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Magnons in spin glasses: The high-field limit
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A study is made of the high-field behavior of the linearized magnetic excitations (magnons) in spin

glasses. A +J Heisenberg spin Hamiltonian is postulated, and the applied magnetic field is assumed to

be sufficiently strong to ensure alignment of the ground state. Numerical calculations of the density of
states, the localization indices, and the zero-temperature dynamic structure factor are carried out for a

simple-cubic lattice with nearest-neighbor interactions and the results compared with the predictions of
a self-consistent theory based on a coherent-exchange approximation. A comparison is also made with

the corresponding results obtained in zero applied field.

I. INTRODUCTION

Determining the nature of the ground state and the
low-lying excitations in spin glasses continues to be a
challenging problem. The high degeneracy of the ground
state in zero field precludes standard theoretical treat-
ments analogous to those developed for systems with
long-range ferromagnetic or antiferromagnetic order.
Despite considerable effort on the part of many investiga-
tors, there has yet to emerge a satisfactory microscopic
theory that is applicable to the broad class of materials
showing spin glass behavior.

The purpose of this paper is to present the results of a
study of the excitations in a model spin glass in the high-
field limit. By taking the field large enough to ensure
(virtually} complete alignment of the ground state, one
has a system intermediate in complexity between the spin
glass in zero field and the ideal ferromagnet. A study of
the high-field excitations in spin glasses has been carried
out by Shender. ' He utilized the connection between the
spin wave stiffness and the conductivity of an equivalent
network, and an effective-medium theory for the latter, to
predict the variation of the stiffness with the degree of
disorder in two- and three-dimensional lattices. In this
paper, the analysis of Shender is extended in two ways.
First, numerical techniques are used to calculate the mag-
non density of states, the localization indices for the mag-
non modes, and the zero-temperature dynamic structure
factor. Second, the results obtained from the simulation
studies are compared with the predictions of a theory
based on a coherent-exchange approximation, which
reduces to the effective-medium theory of Ref. 1 in an ap-
propriate limit.

The calculations are carried out for the +J model of a
Heisenberg spin glass, where the Hamiltonian is written

HgS~' g' J;—SS. . — .

j (i j)

Here H is the applied field (in units of gps), and the

prime signifies that the summation is limited to nearest-
neighbor pairs. The exchange interaction J; takes on the
values J ( &0) with probability 1 —c and the value —J
with probability c, there being no correlation between
different bonds. (Note that with this choice of sign, c =0
describes the ideal ferromagnet. ) Detailed results are
presented for the simple cubic lattice. Corresponding re-
sults for one- and two-dimensional arrays will be present-
ed elsewhere.

When H »J, the ground state of (1) is effectively one
of complete alignment, i.e., (S') =S, S being the magni-
tude of the spin. In this limit, the linearized equation of
motion for the operator S+ (=S"+iSs) has the form
(fi= 1)

i dSI~ Idt =HSJ++Sg'Jjk(SJ+ —Sk+) .
k

(2)

Equation (2), together with the aforementioned distribu-
tion for J;,

P(JJ.)=(1—c)5(JJ.—J)+c5(JJ+J), (3)

forms the basis for the analysis in the rest of the paper.
With the assumption of a harmonic time dependence
S+ -exp( i cot ) one ob—tains the set of linear equations

(to H)a =Sg'J k(—a —ak),
k

(4)

where the Holstein-Primakoff transformation has been
used to replace S+ with the boson annihilation operator
a, . The eigenvectors of (4) characterize the spatial prop-
erties of the linear magnetic excitations or magnons,
whereas the corresponding eigenvalues are the magnon
energies.

Two global quantities of interest are obtained from
solving Eq. (4}: the distribution of eigenvalues, or the
magnon density of states, and the localization indices,
which are sometimes referred to as the inverse participa-
tion ratios. The latter are defined in terms of the eigen-
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vectors P", v designating the eigenstate, by means of
equation

(5)

For finite arrays of N spins, L,—N ' for extended states,
whereas for localized states L,, ' is a measure of the num-
ber of sites on which the mode has significant amplitude.

