1) atoms cell, volume relaxa-
tion is more important and reduces the formation ener-
gies by up to 0.3 eV. The formation energies of the equi-
librium (relaxed) configurations presented in Table VI in-
clude volume relaxation, i.e., they are formation enthal-
pies at zero pressure. There is no reliable experimental
data for the equilibrium energies and structures of these
defects; therefore, our results are only compared to those
obtained with first-principles methods. As indicated in
Sec. III, there are, however, large uncertainties in these
ab initio data so that only a range of values is really avail-
able at this time. These are also listed in Table VI.

PTHT underestimates significantly the energies of all
the defects, in particular I and the vacancy. The short-
range potentials give a better description of the energy of
I; than the longer range potentials (PTHT and BH).
This would confirm the observation of Biswas and
Hamann that short-range functions are needed to model
such a defect.!® In fact the short-range potentials (T3,
SW, DOD, and T2 in that order) appear to give a better
overall description of the energies of all defects con-
sidered here.

PTHT gives a small relaxation of the nearest neighbors
surrounding 1. With all potentials, I has four and six
first and second neighbors at 2.44 and 2.8 A (PTHT), 2. 54
and 2.84 A (BH), 2.56 and 2.94 A (SW), 2.57 and 2.69 A
(DOD), 2.52 and 2.72 A (T2), and 2.38 and 2.96 A (T3).
Iy has six first neighbors at 2.42 A (PTHT, DOD, and
T2), 2.51 A (BH), 2.58 A (SW) and 2.48 A (T3) Ip has
two first neighbors at 2.36 A (PTHT), 2. 63 A (BH), 2.31
A (SW and DOD), 2.27 A (T2), and 2.23 A (T3). The two
atoms formmg Iy are separated by about 2.19 A
(SW)-2.33 A (PTHT). They each have two second neigh-
bors at 2.28 A°® (T3)-2.36 A (SW). In general, all poten-
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TABLE VI. Formation energies (in eV) of intrinsic defects in silicon. The first and second values are
for the equilibrium (relaxed) and ideal (unrelaxed) configurations, respectively. The third value is the
radial relaxation of nearest-neighbors around the defect (in %); a negative value indicates an inward re-
laxation towards the defect. Iy, Iy,Ig, and I are the tetrahedral, hexagonal, bond-centered, and split

interstitials, respectively. The DFT energies and relaxation for the split vacancy and the unrelaxed va-

cancy formation energy are from Ref. 96; the others are from Ref. 94.

DFT PTHT BH SW DOD T2 T3
Vacancy 3-4 0.77 2.12 2.82 2.57 2.81 3.70
4.5 2.50 3.83 4.63 3.23 2.83 4.10
385 —25.7 —24 14.7 1 10.5
Split vacancy 4.19 2.83 2.30 3.36 4.17 1.40 3.50
5.01 4.53 4.72 6.00 8.12 4.15 10.5
—9.5 —15.9 —12.5 —11.8 —14.5 —14.9 —8.8
I 5-6 0.63 1.56 5.25 3.03 5.03 3.45
1.91 4.57 12.21 5.00 5.85 6.92
3.8 8 9 9.1 7.3 10.5
Iy 4-5 0.84 2.89 6.95 2.61 3.67 4.61
5.32 9.31 17.10 5.11 5.39 8.22
7.4 11.5 14.7 7.3 7.6 10.2
Iy 4-5 1.92 2.54 5.99 4.39 2.84 5.86
I 1.47 3.30 5.62 3.49 2.32 4.70

tials confirm the findings of Batra, Abraham, and Ciraci®
that (i) there are significant atomic relaxations extending
to several shells around the defect and (ii) the relaxation
is oscillatory in nature and somewhat nonuniform within
some shells.

BH and SW lead to an equilibrium configuration of the
vacancy where the neighboring atoms relax radially
(along (111)) inward towards the defect. This relaxation
brings the surrounding atoms (initially separated by 3.84
A) closer to each other to about 2.89 A resulting in a
weak interaction of their dangling orbitals. It also in-
creases the length of the back bonds to 2.44 A. We note
that for SW, the ideal configuration is metastable (see
Sec. VIA I). Biswas and Hamann reported that the re-
laxation energy for the vacancy was zero. We found that,
unlike for SW, the ideal configuration is not at equilibri-
um because the forces on some atoms although small are
quite significant. PTHT, DOD, T3, and T2 give an out-
ward relaxation (also along {(111)) in analogy with the
(111) 1X1 surface. In fact, the amount of relaxation
correlates somewhat with the first interlayer contraction
of that surface (see Table VIII). With PTHT, DOD, and
T3, there is another metastable configuration for the va-
cancy where the relaxation is inward. In this case, the
vacancy formation energy and the fractional amount of
relaxation are 2.87 eV and —31.5% (PTHT), 4.21 eV and
—32.2% (DOD), and 4.00 eV and —28.9% (T3).

Whether the relaxation around the vacancy is inward
or outward is still a subject of controversy. Most past
quantum-mechanical calculations lead to an outward re-
laxation (see Ref. 96 for a discussion of such work).
More recently Kelly, Car, and Pantelides®® found an in-
ward relaxation of about 0.2 A compared to 0.6 and 0.56
A for BH and SW. Antonelli and Bernholc®® also found
an inward but smaller relaxation (—2.8%). Wang, Chan,
and Ho''® using a tight-binding molecular-dynamics
method also arrived at an inward relaxation of 0.5 A,

which compares very well with the results obtained with
BH and SW.

The configuration corresponding to the split vacancy is
the classical saddle point for vacancy migration. In this
migration path, a neighboring atom moves along a bond
and displaces the vacancy. The saddle point is expected
to be the configuration where the atom is at the midbond
site. This atom has six first neighbors at about 2.96 A
when these are at their ideal positions. The ab initio re-
sults®® for this defect are E +=5.01 eV (unrelaxed) and
4.19 eV (relaxed),oand an inward relaxation of the six
neighbors of 0.28 A. The calculation of the vacancy for-
mation energy lead to 4.5 and 3.92 eV for the unrelaxed
and relaxed configurations, respectively.”® The resulting
migration energy for the vacancy is 0.27 eV compared to
the experimental value of 0.45 eV. We note that both
Tersoff potentials give the split vacancy as the most
stable configuration for the monovacancy. The inward
relaxation of the neighboring atoms is described well by
T3, SW, and BH. Assuming, as in Ref. 96, that the
configuration of the split vacancy is the saddle point for
vacancy migration, the migration energy for the vacancy
as obtained with BH and SW is 0.18 and 0.54 eV, respec-
tively. We note the excellent agreement with experiment
provided by SW.

Our results obtained with SW agree with those of Ref.
50. For T2, only the result for the vacancy agrees with
that of Ref. 12. For Ir,Iy, and Ig, our results for E, are
consistently smaller but, as indicated above, Tersoff stat-
ed that his numbers were upper bounds on E,. Also our
values for the formation energy of I obtained with T3 is
smaller by 0.35 eV than Tersoff’s result.!’> The largest
discrepancies are with the relaxed formation energies of
I; and I;; obtained with BH. Biswas and Hamann'? re-
ported values of 3.61 and 5.09 eV, respectively, compared
to our results of 1.56 and 2.89 eV. On the other hand,
the unrelaxed formation energies are in much better
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agreement: 4.99 and 9.47 eV compared to our numbers,
4.57 and 9.31 eV. Our result for the unrelaxed vacancy
formation energy is exactly the same as theirs. Biswas
and Hamann did not specify clearly the cutoff radius and
size of the cell they used for the defect calculations. To
try to resolve this question, we performed calculations for
these two defects with a small cell containing 65 atoms
and used dlﬁ'erent values for the cutoff radius R,.. With
R.=5.0 A, there is very llttle change in the results of
Table VI. With R,.=3.95 A, the formation energies are
0.83 eV (4.86 ¢V, unrelaxed) for 17:=2.57(9.73) for I.
Finally, with R,=3.0 A, we found 4.35 (9.74) and 5.56
(14.46), respectlvely We do not know at this time what
is the reason behind these differences. We do believe that
our results are correct.

