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This paper presents a band theory of impurity superlattices that takes into account the atomicity of
impurity charges by using a Hamiltonian which is a functional of the probability distribution of donor

and acceptor impurities. In this theory, subbands are generated from the symmetry breaking caused by

the presence of impurities. Subband structure is determined by means of a canonical transformation.

The analysis of electron-photon coupling shows that there is a hierarchy of selection rules for the p A

coupling of subbands.

I. INTRODUCTION

Impurity superlattices, referred to by some as doping
superlattices and by others as n-i-p-i crystals, have been
of great interest in recent years. A number of experi-
ments have been reported concerning their optical and
electronic properties. With some minor alterations, the
basic theory used in the explanation of these properties
has been that of Ruden and Dohler. ' This theory is
based upon the effective-mass approximation and the spa-
tial continuity of charges whose potential field does not
produce any interband coupling. The growing
significance of impurity superlattices warrants a more
rigorous analysis of their band structure and the
verification or disproof of various physical pictures
currently postulated in the literature. In this paper, I
present a theory that takes into account the atomicity of
impurity charges. This theory uses a canonical transfor-
mation to systematically disentangle the effects of a
periodic impurity distribution on electronic states. It
shows that the fundamental effect of impurities is to
break the symmetry of the original crystal. Subbands are
formed as a result of this symmetry breaking. The
specific atomic properties of impurities play only a small
role in the superlattice band structure. This result is con-
sistent with observations to date that optical and elec-
tronic properties of impurity superlattices are determined

by geometry, not by specific atomic properties. The
mechanism of symmetry breaking requires reinterpreta-

tion of some of the experimental observations and makes

predictions of other effects.
Section II discusses the Hamiltonian used in the

analysis. This Hamiltonian describes the Coulomb in-
teraction between electrons and impurities, as well as the
coupling between electrons and light. It directly incorpo-
rates the probability distribution of impurities. I make a
basic postulate that various crystal samples are identical,
as far as the Hamiltonian is concerned, if they have the
same probability distribution. I consider two types of
probability distributions: a wavelike (cos and sin ) distri-
bution of n- and p-type impurities within a superlattice
cell (Fig. 1), and a piecewise-constant distribution (Fig.
2). The latter corresponds to the usual geometry dis-
cussed in theoretical papers. The former simplifies the

algebra and the demonstration of subband formation.
This interest in a wavelike probability distribution is not
entirely pedagogical. Such superlattices may have in-
teresting nonlinear properties for frequency up and down
conversion of light.

In this paper I do not discuss the sawtooth superlat-
tices which have 5-function distributions within a super-
lattice cell. The reason is that for the wavelike and
piecewise-constant distributions, the analysis is best car-
ried out in momentum space, using the momentum Bloch
functions. For the sawtooth superlattices, the analysis
should be carried out in ordinary space.

In the coupling of electrons to impurities, I assume
that charges are screened and that the potential is
Yukawa-type with an inverse screening length q, . The
screening wave vector q, is extremely important, since it
sets up the energy scale for various subband shifts. Al-

though it is desirable to determine q, self-consistently, us-

ing the subband structure in the Coulomb scattering of
electrons, I do not attempt this laborious task in the
present paper, but assume that q, is a predetermined pa-
rameter for a given sample.

Section III discusses the formation of subbands for the
wavelike distribution. As a result of the reduced symme-

try, the original Brillouin zone (BZ) is partitioned into

—A 0

FIG. 1. A wavelike distribution for acceptors (p&) and

donors (pD ).
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H, is the Bloch Hamiltonian with the periodic crystal po-
tential V(x}:

2

H, = fdx P (x) + V(x) P(x)
2m

—3A/4 —A/4 0 A/4 3A/4
= g Ebcbcb

b
(2.2)

FIG. 2. A piecewise-constant-impurity distribution.