The zero-temperature dynamic structure factor, which
is denoted by S(Q,E), is another measure of the effect of
disorder on the spin dynamics. Although S(Q,E) can be
expressed in terms of the eigenvectors and eigenvalues, a
more direct approach, which avoids diagonalization and
thus is applicable to larger arrays of spins, is to work
with correlation functions G (Q, t) which are defined
b 4 —6

Figure 1 is a histogram showing the distribution of the
magnon energies. For each value of c, the data are from
five configurations of an 8X8X8 array with periodic
boundary conditions. Particularly noteworthy is the shift
in the distribution to lower energies with increasing c.
When c =0, the lower edge of the magnon band is at the

C=0.05

G (Q, t) =g (0 fa (t)ak ~0) exp( i Q —rk ),
k

where ~0) is the vacuum state, Q denotes a vector in the
Brillouin zone of the lattice of spins, and rk designates
the position of the kth spin. The 6 have the equation of
motion

i dG (Q, t)/dt=HG (Q, t)+g'Jp[GJ(Q, t) —Gk(Q, t) j
k

(7)

with the initial condition Gi(Q, O+ ) =exp( i Q r, ).—The
structure factor is then given by an expression of the
form

S(Q,E)= 2/(Nm)0 j—sin(Et) Im +exp(iQ r~)

(0
Cl0

0

Z

C=O. 10

C=0.20

C=0.30

XG, (Q, t} dt,

(8)

where Im denotes imaginary part. In applying the
method, one integrates the equations of motion and then
calculates the structure factor from Eq. (8). In practice,
an exponential cutoff factor exp( —at) is introduced in
the integrand, and the integral is evaluated to a time T
where aT»1. For Lorentzian line shapes, the cutoff
factor is equivalent to an "instrumental" width equal to

C=0.40

C=0.50

II. NUMERICAL RESULTS

In this section, results are presented for the magnon
density of states, the localization indices, and the zero-
temperature dynamic structure factor for the simple cu-
bic lattice in the high-field limit. The systems are charac-
terized by the Hamiltonian (1) with the nearest-neighbor
interactions having the distribution given in Eq. (3). In
all cases J =S =1, so that the width of the magnon band
when c =0 is equal to 12. Results are reported for
c =0.05, 0.10, 0.20, 0.30, 0.40, and 0.50. (The results for
c & 0.5 are obtained from those with c (0.5, by reflecting
about the point E H=O.}—

-8

FIG. 1. Distribution of magnon energies for various values of
c. Data are from five configurations of an 8X8X8 array.
J=S=1. The vertical scale is between 0 and 80, except for
c =0.05, where the range is between 0 and 100. In this and sub-

sequent figures E denotes the energy and H is the magnetic field

in units of gp~.
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point E =H; when c =1, the upper edge of the band is at
E =H, and when c =0.50, the band is distributed

symmetrically (in the thermodynamic limit) about E =H,
extending from E =H —8 to H +8.

Figure 2 shows the distribution of localization indices
for single configurations of 8X8X8 arrays. For c =0.05
almost all modes are (quasi)delocalized; localized modes

are present only at the bottom of the band. With increas-
ing disorder, localized modes appear also at the top of the
band, until at c =0.50, they are (approximately) uniform-
ly distributed about the point E =H.

Figure 3 shows the results for the zero-temperature dy-

C = 0.05

C - 0.05

C = 0.10

C ~ 0.10

C 0.20

C = 0.30

C ~ 0.30

C = 0.40

C ~ 0.40

~W ~\

C = 0.50

C -050

0

FIG. 2. Localization indices L„ for various values of c. Data
are from a single configuration of an 8 X 8 X 8 array. Similar re-
sults are obtained with other configurations. J=S=1. The
vertical scale is between 0 and 0.25, except for c =0.50, where
the range is between 0 and 0.40.