F. The liquid and amorphous states

We have not performed any simulation of liquid (I-Si)
or amorphous (a-Si) silicon; however, numerous studies
have been performed by others to study these two bulk
phases. For a-Si, the resulting structures seem to be very
much dependent on the simulation procedures.’?”>*
Also, the potentials were sometimes altered in order to
achieve a better description of the amorphous state.*’
For these reasons, we will not attempt to review the
simulation work done with BH, SW, T2, and T3. In-
stead, the interested reader is directed to the original
literature given for each potential in Sec. II.

Takai, Halicioglu, and Tiller performed a constant
pressure Monte Carlo simulation to study the melting of
silicon using the PTHT potential.> The melting temper-
ature T,, was determined to be about 1920 K in fair
agreement with the experimental value of 1685 K. The
potential correctly describes the volume contraction upon
melting; however, other properties of /-Si such as the la-
tent heat of fusion are 2 to 3 times smaller than the ex-
perimental values. The structural properties were not re-
ported.

Because a requirement in the fitting procedure was to
accurately reproduce the melting point of the crystal and
the structure factor of the liquid,® SW gives the best
overall description of /-Si than any other potential.
Several groups studied /-Si and a-Si using this potential
and different simulation methods.%>!7533%62,67—68 gyj).
linger and Weber determined T,, to be about 2013 K.°
However, all other studies lead to a value in the range
1665-1750 K. The structure of /-Si is also rather well de-
scribed and other properties are in good or fair agree-
ment with experiment.

BH and T3 strongly overestimate T,,, which is about
2900 K (Refs. 43 and 44) and 3000 K (Ref. 13), respec-
tively. The radial distribution function of the liquid is de-
scribed fairly well by T3. T2 does not describe /-Si well.!?
Both Tersoff potentials seem to favor fourfold coordina-
tion in the liquid in disagreement with experiment.

Note that the simulations of I-Si reported here for
PTHT and SW were performed with the original sets of
energy parameters. These parameters, as indicated in
Sec. II, give a bulk cohesive energy E, of diamond silicon
of —5.45 eV for PTHT and —4.34 eV for SW. Simula-
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tions on melting have predicted strong correlation be-
tween T, and E,.!'” Thus we may scale T,, with E, and
the results for PTHT and SW become 1631 K and 1776-
1867 K, respectively.

VI. SURFACES

In view of the rich variety of surface reconstructions
they exhibit, surfaces of silicon represent, perhaps, the
most stringent test for the potentials. We consider in this
section the low-index (100), (111), and (110) surfaces. Be-
cause of their technological importance in the microelect-
ronics industry, the (100) and (111) surfaces of silicon
have been extensively studied both experimentally and
theoretically over the last 30 years. A myriad of experi-
mental techniques were used to determine their geometri-
cal and electronic structure. Several models have been
proposed and many theoretical studies, most notably
self-consistent total-energy pseudopotential calculations,
have been performed to explain the different surface pat-
terns observed. For a complete review of these surfaces
the reader is referred to the articles of Haneman.''® It is
worthwhile to note that experimental observations of
these surfaces are made at 7#0. Temperature effects as-
sociated with the entropy can therefore be important and
might be the critical factor responsible for the relative
stability of some surfaces, e.g., Si(100) and Si(111) 7 X7.
However, because calculations or even estimates of the
entropy are difficult, we use, as is common, zero-
temperature surface energies to study the stability of such
surfaces.

A. Si(100)

Despite its apparent simplicity, the Si(100) surface has
long been the subject of controversy. Many models have
been proposed over the years to explain the various sur-
face patterns observed experimentally.!'®”'2! It is now
universally accepted that the dimer model is the correct
one. The dimerization of the Si(100) surface has been
particularly confirmed by scanning tunnel microscope
(STM) observations in real space'?®!?? and also by
numerous total-energy calculations, principally those us-
ing first-principles pseudopotential techniques.3¢%% 123126
The reduction of the dangling bond density is the pri-
mary driving force for the dimer reconstruction. Dimeri-
zation occurs when two surface atoms (initially in their
ideal bulk positions and separated by the second-neighbor
distance of 3.84 A), which have two dangling bonds per
atom, move toward each other in the [110] direction and
in the plane containing their dangling bonds to form a
bond. This is illustrated in Fig. 9, which shows sym-
metric dimers. The dimerization induces subsurface
atomic displacements which extend at least four layers
into the bulk. The dimer is buckled and asymmetric
when the dimer atoms have different x and z displace-
ments from their ideal bulk positions. The x and y direc-
tions, taken as [110] and [110], run along the dimer bond
and the rows of dimers, respectively.

Both 2X1 and ¢ 4X2 patterns have been observed in
low-energy electron diffraction (LEED) and He-atom
diffraction experiments; the latter also showed the pres-
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FIG. 9. Side view of the Si(100)-2X1 surface showing the
symmetric dimer reconstruction. The arrows indicate the atom-
ic displacements (in A) from the bulk terminated positions. The
four values (starting from the top) correspond to DFT (Ref.
125), BH, SW, and T3, respectively. The displacements for T2
are similar to those for T3; those for PTHT and DOD are some-
what different. The Cartesian coordinate system is also shown;
the y direction runs into the page and is along [110].

ence of p 2X2 and possibly ¢ 2 X2 patterns.!!® The situa-
tion was clarified recently by Tromp, Hamers, and
Demuth who used a STM with a lateral resolution of
about 3 A to determine the atomic structure of the clean
Si(100) surface.!?? They only observed asymmetric buck-
led and symmetric nonbuckled dimers along with a rela-
tively high density (approximately 10%) of dimer vacan-
cies. The surface defects, which are randomly distribut-
ed, appear as both individual dimer vacancies and small
clusters of missing dimers. No other type of reconstruc-
tion was observed. The density of buckied and sym-
metric dimers is nearly the same indicating that their en-
ergies are approximately equal. This is supported by ab
initio calculations as we will see below.’®12%125 1p
defect-free regions, the dimers are symmetric and the
periodicity is 2X 1. The buckled dimers, which give rise
locally to p 2X2 and ¢ 4X2 patterns, are often observed
near vacancies and at steps. This suggests that the sur-
face defects induce or at least stabilize buckling.'?® The p
2X2 and ¢ 4 X2 structures are formed by alternating the
buckling along a row of dimers for both of them but, in
adjacent rows, the buckling is parallel and antiparallel for
the former and latter, respectively. The ¢ 2 X2 structure
was not observed.

In this work, the Si(100) surface is modeled with a slab
containing 20 layers of 16 atoms each. The top 14 layers
are allowed to relax while the rest are held fixed. The
Cartesian coordinate system is shown in Figs. 9 and 10.
For the dimer reconstruction, the surface atoms are ini-
tially displaced toward each other to form dimers. The
results for the ideal and relaxed 1X1, the dimer recon-
structed 2X 1 and ¢ 2X2 surfaces, and the Pandey -
bonded defect structure are presented and compared to
the DFT results in Table VII.
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Z (oon)

Y (110)

FIG. 10. Side view of the Pandey m-bonded defect structure
for the Si(100) surface. The Cartesian coordinate system is the
same as in Fig. 9.