2L —1 pieces, where L is an integer given by the ratio of
the modulation wavelength to the lattice constant of the
pure crystal. There are L subbands of an original band in
the superlattice BZ. A subband energy dispersion is
determined essentially by the folding of the original BZ
and the translation of the original energy bands to the su-
perlattice BZ. When the electron-impurity coupling is
rewritten in terms of the superlattice quantum numbers,
one finds that the bands, as well as their subbands, are
coupled. I remove this coupling systematically by means
of a canonical transformation and determine the eigenen-
ergies of the superlattice Hamiltonian to the second order
in the impurity density. Although it may be redundant, I
would like to point out that the discussion of this section
is for those crystals in which an electron has an
indefinitely large mean free path. When the electronic
mean free path is finite, as for actual samples, the forma-
tion of the subband structure depends on the ratio of the
mean free path to the superlattice modulation wave-
length. If this ratio is much larger than 1, subbands will
be observable in the single-particle spectrum of that sam-
ple. If the ratio is less than 1, subbands will not be ob-
servable.

Section IV discusses the electron-photon-coupling
Hamiltonians for the wavelike distribution. In the ap-
proximation in which radiative recoils are neglected, the
linear electron-photon-coupling Hamiltonian exhibits a
hierarchy of selection rules. This differs from the quan-
turn tunneling picture of electron-hole recombination or
creation, in which there is no selection rule. In contrast
to the linear-coupling Hamiltonian, the quadratic
electron-photon-coupling Hamiltonian, which determines
light scattering from a plasma, remains unchanged to the
order to which the canonical transformation is carried
out.

Section V discusses the piecewise-constant-impurity
distribution. Its results differ from Ref. 1 in that in the
present theory, the energy scale for subband separations
is set by the folding of the BZ, and the scale for subband
shifts associated with the Coulomb scattering is set by the
screening length. In the coupling to light, one again en-
counters a hierarchy of selection rules. Some concluding
remarks are given in Sec. VI.

II. HAMILTONIAN

b stands for the Bloch state (n ks ), where n designates the
bands, k the electronic momenta, and s the spins. m is
the ordinary electron mass. Eb is the Bloch energy. g(x)
is the electron-field operator:

g(x)= g Pb(x)cb .
b

(2.3)

fb(x) are the Bloch functions. cb,cb are the anticommut-
ing creation and annihilation operators. H; describes the
coupling between electrons and fixed impurities. For a
given probability distribution of impurities, it is given by

H, = g fdr fdxp (r)p (x)vj(x r)1((—x)

b, b'
rr bb CbCb (2.4)

v (y) =e~z
J J (2.6)

Here e is the electronic charge, q, is the screening wave
vector, and eo is the static dielectric constant. If the im-
purities are singly ionized, then Z is +1 for acceptors
and —1 for donors. H~ is the electromagnetic-field
Hamiltonian

H = QA'co„a„a„.
P

(2.7)

a„,a„are the photon creation and annihilation operators
for the mode p. H, ~ is the electron-photon coupling aris-
ing from p. A:

H, ~= g [gg„cbcb „aH+.c.],
b, b'p

(2.8a)

The subscript j in (2.4) denotes the impurity type:
j= A, D, where A stands for acceptors and D for donors.
p (r) is the probability that a j-type impurity will be
found at r. When p is integrated over the entire volume,
one obtains the total number of the j-type impurities in
the crystal:

fdrp, (r)= V„N, , (2.5}

where N is the impurity density per unit volume.
v (x—r) is the electrostatic potential of the impurity lo-
cated at r. I assume that it is a screened Coulomb poten-
tial

H=H, +H, +H +H, +H, y
. (2.1)

The Hamiltonian that includes the Coulomb interac-
tion between electrons and impurities as well as the cou-
pling to the electromagnetic field may be written as 27Tflc

2
~o ill p&@

1/2

gtb.
' ~ &bie'""a.pub ),mc P (2.8b)

(2.8c)
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where c is the speed of light, p is the momentum opera-
tor, c.„ is the unit polarization vector, q„ is the mode
wave vector, n„ is the index of refraction, and co„ is the
mode frequency. If radiative recoil is neglected,

e
AI. ay. Pbbmc

Pbb
= {b

~ P ~

b'
& =5„5kb P..«) .