20

E-H
FIG. 3. Zero-temperature dynamic structure factor for vari-

ous values of c. Viewed from right to left, the four curves corre-
spond to Q=(n. /8)(n, n, n) with n =8, 6, 4, and 2. Data are
from a single configuration of a 16X16X16array. All curves
have the same area and are calculated from Eq. (7) with the
cutoff factor exp( —0.5t). J=S=1. In all panels, the vertical
scale is between 0 and 0.6.
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namic structure factor. The data were obtained from sin-
gle configurations of 16X16X16 arrays. The curves
were calculated using Eq. (8) with a=0.5 in the exponen-
tial cutoff factor. From right to left, the curves are asso-
ciated with the wave vectors Q=(m/8)(n, n, n) with
n =8, 6, 4, and 2. With increasing disorder, the peaks in
the dynamic structure factor broaden and shift to lower
energy. A tail develops on the low-energy side which
evolves into a satellite peak. At e =0.50, the structure
factors associated with the larger values of Q (n =4, 6,
and 8) show significant spectral weight over the range
—8&E —H (8, whereas the structure factor for the
smallest Q (n =2) is peaked at E =H. This behavior is
an example of a "kinematic effect." Since the total spin
QS commutes with the Heisenberg exchange interac-
tion, the zero-temperature dynamic structure factor asso-
ciated with the center of the zone S(O,E) consists of a 5
function centered a the point E =H. For Q=O, the 5
function becomes a narrow peak.

& 6,(E —a) & =x-'y& 6(E —a, Q) &

Q

(13)

and

& 6, (E —a) & =+-'y) ~&6(E —a, Q) &

Q

=&6,(E —a) &

—[(E a) &
—G, (E H) &

—1]/J—,sz .

(14)

In the limit E~H, which is relevant for the character-
ization of the long-wavelength excitations (i.e., those with
Q= 0), one has f (0)= —1/J, Sz so that Eq. (11)becomes

III. COHERENT-EXCHANGE APPROXIMATION
f dj P(j)(j —J, )[J,(z/2 —1)+j) =0, (15)

This section is devoted to a presentation of the results
for the magnon density of states and the zero-
temperature dynamic structure factor that are obtained
using a coherent-exchange approximation. The
coherent-exchange approximation, which is a variation of
the coherent-potential approximation for random alloys,
was used by Tahir-Kheli in his treatment of dilute fer-
romagnets and antiferromagnets. In this approximation,
the configurational average of the zero-temperature
Green's function is written

p(E) = —( I /n ) Im& 60(E H+ i E) &—

and

S(Q,E)= —(1/m) Im& 6 (E H+iE, Q) &—, (17)

which is equivalent to the effective-medium approxima-
tion of Ref. 1.

Having obtained J, from the solution to Eq. (11), the
density of states p(E) and the zero-temperature dynamic
structure factor are given by

& 6(E —H, Q) &
= [E H J,(E —K)Sz—(1—yo—)]

where z is the number of nearest neighbors (interactions
are assumed to be only between nearest neighbors) and

y& has the form

respectively.
The calculation of the density of states and the dynam-

ic structure factor entails solving Eq. (11) for J,(E H)—
using the distribution displayed in Eq. (3). In carrying
out the numerical analysis, it has proven convenient to
use an approximate expression for the Green's function.
In the case of no disorder, & 60 & has the form

& 60(E H) & =(8/M)(—E H —0.5—
y=z 'g'exp[iQ (ri —rk)],

k

(10) —
[ [(E H)/M]—

(E H)/M]'i —), — (18)

f dj P (j )(j —J, ) /[1 —2(j —J, )Sf (E —H) ]=0,

~here I'(j) denotes the distribution of nearest-neighbor
interactions and

f (E H) =
& 60(E H) &

——
& G, (E H)—&, —(12)

with

in which the sum on k is over the z nearest neighbors of
the site j.