1. Si(100) 1X1

The energy of the ideal 1X 1 surface, as obtained with
the six potentials, is comparable to the DFT result of 2.5
eV. This value obtained at 4.3 Ry is probably an upper
bound. The largest discrepancy is obtained with PTHT
and DOD, which give about the same value. By relaxing
the 1X1 surface, the energy is slightly lowered in agree-
ment with the DFT result. This relaxation, of both en-
ergy and first interlayer contraction, is perfectly de-
scribed by BH and to a lesser extent by T3. Again,
PTHT and DOD produce similar results; they both
overestimate the relaxation energy by about a factor of 3.
DOD gives an interlayer contraction of 10%, twice the
DFT result. T2 gives very little relaxation. In the case of
SW, all stresses are zero and the surface exhibits no relax-
ation; this is true, as we will see later, for any bulk ter-
minated surface or any defect that is created by removing
atoms, e.g., vacancies. This behavior can be directly re-
lated to the form of the potential’”® and is explained by
the combined effect of three features: (i) The potential in-
cludes only first-neighbor interactions, (ii) the total
three-body energy vanishes at the tetrahedral angle; and
(iii) the Si, molecule bond length and strength are exactly
equal to the bulk equilibrium bond length and energy. As
a result of (i) and (ii), the forces and all stresses on all
atoms are zero; consequently, the ideal 1 X1 structure of
any surface is a minimum on the potential energy surface.
There is no relaxation (for unreconstructed surfaces) be-
cause of (iii). Compared to the DFT results, the poten-
tials do not, in general, predict the surface stress well.
For the ideal 1X1 surface, they all underestimate o,,;
the short-range potentials even predict a zero stress for
that direction. PTHT and BH overestimate o, strongly;
T3 predicts a negative value.

2. Dimer reconstruction

Since we will compare our results with those obtained
via ab initio methods, it is worthwhile to review those
theoretical calculations. As stated above, numerous
total-energy calculations were performed over the years
in an attempt to explain the experimental observa-
tions.36:90:118,123126  we only focus on three of them
which all used the pseudopotential technique.

Pandey'?* found that the lowest-energy configuration
in a 2X 1 cell leads to symmetric dimers. The surface en-
ergy (relative to the ideal 1X1 surface), computed with
E,,=6 Ry, is —2.06 eV/dimer. Pandey also showed
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TABLE VII. Properties of Si(100) surfaces. 7 is the surface energy, Ay is the relative energy with
respect to the ideal 1X 1 surface, and o is the lateral surface stress tensor. The x and y directions run
along the dimer bond and the rows of dimers, respectively. Energies and stresses are given in eV/1X1
cell. A is the first interlayer contraction (in %). r; and r,, (in A) are the bond lengths of the dimer and
the back bond between surface and second-layer atoms. 6,,60,, and 0; are the bond angles as indicated
in Fig. 9. The DFT results for the surface energy and the structural parameters of the 2X1 structure
are from Refs. 90 and 125, respectively, those for the surface stress are all from Ref. 86, and the remain-
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ing data are from Ref. 123 (see text).

DFT PTHT BH SW DOD T2 T3
Ideal 1X1

Y 2.5 1.805 2.080 2.315 1.779 2.015 2.126
Ox 2.535 1.176 1.421 0 0 0 0

Oy 0.855 2.363 1.683 0 0.145 0.625 —0.236

Relaxed 1X1
Ay —0.03 —0.077 —0.027 0 —0.085 —0.004 —0.037
O x —0.427 0.848 0 0.515 0.023 0.076
oy, —2.176 0.273 0 —2.775 0.080 —1.693
A —5.1 —17.0 —5.5 0 —10.2 —2.3 —-7.2
2X1
Ay —0.93 —0.690 —0.709 —0.899 —0.714 —1.258 —0.759
Ox 0.693 —0.808 0.669 1.167 —0.094 0.703 0.367
o, —1.945 —1.731 0.008 —0.051 —1.709 0.190 —1.236
A —24.4 —233 —13.3 —83 —22.9 —14.6 —15.6
ry 2.23 2.339 2.403 2.404 2.318 2.328 2.365
Top 2.29 2.313 2.352 2.367 2.314 2.340 2.336
0, 107.8 109.0 106.7 104.8 109.0 106.6 106.7
0, 92.9 91.0 94.8 97.9 90.6 94.8 94.7
6, 100.8 104.7 103.5 101.0 106.5 103.2 102.8
c2X2
Ay —0.839 —0.703 —0.824 —0.720 —1.143 —0.753
O ox —1.356 0.898 1.691 0.274 1.517 0.865
oy, —1.419 0.851 0.574 —0.866 0.567 —0.344
Pandey m-bonded defect structure

Ay —0.895% —0.687 —0.814 —0.045 —1.289 —0.682
O x 0.130 0.782 —1.110 1.075 —0.061
o 2.577 3.454 —0.227 1.441 3.075

Yy

2Reference 127.

that using this minimum energy structure and buckling
the dimer such that no bond length is altered, the energy
was raised by 0.02 and 0.11 eV/dimer for a tilt angle
(with respect to the surface) of 10° and 15°, respectively.
Batra® also obtained symmetric dimers for his optimized
2 X 1 surface with a relative energy of —2.34, —2.06, and
—1.86 eV/dimer at 5.5, 6.5, and 7.5 Ry, respectively.
Note that this indicates that the surface energy has not
yet fully converged. An optimized buckled geometry
with 2 X1 symmetry and a tilt angle of 8° raised the ener-
gy by only 0.02 eV/dimer at 7.5 Ry. However, buckled
dimers in 2X2 symmetry lowered the energy by 0.0054
eV/dimer (this structure was not optimized and the buck-
ling was very small). Batra also showed that there is no
barrier to dimerization and that twisting of the dimers is
energetically unfavorable. Roberts and Needs'?’ per-
formed what is perhaps the most extensive calculation of
dimer reconstruction on the Si(100) surface. They con-
sidered different geometries including the 2X1 surface
with symmetric and buckled dimers, the p 2 X2 structure
with alternating buckled dimers, and other structures
with missing dimer defects. They found that buckled di-
mers have lower energy than symmetric dimers. The rel-

ative energies, obtained at 6 Ry, for the buckled p 2X2
and 2 X 1 structures and the symmetric 2 X 1 structure are
—2.108, —2.078, and —2.02 eV/dimer, respectively.
The energy difference is indeed small and is comparable
to the accuracy of their calculation. In fact, the energy
difference between the buckled and symmetric dimer in
the 2X 1 structure is only 0.03 eV/dimer at 10 Ry. The
buckled dimer in the 2 X 1 structure is tilted by about 6.9°
while the two alternating buckled dimers in the 2X2 cell
have different tilt angles, 11.6° and 12.3°. For the opti-
mized 2 X 1 structure, the structural parameters are near-
ly the same for the three calculations. They are given in
Table VII and Fig. 9. The main results from these calcu-
lations are (i) the symmetric and buckled dimers have
nearly the same energy, which is compatible with the ob-
servation that they have nearly the same density, (ii) the
dimers are not twisted, (iii) the dimer bond length is
shorter than the bulk bond length indicating multiple
bonding character, and (iv) the back bonds are
strengthened.

For all potentials, the Si(100) surface reconstructs to
form symmetric dimers. Twisting the dimers raised the
energy in agreement with the DFT result. No potential is
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able to model buckling, which is a quantum-mechanical
phenomenon.'?*28 This will probably require inclusion
of atomic interactions higher than three-body in the po-
tential and even possibly fitting the potential parameters
to a buckled structure. Both the 2X1 and ¢ 2X2 struc-
tures are found to be stable with a small energy difference
between them. Only PTHT and DOD incorrectly predict
that the ¢ 2 X2 surface is more stable. For PTHT, the en-
ergy gain of the ¢ 2 X2 structure over the 2 X1 structure
is due to a lower two-body energy, the three-body energy
being about the same, while for DOD, it is due to a lower
three-body energy (positive) despite the increase of the
negative two-body energy. The structural parameters
(bond lengths and angles) are nearly the same for both
structures, which is consistent with their small energy
difference.