(2.9a)

(2.9b)

+dip (q„—q„)a„a„.]cbcb +H c I.
(2.10a)

where

dg'(q) = ', a„a„,A„A„,& b ie'q "lb'
& .

2mc

If radiative recoil is neglected, (2.10b) simplifies to
2

dg (0)= e„a„A„A„5bb'
2mc

(2.10b)

(2.10c)

The coupling Hamiltonian H; contains an average over
the distribution of impurities. It therefore differs from a
conventional impurity Hamiltonian. In the conventiona1
method, one postulates a definite configuration for the
impurities of a crystal sample and evaluates some Hermi-
tian operator for this configuration. At the end of the
calculation, one averages over various configurations to
obtain quantities that are directly compared with experi-
mental observations. Mathematically, the conventional
method corresponds to

H, ~~ describes the electron-photon coupling arising from

A .

H, = g [[dg (q„+q„.)a„a„

p„(r)= + 5(r —r, ), (2.14a)

In contrast, H; of Eq. (2.4), hence H, is an "average"
operator. The commutator of H with a Hermitian opera-
tor generates a proper quantum-mechanical time evolu-
tion while taking into account the randomness in impuri-
ty locations. There are several other reasons to prefer the
present form for H. First, the Hamiltonian is the most
fundamental observable of a physical object, determining
the object's observable states. Self-consistency requires
that if an average is to be performed on observable opera-
tors of a physical system or on their expectation values,
the Hamiltonian must be first on the list. Second, the in-
corporation of impurity distributions into the Hamiltoni-
an is analogous to the Kadanoff transformations of the
renormalization group, which produce appropriate Ham-
iltonians near phase transitions. Third, the use of the
present form for H avoids the difficulties of the
quantum-mechanical interpretation. If various crystal
samples have the same impurity distribution [p~(r)I,
then they are identical as far as the Hamiltonian is con-
cerned. Thus [p, (r)] defines an identity class. One can
determine whether a given sample belongs to this class by
dividing it into several regions and comparing impurity
locations in these regions. If a particular sample belongs
to the class of {p (r)I, then its structure and evolution
are determined by H. Experimental measurements deter-
mine the properties of the eigenstates of H. It does not
matter whether experimental observations are made con-
tinuously on one sample or on many samples, as long as
the samples belong to the same identity class.

Note that H, reduces to the Harniltonian of the con-
ventional method if the impurity configuration is definite.
If, with probability one, the acceptors are located at. . . ,
r„r,+„.. . and the donors at . . . , rd, rd+„. . . , then
their distribution is given by

0= QP, O[C],
C

(2.11) pD(r)= /5(r —r~),
d

(2.14b)

where C denotes a definite configuration, P, is its proba-
bility, and 0 is a Hermitian operator (or its quantum-
mechanical expectation value). The conventional method
is inspired by classical stochastic problems and 0, rather
than 0, is assumed to be the actual physical observable.
0 is compared with experiment even when observations
are continuous and on the same sample, which precludes
an ensemble average like (2.11). Note that the time evo-
1ution of 0 cannot be quantum mechanical, since

and H; becomes

H;= fdxg (x) gv„(x—r, )

+ g vD(x rz) g(x), —(2.14c)

iA' 0= Q P, [
—H[C], 0[C)] .a-

Bt
(2.12)

The right-hand side of (2.12) cannot be represented as the
commutator of 0 with an effective Harniltonian unless

OH=OH, HO=HO . (2.13)

In general, this is not satisfied except for trivial operators.
The difficulty with the meaning of 0 when it is used in
conjunction with continuous observations has been
known for many years. It is discussed, for example, by
Kubo in his classic paper on irreversibility.

( ) y ei(k —G) xy (k G)
6

(2.15)

where G stands for reciprocal lattice vectors. P„are the
momentum Bloch functions with the orthogonality and
completeness relations

which is the conventional impurity-coupling Harniltoni-
an.

It is useful to express H, of Eq. (2.4) in terms of
momentum Bloch functions for later calculations. The
momentum Bloch functions are related to the ordinary
Bloch functions by
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g P„'(k—G)P„(k—G)=5„„,

g p„'(k —G)p„(k—G ') =5GG. .