The coherent-exchange integral J,(E H) is obtained-
as a solution to the self-consistent equation

where the magnon bandwidth M is equal to 12JS(c =0).
Equation (18), which has been used by Hubbard, is

equivalent to approximating the density of states of a
simple-cubic array by a semicircle. In using (18) in the
coherent-exchange approximation, M is replaced by
12J,S.

Although (18) introduces some error into the results,
particularly at small e, it has the virtue of being a simple
analytic approximation. The alternative, which is to
evaluate & Go & using Eq. (13), involves integration over a
three-dimensional Brillouin zone at each step in achiev-
ing self-consistency, which in itself introduces error and
greatly adds to the complexity of the analysis.

The results for the density of states and the dynamic
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structure actor af that are obtained with the coherent-

exchange approximation are shown in Figs. 4 an 5, re-

spective y.1 . All curves were calculated wit mE =0.5,
x —0.5t} thath' h orresponds to the cutoff factor exp —.

was used in the numerical evaluation of S(Q,E) d1S-

cussed in Sec. II. As will be discussed in detail in the
next section, there is qualitative and, in some instances,

t t greement between the simulation data and
the predictions of the coherent-exchange approximation.

( (
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FIG. 4. Magnon density of states according to the coherent-
exchange approximation for various value1 es of c. All curves
have the same area and are calculated from ~~.~~. (16) with m=0. 5

and J=S=1. The curves are to be compared with the corre-
sponding data displayed in Fig. 1. In a p11 anels the vertical
scale is between 0 and 0.125.

E-H
FIG. 5. Zero-temperature dynamic structure factor accord-

ing to the coherent-exchange approximation for various values
of c. Viewed from right to left, the four curves correspond to
Q=(vr/8)(n, n, n) with n =8, 6, 4, and 2. All curves have the
same area and are calculated from Eq. 17 with c.=0.5 and
J=S=1. The curves are to be compared with the correspond-
ing curves displayed in Fig. 3. In all panels the vertical scale is
between 0 and 0.6.
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IV. DISCUSSION

As noted, there is good qualitative agreement between
the predictions of the coherent-exchange approximation
and the numerical data. The coherent exchange approxi-
mation accounts reasonably well for the changes in the
density of states, including the shifts in the upper and
lower band edges with increasing disorder. The agree-
ment between the theory and simulation is particularly
impressive for the dynamic structure factor, extending
even to c =0.50, where the disorder is at a maximum.

A particularly interesting feature of the figure display-
ing the localization indices (Fig. 2) is the appearance of
localized modes in the neighborhood of E —H =0 for c
as small as 0.05. Such a result is predicted by the
coherent-exchange approximation in the effective-
medium limit. With the distribution given by Eq. (3),
Eq. (11) yields the solution'

J,(E H=0)—/J =
I 3(1—2c)+ [9(1—2c) —8 j'i

I /4,

(19)

for z =6, and 0 c 0.50. For c & —' —2' /3=0. 029. . . ,

J,(0) is complex, becoming equal to i /2'~ J when
c =0.50. The presence of an imaginary part in J,(0) is
connected with the appearance of localized modes in the
neighborhood of E —H=0. ' %ith larger e the long-
wavelength modes become increasingly damped. At
c =0.50 the modes are entirely overdamped with the
spectral weight centered at E —H =0. Note that the be-
havior of J, when E —H =0 contrasts with the corre-
sponding behavior when ~E H~ ))J. In—this limit, J, is
equal to the mean value of the exchange interaction

f dj P(j)j which is (1 2c)Jfor the—+Jmodel.
In Figs. 6, 7, and 8, data are presented for the density

of states, the localization indices, and the zero-
temperature dynamic structure factor in zero field over
the same parameter ranges as in Figs. 1 —3. The calcula-
tions were carried out with ground-state configurations
obtained by the method of simulated quenching described
in Refs. 3 and 6. Noticeable in Fig. 6 is the shift in the ei-

genvalue distribution to lower energy with increasing dis-
order. Figure 7 shows the corresponding behavior of the
localization indices. Surprisingly, for weak disorder
c &0.30 the modes near zero are the more localized,
whereas for strong disorder c ~0.30 the localized modes
are at the top of the band.