We now focus on the 2X 1 reconstruction. Note that,
as indicated above, the DFT value of —0.93 eV for the
relative energy of this surface is certainly a lower bound.
Thus, all potentials, but T2, lead to a surface energy in
fair agreement with the DFT result. Only PTHT, DOD,
and T2 give a dimer bond length smaller than the bulk
equilibrium bond length (2.352 A). The value for T3 is
very close; the largest discrepancy is obtained with BH
and SW. For the back bonds between surface and
second-layer atoms, the DFT calculations show a
strengthening with a length slightly larger than the dimer
bond length. Only PTHT, DOD, T2, and T3 give this
back bond strengthening. Also, only for T2 is the length
of these back bonds larger than that of the dimers. Note,
however, that all bond lengths are within 2% of the bulk
bond length and that the largest discrepancy between the
DFT results and those obtained with the potentials is 7,
3, and 5% for the dimer bond length, the length of the
back bonds, and the bond angles, respectively.

According to the DFT calculation, the ideal 1X1 sur-
face is under a strong tensile stress along the eventual di-
merization direction and under a weaker tensile stress in
the perpendicular direction. The reduction of o, after
dimerization suggests that stress relief is the driving force
for the dimer reconstruction. However, if this were the
case, 0,, would also be small; but it is now strongly
compressive. Therefore, just as for the Si(111) 7 X7 struc-
ture, it is primarily the reduction of the dangling bond
density that stabilizes the dimer reconstruction on the
Si(100) surface. Only SW and T3 predict the correct sign
for the two stresses. SW overestimate o,, by 68% and
gives a vanishingly small o,, while T2 underestimate
both of them by 47 and 36%, respectively. BH and T2
predict the value of o,, very well but both give a positive
o, (almost zero for BH). On the other hand, PTHT and
DOD predict o,, very well; they, however, predict a
compressive stress in the x direction. It is worthwhile to
indicate that, for all potentials (even those for which the
sign of one of the stresses is wrong), the 2 X1 surface is
more compressed (less tensile) in the y direction than it is
in the x direction.

3. Surface defects

We now turn our attention to the surface defects. It
does appear that the high defect density is intrinsic of the
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(100) surface. Indirect support for this is provided by the
observation that similar sample preparation procedures
for (111) surfaces lead to a low surface defect density'*
and by the low formation energy of dimer vacancies.'?’
On the other hand, the geometrical arrangement of the
defects depends on the sample preparation technique
and/or the presence of impurities on the surface. In the
STM experiments,'?>!122 the samples were gradually
cooled down after annealing at high temperatures, this
led to a random distribution of missing dimers. In anoth-
er STM experiment,'? missing dimer defects ordered
along the dimerization direction are clearly seen when
small amounts of gallium are deposited on the Si(100)
surface. Indirect evidence for ordered dimer vacancies is
also provided by the LEED studies of higher-order
periodicities which can be produced by rapid quenching
from high temperatures. These are ¢ 4X4 and ¢ 8 X8'%
and, in particular, 2Xn with 6 <n <10. Bl These struc-
tures have all been explained with models involving or-
dered dimer vacancies. For the 2Xn structures, it has
been determined that they are metastable and that
quenching at higher rates or from higher temperatures
lead to small n."3! Tt is clear from the above that dimer
vacancies play an important role in the energetics and
structures of the Si(100) surface. For the potentials to be
useful, it is essential that they give at least a reasonable
description of such defects. Roberts and Needs!? calcu-
lated the surface energy of the Pandey m-bonded defect
structure.'?* In this model, shown in Fig. 10, a dimer va-
cancy is created at every fourth site along the rows of di-
mers. This leads to a structure with 2X4 symmetry. In
the DFT calculation, the structure was optimized but the
dimers were not allowed to buckle. Its energy is only
0.035 eV/1X1 cell higher than that of the 2X1 sym-
metric dimer reconstruction. This corresponds to a for-
mation energy (with respect to the 2X 1 symmetric dimer
structure) of 0.28 eV/defect. In a 2 X2 cell, where the di-
mer vacancy concentration is 0.5, the formation energy is
1.10 eV/defect. Clearly these surface defects repel each
other. Now, while the creation of a dimer vacancy in-
duces strain in the surface, it does reduce the dangling
bond density by rebonding of the exposed second-layer
atoms. Thus, the optimum surface defect concentration
is probably lower than 0.25 and is a compromise between
the two effects.

The results of our own calculation for this defect struc-
ture are presented in Table VII. DOD considerably
overestimates the strain energy and leads to a surface en-
ergy only slightly lower than the ideal 1X1 surface. At
the other end, T2 predicts that vacancy formation is ex-
othermic (with respect to the 2X1 structure) in agree-
ment with Pandey’s predictions (Pandey,'** who did not
perform a calculation, estimated that the defect would
lead to a large energy gain of 2.0 eV/defect which seems
quite unreasonable). BH, SW, and T3 do predict that the
defect structure is metastable and give results in fair
agreement with those of the DFT calculations. While, as
stated above, the potentials do not, in general, give a
good description of the surface stress, it is worthwhile
noting that, qualitatively, the surface defects induce
atomic displacements such that the tensile stress along
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the dimer bonds is reduced and that the surface is now
under tension (or at least under less compression) in the y
direction. The atomic displacements are qualitatively
similar to those of the DFT optimized structure. Only
DOD predicts a shortening of the bond length of the di-
mers adjacent to the defect; the others predict a small ex-
pansion ( < 1%). The length of the weak bond formed by
the exposed secor}d-layer atoms is 2.562, 2.625, 2.318,
2.871, and 2.656 A for BH, SW, DOD, T2, and T3, re-
spectively compared to the DFT result of 2.71 A.

In conclusion, BH, SW, T3, and to a lesser extent T2
give a reasonable description of the energetics and struc-
tures of the Si(100) surface whose principal features are
the dimerization of the surface atoms and the existence of
dimer vacancies. This is mainly due to the fact that the
angular distortions (from the tetrahedral angle) on this
surface are relatively small (about +12% for the 2X1
surface; they are somewhat larger for the defect struc-
tures), at least compared to those encountered in small
clusters and on the (111) surface. Their principal limita-
tion is the inability to model buckling which might not be
serious because the energies of the buckled and sym-
metric dimers are nearly degenerate. Clearly surface de-
fects play an important role here and any realistic calcu-
lation or simulation which aims to study them will have
to involve systems with a large number of atoms. Power-
ful and accurate first-principles methods, such as the now
widely used ab initio molecular dynamics technique,!'*?
are still limited to studies of relatively small systems (up
to 150 atoms'3?). It is believed that the potentials men-
tioned above will be useful in large-scale simulations of
the Si(100) surface since they predict its properties
reasonably well and they can handle large systems with
atoms in the tens of thousands.%

B. Si(111)

The Si(111) surface exhibits several reconstructions de-
pending on the purity of the surface, the temperature,
and the sample preparation procedures. We consider
here only clean surfaces. A freshly cleaved (111) surface
in UHV reconstructs to form a 2 X 1 metastable structure
which transforms irreversibly upon heating (the transi-
tion temperature ranges from 200 to 350 °C depending on
the step density!3*) to the stable 7X7 phase which, in
turn, transforms reversibly to a structure with 1X 1 sym-
metry at about 830°C. This 1X1 phase, which still
remains a mystery,!!? is not the bulk terminated surface.