(2.16a)

(2.16b)

Wn~;n ~
= Wo[C'..«';qo)5~-~, q,

+4„„(k;qo)5q q. q ],
where

(2.22a)

Equations (2.15)—(2.16b) assume that the spin-orbit cou-
pling of the crystal is weak and that the spin wave func-
tions may be separated from the spatial Bloch functions.
Then the spin index becomes degenerate and explicit
references to spin may be omitted. Using (2.15) in (2.4),
one finds

4„„(k;q)=g P„*(k+q—G)P„(k—G) . (2.22b)

Note that 8'0 corresponds to Vo in the theory of Ru-
den and Dohler. ' If one assumes that (2.19) represent a
continuous charge distribution, then the Poisson equation

W„),.„„.= g P„'(k—G)P„.(k' —G')
G,G'

X g PJ(k —k' —G+G ')

V V(r) =—

yields

8mNoe
cos(qo r)

Eo
(2.23a)

X V (k —k' —G+G'), (2.17a)

8m-Noe ~

V(r)= cos(qo r)=2Wocos(qo r),
Ego

(2.23b)

where

V, (Q)= Jdye '~'"u, (y),

P, (Q)= Jdye ' "p, (y)

(2.17b)

(2.17c)

where 8'0 is the amplitude of the potentia1 modulation
and corresponds to Vo of Ref. 1. When the screening is
included, qo is replaced by qo+q, in (2.23b) and Wo be-
comes 8'0

(2.18)

Section III will be concerned with a wavelike impurity
distribution. Let Zg = ZD =1 Ng =Ng) =To and

p„(r)=No[1+cos(qo r)],
pD(r)=NO[1 —cos(qo r)] .

Then 8'bb becomes

W„„.„„=WO g p„'(k —G)p„(k' —G')
G, G'

[4—G —t'+o', q

(2.19a)

(2.19b)

For the screened Coulomb potential of (2.6), Wz„be-
comes

W„),.„,~, = g P'„(k—G)$„.(k' —G')4me

0

g Z, PJ(k k' —G+G—')
J

[(k—k ' —G+ G ') +q,']

III. FORMATION OF SUPERLATTICE SUBBANDS

In the manufacture of impurity superlattices, impurity
concentration is regulated in individual atomic layers.
This means that for the wavelike distribution of (2.19)
there is a positive integer L such that

Lqo=G (3.1)

where Gb is one of the basis vectors of the reciprocal lat-
tice of the pure crystal. Because of the wavelike nature of
the impurity distribution, electronic wave vectors are
defined to modulo qo and the original Brillouin zone is
partitioned into 2L —1 regions. The folding of the origi-
nal energy bands into the region centered at k=O, which
is the superlattice BZ, yields the subbands of the superlat-
tice in the lowest approximation. Thus, there are L sub-
bands associated with each original band. Figure 3 shows
the folding of an original BZ (along the superlattice axis)
and the subband formation for L =2. For L =2, the
origina1 BZ is partitioned into three regions: the center
region, which becomes the superlattice BZ, and the two

where

4~woe'
~o

eo(qo+q, )

+5k —G —k '+G ', —qo] (2.20a)

(2.20b)

L=2

Note that k and k', as well as qo, fall into the first Bril-
louin zone. The delta functions in (2.20a) may be satisfied
only if G=G ': —G /2

0
—q /2

0

/=0

q /2 G /2
0

~k —G —k '+6 ', +q ~GO '~k —k ', +q

Wbb. simplifies to

(2.21) FIG. 3. Folding of the original BZ for L =2. The region
bounded by —qo/2 and qo/2 forms the superlattice BZ. l =0, 1