The behavior of the dynamic structure factor shown in
Fig. 8 reveals that the magnon peaks broaden and shift
to lower energies with increasing disorder. For c 0.20,
the peaks are significantly distorted with low-energy tails.
The apparent peaks at E=O for Q=(~/8)(1, 1, 1) are an
artifact of the simulation method which forces S(Q,O} to
be zero, with the falloff occurring over an interval equal
to a, the parameter in the cutoff factor in Eq. (8}. Be-
cause of this it is concluded that for c ~0.3, the low-
frequency modes are delocalized but nonpropagating
whereas the high-frequency modes are strongly localized.

To summarize, the most significant result to emerge
from this study is the finding that the coherent-exchange

c~pp5
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C R 0.40
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12

FIG. 6. Distribution of magnon modes in zero field for vari-
ous values of c. Other parameters the same as in Fig. 1. The
vertical scale is between 0 and 100, except for c =0.05, where
the range is between 0 and 120.

approximation gives a good account of the distribution of
magnon modes and the zero-temperature dynamic struc-
ture factor of a spin glass in the high-field limit. Al-
though the results were obtained for the +J model, one
expects equal success for other distributions of nearest-
neighbor exchange integrals (e.g., Gaussian). It should be
noted that the use of the coherent-exchange approxima-
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tion requires a ferromagnetic (or antiferromagnetic}
ground state. Thus, it cannot be applied to the spin glass
in zero field. It remains a challenge to develop an
equivalent theory fro the zero-field excitations in Heisen-
berg spin glasses. Finally, it should be stressed that care
should be taken in applying the coherent-exchange
theory to real materials. The approach assumes no corre-
lation between different bonds, whereas in most spin

glasses, e.g., Eu& „Sr S, a disorder is introduced by a
random doping of impurities, leading to random site dis-

order as opposed to random bond disorder. For such sys-

tems, the predictions of the theory can only be expected
to be qualitatively correct.
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C = 0.10
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C 0.20
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C =0.40

C =0.50
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~ ~

0 i0
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20

0 12

FIG. 7. Localization indices L in zero field for various
values of c. Other parameters the same as in Fig. 2. In all
panels, the vertical scale is between 0 and 0.10.

FIG. 8. Zero-temperature dynamic structure factor in zero
field for various values of c. Viewed from right to left, the four
curves correspond to Q=(m/8)(n, n, n) with n =8, 6, 4, and 2.
Other parameters the same as in Fig. 3. In all panels, the verti-
cal scale is between 0 and 0.6.



230 I. AVGIN, D. L. HUBER, AND W. Y. CHING

ACKNOWLEDGMENTS

One of us (DLH) would like to thank Professor E. F.
Shender for stimulating his interest in this problem.

Computer time on the Cray X-MP was provided by the
Office of Basic Energy Sciences of the Department of En-
ergy. Additional support was provided by the National
Science Foundation.

E. F. Shender, J. Phys. C 11,L423 (1978).
~A. Ghazali, P. Lallernand, and H. T. Diep, Physica 134A, 628

(1986).
3L. R. Walker and R. E. Walstedt, Phys. Rev. B 22, 3816 (1980).
4R. Alben and M. F. Thorpe, J. Phys. C 8, L275 (1975).
5M. F. Thorpe and R. Alben, J. Phys. C 9, 2555 (1976).

W. Y. Ching, D. L. Huber, and K. M. Leung, Phys. Rev. B 21,
3708 (1980).

7R. A. Tahir-Kheli, Phys. Rev. B 6, 2808; 6, 2826 (1972).
J. Hubbard, Proc. R. Soc. London Ser. A 281, 401 (1964).
W. Y. Ching and D. L. Huber, Phys. Rev. B 42, 493 (1990).