The widely accepted model for the 2 X1 surface is the
Pandey m-bonded chain model.?%°1132.135=138 Thiq gtruc-
ture is similar to the (110) surface. Another interesting
model, called the three-bond-scission model, has been re-
cently proposed by Haneman.!'®!** For the 7X 7 surface
the DAS model of Takayanagi, Tanishiro, Takahashi,
and Takahashi is now universally accepted.'**~ 44 Other
metastable structures have also been observed. STM ex-
periments on (111) surfaces prepared by a combination of
laser and heat treatment showed locally the existence of
2X2, ¢ 4X2, V3XV3, 5X5, and 9X9 structures.'®’
The first three have been explained by simple adatom
covering of the surface with the adatom located in the T4
site. The (2n +1)X(2n +1) structures were explained
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with DAS-type models.'*~1*¢ A v/3XV/3 structure has
also been observed in a LEED experiment;'*’ the LEED
data were fitted to a vacancy model which was shown to
be energetically unfavorable.3” 148

We have performed calculations for most of the struc-
tures mentioned above. In general, the Si(111) surface
was modeled with a slab containing eight double layers.
The top four or five double layers were allowed to relax
while the rest were held fixed. The orthogonal x and y
surface axes run along the [110] and [112] directions, re-
spectively. Depending on the symmetry of the surface,
the number of atoms per layer ranged from 24 to 162 cor-
responding to a total number of moving atoms of 240 to
1640, respectively. The surface energies and stresses for
the (111) surfaces are presented in Table VIII.

1. Si(111) 1X1

Compared to the DFT result, the surface energy of the
ideal 1 X1 surface is underestimated by all potentials. Al-
though bond-breaking energies are certainly important,
only the relative energies are relevant when investigating
the stability of one surface structure over another. We
note that the relaxation of the 1X1 surface is best de-
scribed by PTHT, DOD, and T3; however, they all
significantly overestimate the compressive lateral surface
stress. With BH and T2, the 1X 1 surface exhibits little
relaxation resulting in a small tensile stress. As indicated
above, in the case of SW, all stresses are zero and the sur-
face exhibits no relaxation. As expected, all short-ranged
potentials predict a zero surface fault energy for the 1 X 1
faulted surface. PTHT and BH give a value of 0.012 and
0.015 eV/1X1 cell compared to the DFT result of 0.02 to
0.06 eV.%! They, however, predict a surface stress of
—2.31 and —0.04 eV/1X1 cell, while the DFT value is
0.11eV/1X1 cell.

2. Si(111) 2X1

Using a cleavage technique, Gilman'*® measured the

surface energy of the (111) surface at 77 K. He obtained
a value of about 1 eV/1X1 cell. Since, as indicated
above, a freshly cleaved surface transforms to a 2X1
reconstruction, except for any generated strain energy as-
sociated with the cleavage process, this value can thus be
taken as the experimental surface energy of the (111)
2X1 m-bonded surface. The DFT result of 1.11 eV com-
pares very well with this value.

Only PTHT predicts that the 2X 1 7-bonded structure
is stable with respect to the ideal 1X 1 surface. The rela-
tive energy is, however, underestimated by a factor of 3.
Moreover, the DFT calculations predict that the struc-
ture is also buckled.!’>13%137.138 = Again the potentials
cannot model buckling. For BH, this structure is not
even a minimum. The 2X 1 surface reduces its energy by
m-bonding of the surface dangling bonds, which are now
first neighbors instead of second neighbors as they are on
the 1X1 surface. Since the potentials do not model -
bonding, for them the dangling bond density is un-
changed. Therefore, there is no energy gain to overcome
the strain energy caused mainly by angular distortions
(£10%). Only for PTHT is this strain energy compen-
sated by a strengthening of the bonds in the surface
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TABLE VIII. Properties of Si(111) surfaces. y is the surface energy, Ay the relative energy with
respect to the ideal 1X 1 surface, and o is the lateral surface stress tensor. For the 2X 1 7-bonded sur-
face, the x and y directions are parallel and perpendicular to the surface chains, respectively. Energies
and stresses are given in eV/1X1 cell. A is the first interlayer contraction (in %). Unless indicated oth-
erwise, the DFT results are from Refs. 85 and 91 where the stresses were calculated at 8 Ry and the en-

ergies at 12 Ry.

DFT PTHT BH Sw DOD T2 T3
Ideal 1X1
Y 1.56* 0.831 1.035 1.158 0.806 0.707 1.026
o 2.323 0.969 0 0.140 0.625 —0.074
Relaxed 1X1
Ay —0.17¢ —0.148 —0.012 0 —0.134 —0.005 —0.069
o —0.54 —2.148 0.149 0 —1.664 0.102 —1.241
A —27.0 —27.6 —8.4 0 —31.7 —6.4 —20.3
2X1 m-bonded
Ay —0.45 —0.150 0.373 0.002 0.091 0.145
O xx 1.4 0.252 0.017 —0.770 0.473 —0.663
gy, 0.4 0.956 2.236 1.087 1.043 1.711
7X7 DAS
Ay <— 0.45 0.240 0.398 0.532 0.390 —0.170 0.625
o 2.172 1.297 1.972 1.153 1.614 0.738
7X7 DS
Ay —0.120 0.093 0.062 —0.024 —0.052 0.041
o 0.295 0.534 0.980 —0.272 0.559 0.112
2X2 T,

Ay —0.44 0.085 0.333 0.513 0.320 —0.081 0.566
o 1.66 0.949 0.606 1.113 —0.074 1.248 —0.608
2X2 H,

Ay —0.33 —0.184 0.191 0.267 0.337 —0.115 0.350
o 1.18 —3.606 —0.397 0.234 —3.309 1.391 —0.621
V3XV3 T,

Ay —0.38 0.206 0.442 0.456 0.447 —0.109 0.774
o 1.70 1.449 0.742 2.111 0.371 1.663 —0.388
V3xXV3 H,

Ay —0.07° —0.178 0.260 —0.043 0.478 —0.143 0.482
o —4.143 —0.502 0.724 —3.528 1.705 —0.522
V3X V'3 vacancy
Ay 0.14° 0.44 0.45 0.08 043 0.45 0.55
o —2.35 5.26 5.98 —1.32 —0.01 —1.17

“Reference 149.
PReference 93, calculated at 6 Ry.
‘Reference 148, calculated at 10.5 Ry.
chains. DOD shows a somewhat similar behavior, but 1X1 surface) in the order 2X2T,<V3XV3T,

the strain energy is higher due to a stronger three-body
energy (Fig. 4). Our result for DOD is in disagreement
with that of Dodson who reported that the 2X1 recon-
struction reduces the energy of the (111) surface by 0.12
eV/1X1 cell.’ In general, the potentials predict that the
2 X 1 surface is under a weak and stronger tensile stress in
the directions parallel and perpendicular to the chains,
respectively; the DFT calculation predicts the opposite.®®
However, the comparison here is not truly appropriate
because the DFT structure is buckled and stresses are
more sensitive to the atomic displacements than is the en-

ergy.
3. Adatom structures

According to the DFT calculations,’’ all adatom

covered structures are stable (with respect to the ideal

<2X2H;<V'3XV3H;. Thus, the 2X2 structure is
more stable than the V'3XV'3 structure in spite of the
fact that it has a smaller reduction of the dangling bond
density. The energy difference is, however, only 0.06
eV/1X1 cell. Meade and Vanderbilt have attributed the
energy lowering to the different electronic structure of
the two surfaces.’! Note that, with the same adatom con-
centration of the 2X2 structure, two different structures
with rectangular ¢ 2X4 and ¢ 2X8 symmetries can be
generated.146 We have not considered these structures in
this work. Before we discuss the results for the adatom
structures, note that there are four errors in Table I of
Ref. 37. For T3, the relative energy of the relaxed 1X1
surface should be —0.07 and the energy and stress of the
V'3X V'3 H, surface must be 0.482 and —0.522, respec-
tively. The surface stress of this latter structure should
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read —0.502 for BH. Also, our calculation with SW for
the V'3 X V/3 structures do not agree with that of Ref. 27.
Li, Chen, Allen, and Broughton reported 1.53 and 1.82
eV/1X1 cell for the surface energy of the V3XV3 H,
and T, structures;?’ our numbers are 1.12 and 1.61.

Only T2 predicts that all adatom structures are stable
as they should be; however, the relative energies are
strongly underestimated. With BH, DOD, and T3 all
adatom structures are unstable. PTHT predicts that only
the H, structures are stable. For SW, only the V'3X V'3
H, surface is stable. With the exception of DOD, all po-
tentials incorrectly favor close packing of adatoms.

According to the DFT calculations,’"** in both the T,
and H, structures the three upper atoms surrounding the
adatoms relax laterally inward. In the T, structures, the
adatom is bonded to the three upper atoms and to the
second-layer atom directly below; the bond lengths are
about the same for both types of neighbors. It is 2.47 and
2.49 A in the 2X2 (Ref. 91) and V3 X V3 (Ref. 93) struc-
tures, respectively; the bond angles are about 92° and 56°.
In the H, structures, only the three upper atoms are first
neighbors of the adatom; for the V3X V3 structure the
bond length is 2.55 A and the bond angle is 93°.°> The
inward relaxation of the surface atoms in the T, struc-
tures is predicted by all potentials while in the H; struc-
tures, only BH, SW, T2, and T3 predict such relaxation.
BH and, in particular, SW overestimate significantly the
separation between the adatoms and their neighbors in
the T, structures. For T2, the atomic displacements in
the structures are in reasonable agreement with those ob-
tained in the DFT calculations. In general, for all poten-
tials, the structural parameters of the T, structures are
qualitatively in better agreement with the DFT results
than those of the H; structures. Consequently, because
the surface stress is strongly influenced by the atomic dis-
placements it is qualitatively better described in the T,
structures. These adatom structures are under a strong
tensile stress, which is consistent with the inward relaxa-
tion of the three surface atoms surrounding the adatom.
The greater this relaxation, the larger the positive surface
stress.

For all potentials with the exception of T2, the energy
gain resulting from the reduction of the dangling bond
density is not enough to overcome the strain energy
caused primarily by the very small bond angles (Fig. 4).
For T2, because the angular function is more flexible and
the bond bending forces are small (see Sec. II), it is able
to give a better description of the energetics of these sur-
faces than the other potentials. Even for those cases
where the relative energy of the various adatom struc-
tures is positive, the adsorption energy is negative as it
should be.

4. Si(111) V'3XV 3-vacancy model

For the vacancy model of the V'3 X V'3 surface, all po-
tentials correctly predict that this structure is not stable.
The vacancy formation energy (with respect to the ideal
1 X1 surface) is however significantly overestimated by all
potentials with the exception of SW, which predicts a
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value of 0.24 eV /vacancy compared to the DFT value of
0.42 eV/vacancy. The DFT calculation predicts a
moderate inward relaxation (toward the vacancy) of the
second-layer atoms and a large compression of the first
interlayer spacing. No value for the surface stress is
available. With BH and SW, the structure is under a
strong tensile stress reflecting the large inward relaxation
of the second-layer atoms which results in a large bond
stretching. On the other hand, PTHT, DOD, and T3
give a compressive stress which also reflects the outward
relaxation in this case. Finally, consistent with the lack
of relaxation, T2 gives a very small stress. For a com-
plete discussion of the vacancy structure the reader is
directed to Refs. 37 and 148.

5. Si(111)(2n +1)X(2n +1)

The DAS model for the Si(111)(2n +1) X (2n +1) sur-
face is well known, and the reader is directed to Refs.
141, 144, and 145 for a complete description of the struc-
ture. This surface contains several structural units,
which are the dimers along the domain walls, T, adatoms
with a local 2 X2 symmetry, stacking faults, and corner
holes (an extended surface vacancy). The surface energy
is the result of a balance between the individual contribu-
tions of these units and possibly the interactions between
them. This surface is obviously the most stringent test
for the potentials.

Our results, presented in Table VIII, show that only T2
predicts that the 7X7 DAS structure is stable with
respect to the ideal 1X 1 surface. Furthermore, it is the
ground state of the (111) surface at least compared with
the structures considered so far. However, as before, the
energy is underestimated. Considering the fact that it is
also only T2 which predicts that the 2X2 T, structure is
stable, we conclude that the adatoms play a major role in
determining the energy of the 7X 7 surface. To confirm
this, we have also calculated the energy of the same sur-
face but without the adatoms, the so-called DS model.®’
The relative energy of this structure is indeed very small;
it is negative in the case of PTHT, DOD, and T2. The
energy difference between the DAS and DS structures
should give the contribution of the adatoms to the total
energy of the DAS structure if their interaction with the
other structural units is negligible. This energy difference
is 1.47, 1.25, 1.92, 1.69, —0.48, and 2.39 eV/adatom for
PTHT, BH, SW, DOD, T2, and T3, respectively. Except
for PTHT, this energy compares fairly well with the con-
tribution of the adatoms to the 2X2 T, structure (0.93,
1.38, 2.05, 1.82, —0.31, 2.54 eV/adatom) indicating
perhaps that the adatoms do not interact (or very little)
with the other features on the surface. Note that the en-
ergies of the faulted and unfaulted 2 X2 T, structures are
nearly identical.®>°! In the representation provided by
these potentials, the adatoms play an important role in
determining the energy of the 7X7 surface. All poten-
tials predict that the 7X7 DAS surface is under tension
in agreement with the estimate of Vanderbilt.?® Consid-
ering the small value of the stress of the corresponding
DS structure, most of the tension is caused by the ada-
toms. Our results obtained with SW and T2 for the 7X7
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DAS surface agree with those of Ref. 27 where the
structural parameters of the optimized structures were
also reported. The investigation of the vibrational spec-
trum of this surface showed that, despite their limita-
tions, these two potentials are able to accurately describe
the z-polarized adatom vibrations.?’

It has been shown that the different (2n +1)X(2n +1)
structures are very close in f:nergy.w’gs'140 For example,
Qian and Chadi, using a tight-binding method, found
that the 7X7 DAS structure is only 0.008 eV/1X1 cell
lower in energy than the 5X5 DAS structure.!*® It is
natural to question whether T2 is able to predict such a
trend and also whether the 7 X7 reconstruction is indeed
the lowest-energy structure. Thus, we have performed
calculations for (2n +1)X(2n +1) DAS and DS struc-
tures with n =1-4. The relative energy and surface
stress for these structures are plotted as a function of n in
Fig. 11. T2 does predict the low energy difference be-
tween the different structures, about 0.1 eV/1X1 cell;
however, contrary to what was previously thought,?’ the
3 X3 DAS structure is the ground state of the Si(111) sur-
face in contradiction with the experimental observation.
The energies of the DS and DAS structures appear to in-
crease linearly with n for n = 2. The surface stress, on the
other hand, decreases with increasing n.

We can estimate the energies of the different surface
structural units in the DS structures by using
Vanderbilt’s model based on noninteracting surface
units.'® 144146 I this model, the surface energy per 1X1
cell of the (2n +1)X(2n +1) DS structures Aypg rela-
tive to that of the relaxed 1X 1 surface p is given by,'®

_n(2n+1)Af+2nAw+Ac
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FIG. 11. Relative energy with respect to the ideal 1X1 sur-
face and surface stress for the Si(111) (2n +1)X(2n +1) DAS
(open circles) and DS (solid circles) structures as a function of n
for the T2 potential.
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where Af =yigaxed. | 4 is the 1X 1 surface faulting en-
ergy; Aw =32d —p is the relative domain wall creation en-
ergy (d is the dimer energy); Ac =c —p is the relative
corner hole energy. Using p =0.702 eV/1 X1 cell, a least
square fit yields Aw = —0.45 eV (d =0.17 eV), Ac =0.37
eV (¢ =1.07 eV), and Af=0.0009 eV. The fact that the
model gives a vanishingly small value for Af (recall that
T2 predicts that Af=0) proves that the assumption of
noninteracting structural units is essentially valid. In
Ref. 146, the parameters used in (8) (obtained from a
combination of DFT and Keating potential calculations)
are Aw=—0.66 eV (d=0.53eV), Ac=1.26 eV (¢ =2.71
eV), and Af=0.06 eV. T2 appears to give too small a
value for the relative corner hole energy.

Similar calculations using the other five potentials
show that the surface energies and stresses of the
(2n +1)X(2n +1) DS and DAS structures decrease with
increasing n. For n =4, the surface energies are already
almost equal to those of the relaxed 1 X1 and the 2X2 T,
structures, respectively. The energies of the DS struc-
tures were also fitted to (8) using p and Af as given in Sec.
VIB I and Table VIII. When Af was left as a free pa-
rameter, the resulting faulting energy was in poor agree-
ment with the actual value. The results obtained with
PTHT, BH, SW, DOD, and T3 are Aw= —0.32, 0.68,
0.34, 0.62, and 0.68 eV and Ac=3.15, 0.82, 0.97, 1.63,
and 1.27 eV. Like T2, PTHT give a negative relative
domain wall creation energy. The other four potentials
give a relative corner hole energy that is in fair agreement
with the result of Ref. 146. These potentials favor large »
because Ac is too high (PTHT) or Aw is positive (BH,
SW, DOD, and T3).

C. Si(110)

Like the (100) and (111) surfaces, the Si(110) surface ex-
hibits various reconstructions;!’! however, in contrast to
the former, very little interest has been paid to this sur-
face. Only the ideal and relaxed 1X1 surfaces are con-
sidered here. No attempt was made to look for recon-
structed structures. The bulk terminated surface is
formed by chains of atoms running parallel to [110]
(chosen as the x direction; the y direction is taken as
[001]). Like the (111) surface, this surface has one dan-
gling bond per surface atom pointing in the (111) direc-
tion. Adjacent atoms along a surface chain have a dan-
gling bond alternating in directions (pointing in the [111]
and [111] directions) and making an angle of +35.3° with
the surface normal [they are all normal to the surface on
the (111) surface]. This surface is modeled with a slab
containing 15 layers of 24 atoms each. The bottom four
layers were held fixed. The surface energy and stresses
are presented in Table IX.

Note that, because they have the same number of dan-
gling bonds per surface atom, the ideal (111) and (110)
1X 1 surfaces have also the same surface energy when it
is expressed in eV/1X1 cell. For the long-range poten-
tials, PTHT and BH, v is slightly different because atoms
in the top layers have slightly different number of neigh-
bors on the two surfaces. The same is true for the surface
stress along [110]. Recall that the surface stress of the
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TABLE IX. Properties of the Si(110) surface. y is the surface energy, Ay the relative energy with
respect to the ideal 1X 1 surface, and o is the lateral surface stress tensor. The x and y directions are

parallel and perpendicular to the surface chains, respectively.

Energies and stresses are given in

eV/1X 1 cell. A is the first interlayer contraction (in %).

PTHT BH SwW DOD T2 T3
Ideal 1X1
Y 0.885 1.043 1.158 0.806 0.707 1.026
O xx 2.170 0.934 0 0.140 0.625 —0.074
o, 1.273 0.714 0 0.385 0.468 0.179
Relaxed 1X1
Ay —0.080 —0.018 0 —0.068 —0.009 —0.035
O ox —1.627 0.063 0 —1.360 0.018 —1.027
oy —1.091 —0.066 0 —0.634 0.063 —0.612
—5.3 —34 0 —6.6 —2.4 —4.3

(111) 1X 1 surface is isotropic. As for the (100) and (111)
surfaces, PTHT, DOD, and T3 give a larger relaxation
energy (which correlates more or less with the first inter-
layer contraction) than BH and T2. As discussed earlier,
there is no relaxation with SW. Unlike the (100) and
(111) surfaces where relaxation involved only normal dis-
placements of atoms (mainly of the top two layers), the
surface atoms of the (110) surface (and to lesser extent
those of the second layer), relax radially inward along the
{111) direction. That is, in addition to the inward dis-
placement normal to the surface, there is a smaller dis-
placement in the plane of the surface and perpendicular
to the chains. This lateral displacement results in a shor-
tening and an increase of the bond lengths and angles in
the chains, respectively (2.29 A and 114° for PTHT and
T3, 2.31 A and 112° for BH and T2, and 2.26 A and 116°
for DOD). The trend in surface energy for the 1X1 sur-
faces is y(111) <y(110) <y(100) with all potentials. The
same trend is obtained for the relaxation energy, Ay,
with PTHT, DOD, and T3. With BH and T2 it is
Ay(100) < Ay(110) <Ay(111) and Ay(110)<Ay(111)
< Ay(100), respectively. Note that for this comparison
these energies were first converted to the true units of
surface energy, e.g., eV/A 2.

VII. OTHER POTENTIALS

Recently, several potentials have been proposed. These
models, either inspired by earlier attempts or using
different schemes, were intended to overcome the limita-
tions of their precursors, i.e., the potentials considered in
this work. It is thus worthwhile to review some of them.
We should also mention a class of total-energy function-
als for semiconductors that are based on an approximate
quantum-mechanical analysis.?> !>

A. Kaxiras and Pandey

Kaxiras and Pandey?! constructed a potential, very
similar in form to BH, in order to specifically simulate
processes in the bulk diamond lattice. The potential was
fitted to the entire energy surface of atomic exchange ob-
tained from an accurate DFT calculation.!’> It correctly
predicts the static properties of the perfect diamond lat-

tice and reproduces the energy of the concerted exchange
path to better than 0.1 eV. However, the energies of bulk
point defects in their unrelaxed configuration appear to
be too low. For the high-coordination crystal phases, the
results are qualitatively similar to those obtained with
BH. The potential was not tested for surfaces and clus-
ters but it is expected that its predictions would also be
similar to those of BH. Because the potential describes a
large range of local distortions from the perfect
tetrahedral configuration very well, it should be useful in
simulations of systems such as amorphous structures
where the coordination remains predominantly fourfold.

B. Mistriotis, Flytzanis, and Farantos

Mistriotis, Flytzanis, and Farantos!® modified the SW
potential in order to correctly describe clusters with more
than six atoms. The angular dependence of the three-
body term was modified, and they added a four-body
term. The modified potential has not been extensively
characterized. It has not been tested for surfaces. It pre-
dicts T, to be about 2050 K and the high-density crystal
phases are not well described.

C. Khor and Das Sarma

Following Abell'>® and then Tersoff,®'2 Khor and Das
Sarma'® developed a universal interatomic potential for
tetrahedrally bonded semiconductors. The original po-
tential for silicon gives an excellent description of the
static properties of cubic diamond as well as the other
high-density crystal phases. The potential had to be
somewhat extended to correctly treat surfaces.'* The
bond-bending term was modified to deal with the larger
angular distortions from the tetrahedral angle encoun-
tered on the various (111) surfaces. Also, because the
bonds of a given atom can be of a different nature, they
had to fix, in an ad hoc manner, the value of the effective
coordination number and assumed that the character of
the bonds remains unchanged in the course of the simula-
tion. The modified potential gave a good description of
the various (111) surfaces including the adatom struc-
tures and the Pandey m-bonded chain model for the 2 X 1
surface. The results for the (100) surface are similar to
those predicted by T2. Yet another modification of the
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bond-bending term had to be made in order to successful-
ly model the (111) (2n +1)X(2n +1) DAS surfaces.'® It
is not clear how these modifications affect properties pre-
viously determined. The original potential and its two
modifications are in fact three different potentials just as
are T2 and T3. Finally, these potentials have not been
tested for bulk point defects and small clusters.

D. Bolding and Andersen

Bolding and Andersen®® developed a potential that is a
generalization of the Tersoff potential. The attractive
term is expressed as a sum of o- and 7-bonding terms.
Interactions up to five-body are included in the potential.
The functional form is complicated and there are over 30
parameters in this potential. The fitting data base was
very large and included the static properties of the cubic
diamond phase, the fact that the first pressure-induced
phase transformation from cubic diamond is to the S-tin
phase, and finally the energies and geometries of global
and local minima for clusters of 2—10 atoms. For small
clusters, this potential generates a surface that has most
of the minima (global and local) predicted by the ab initio
calculations. However, there is not, in general, a one-to-
one correspondence between the minima. The ground-
state structures are predicted to have energies that are in
excellent agreement with those of quantum-mechanical
calculations. The static properties of cubic diamond sil-
icon are well described but the potential fails to predict
the negative Cauchy discrepancy. For bulk point defects,
only the vacancy is predicted to have a formation energy
in good agreement with the DFT results. The energies of
the interstitials, in particular the tetrahedral interstitial,
are underestimated. The (111) 2X 1 surface is well de-
scribed. For the adatom structures of the (111) surface,
this potential predicts results that are qualitatively simi-
lar to those obtained with T2. However, unlike T2, it
predicts that the (111) 7X7 DAS surface is unstable with
respect to the ideal (111) surface. Finally, for the (100)
surface, the predictions are similar to those of T3.

E. Thermodynamic interatomic force field

Chelikowsky, Phillips, Kamal, and Strauss!® developed
an interatomic potential similar in form to Tersoff’s. The
motivation for constructing this potential was to study
the metallic to covalent transition that occurs in clusters
when the cluster size reaches a critical size. The angular
dependence of the bond-bending forces was intended to
describe such a transition. The potential describes the
perfect diamond structure and the high-density po-
lymorphs of silicon very well. To model clusters, it was
found necessary to introduce a so-called dangling-bond
vector which describes the transfer of bond strength from
a dangling bond to back bonds. The energies of Si, clus-
ters with n <10 are, however, still underestimated. Also,
the ground-state structures are, in general, not correct,
e.g., for n =3,4, and 6. The authors predict that their po-
tential should be more useful for n >10. The potential
was not tested for bulk point defects and for surfaces.

H. BALAMANE, T. HALICIOGLU, AND W. A. TILLER 46

F. Modified embedded-atom method

Baskes, Nelson, and Wright!! proposed a potential
based on the embedded-atom method.* The modification
consisted of the introduction of an angular dependence in
the host electron density. This was necessary for an ade-
quate description of the bond-bending forces in the dia-
mond cubic structure. This potential was extensively
tested by its authors. It gives a fit to the energies of the
high-density polymorphs comparable to some of the po-
tentials considered here. It describes exactly the static
properties of cubic diamond. In particular, unlike most
other potentials it does predict the negative Cauchy
discrepancy. It also provides a fair description of bulk
point defects (in particular the vacancy); however, it gives
a high value for the energy of the intrinsic stacking fault
in silicon. In general, surfaces are poorly described. The
potential predicts an outward relaxation of the surface
layer for all surfaces. The description of small clusters is
in general poor.

VIII. DISCUSSIONS AND CONCLUSIONS

We have performed extensive calculations on clusters,
bulk phases, and surfaces using the PTHT, BH, SW,
DOD, T2, and T3 potentials for silicon. In general, no
potential is able to model properly all the equilibrium
structures and energies of small Si,(n =2-6) clusters.
More importantly, they all predict many spurious mini-
ma on the potential energy surface of these microclusters.
The potentials do, however, predict, like the ab initio cal-
culations, that the structures derived from crystal frag-
ments are not energetically favorable even though the po-
tentials were built from crystal data. T2 gives the best
overall description of these small clusters.

In general with the exception of the Dodson potential,
the potentials do not accurately describe the energies of
the high-pressure bulk phases. A two-dimensional struc-
ture with hexagonal symmetry is predicted by PTHT as
the most stable structure instead of the diamond cubic
phase. Only T3 correctly predicts the first pressure-
induced phase transformation from diamond cubic to the
B-tin phase with transition pressure and volumes which
are in excellent agreement with experiment. SW, T3, and
to a lesser extent DOD, describe the elastic properties
well. T2 also does a good job with the exception of the
vanishingly small value of C,. BH gives the best
description of the phonon frequencies even though it
overestimates the elastic constants.

T3, SW, DOD, T2, and BH, in that order, give a fair
overall description of the structures and energetics of in-
trinsic defects. They should be useful in studies of ex-
tended defects. PTHT underestimates strongly the ener-
gies of these defects. T2 and BH also underestimates
significantly the energies of the split vacancy and of the
tetrahedral interstitial, respectively. Only BH and SW
correctly predict the apparently now more accepted in-
ward relaxation of the neighboring atoms surrounding
the vacancy. SW yields a migration energy for the vacan-
cy which is in excellent agreement with experiment.

BH, SW, T3, and to a lesser extent T2 should also be
useful in large-scale simulations involving the (100) sur-
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face because their predictions of its energetics and struc-
tures are in good agreement with those of the first-
principles calculations. On the other hand, none of the
potentials is able to model the various reconstructions of
the (111) surface. None of them model the 2X 1 recon-
struction of the (111) surface correctly because of their
inability to model 7-bonding which stabilizes this recon-
struction. PTHT predicts that this reconstruction is
stable with respect to the ideal 1X1 surface but with a
relative energy that is too small. T2 predicts that the
ground state for the (111) surface is the 3X3 DAS struc-
ture instead of the 7X7 DAS structure as previously
thought. As for the microclusters, T2 gives perhaps the
best overall description of the (111) surface.

BH and SW tend to overestimate bond lengths. In fact
these two potentials, along with T3, have, in general,
similar predictions, and so do the PTHT and Dodson po-
tentials. These similar behaviors correlate with similar
angular variations of the three-body potentials, in form
not necessarily in strength. The difference in strength is
somewhat compensated for by an opposite difference in
strength of the two-body potentials. T2 is dissimilar pre-
cisely because its three-body potential differs markedly
from that of the others. That these similarities exist is
quite remarkable since, except for SW and BH, these po-
tentials are quite different in schemes, functional forms,
and range of interactions. This attests to the importance
of the bond-bending forces in these low-order potentials.
Besides the fact that they do not model m-bonding, the
main reason behind their inability to be more transferable
is an inadequate description of the angular forces. They
either favor only small angular distortions around the
tetrahedral angle (BH and SW, around 127° for T3) or
configurations where bond angles are much larger than
the tetrahedral angle (PTHT and DOD). They all penal-
ize, with the exception of T2, angles smaller than about
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90° when in fact many structures in silicon involve such
small angles, e.g., microclusters and some (111) surfaces.
The angular function of T2 is more flexible. It appears
that each type of environment, i.e., bulk, clusters, and
perhaps surfaces, needs its own angular function. The
combined function should then be oscillatory in nature
and would be determined by an appropriate selection of
relevant structures and energies in the fitting database.
Bolding and Andersen did just that.?® The resulting po-
tential models clusters rather well and gives a description
of bulk properties comparable to that of some of the po-
tentials considered here. However, it still failed to model
properly (111) surfaces with the exception of the 2X1
reconstruction despite the fact interactions up to five-
body were included in the potential. This leads us to be-
lieve that it is perhaps not possible to construct a totally
global or transferrable potential.

In conclusion, none of the potentials considered in this
work appear to be superior to the others. Each has its
strengths and limitations. None is totally transferrable.
Despite their shortcomings, we do believe that, some of
these potentials will be useful in large-scale simulations of
materials-related problems as they can given insights into
phenomena which are otherwise intractable to investigate
either experimentally or with first principles methods.
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