designate the two subbands.
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side regions, which together form another zone. The
thick line illustrates an arbitrary band energy. Since the
original band energies are periodic in the reciprocal lat-
tice space, E„(k+G)=E„(it), the ends of this curve at
Go/2 and —Go/2 must have the same value. The pieces
of the original curve that are in the central region to be-
gin with form the first subband, which may be labeled
1=0. The pieces that fall into the side regions form the
second subband when they are transported into the cen-
tral region. This second subband may be labeled l = l.
Note that if L is even, there is always one zone that con-
sists of two pieces that are graphically separated but bor-
der the surfaces the old BZ. I must emphasize here the
qualification "graphically. " Although in Fig. 3 the two
regions on the left and right are separated graphically,
they neighbor each other geometrically, because the
boundary points —Go/2 and Go/2 are identical in the
original BZ. If L is odd, the higher zones consist of
pieces that neighbor each other on the graph. Figure 4
shows the partitioning of the original BZ for L =3.
There are five partition regions and three zones. The
three zones may be associated with k=K+q0, k=K, and
k=K —

q0, where KE superlattice BZ. When the original
band energy is folded into the superlattice BZ, one may
label the resulting subbands l =0, l = —1, and /=1.
Thus, for an arbitrary odd L, k is reduced to the superlat-
tice BZ by setting

L=4
4th zone

2nd zone 3rd zone

.:/=2 /=2.:

svperlattice BZ

FIG. 5. The higher-superlattice BZ's for L =4.

the reduction of k may be carried out as follows:

(L —2) ( ( (L —2)k=K+Iqo for — ~I ~

L Lk= K qo 8BZ K qo (3.4a)

+ K+ qo eBz K+ qo for1= —.

The corresponding subbands may be labeled by the in-
tegers

k=K+1q0,

where I is an integer confined to the interval

(L —1) ( ( (L —1)
2

(3.2a)

(3.2b)

(L —2)1=—
2

(L —2) (L —2) L
2

+ 1 7 ~ ~ ~ 7 7 ~

(3.4b)

After the reduction of (3.2a), the quantum numbers be-
come

b=(nlrb. s) . (3.2c)

1 if pe original BZ
0 otherwise . (3.3)

Figure 5 shows the partitioning of the original BZ for
L =4. The zones are indicated on the figure. The reduc-
tion of k in the first three zones may be carried out exact-
ly as above for the case of L =3. In the fourth zone, one
may set k=K+2q0. Note that either K+2qp or K 2qo be-

longs to the original BZ, but not both at the same time.
We may indicate these two possibilities by the following
step function:

The modified quantum numbers are again given by (3.2c),
provided l is given by (3 4b}. In the rest of the discussion,
I will assume that L is odd. Some of the following formu-
las may require modification if L is even. This is dis-
cussed in Appendix A.

In terms of the modified quantum numbers, 8'bb of Eq.
(2.22) becomes

=&., '~o Q I &i, l +i0:«+lqo G}—
6

XQ„(v+(I—1)qo—G)

+&I+ i, i 4.'(~+ lqo G)—
X P„,(~+(1+1)q,—G) I . (3.S)

One may now label as 1=2 the subband associated with
the reduction k=K+2qo. Thus, for an arbitrary even L,

L=3

Let us consider just the first two terms in (2.1}. Let

Hs~=H, +H; .

From (3.5), one finds

0Hsi —g E„I,c„&&cnlz
n, l, a.

(3.6)

—G /2 —q /2 0 q /2
0 0

G /2 where

+ Wo g IN„„,(l;a)c„,+, ,c„,„+H.c.], (3.7a)
n, n', l, x

FIG. 4. The BZ folding for L =3. E„,„=E„(v+Iqo), (3.7b)
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4„„.(l;a}=g (()„*(a+(1+1)qp—G)P„,(a+lqp —G) .
G

(3.7c)

Hs~ may be diagonalized by means of a canonical
transformation. Let 0'and Sbe operators such that

0 =e', S= Q Sbb, CbCb (3.8)
b, b'

where Cb, Cb are the electron operators in the representa-
tion which diagonalizes Hs~. Let U and S stand for the
matrices corresponding to 0 and S. U is unitary; S is
Hermitian. I will postulate that the old and the modified
electron operators are related by the transformation

Cb e Cbe (3.9}

where Hs] =H,'+H, ' is the Hamiltonian of (3.7a) in
which the operators cb and cb are replaced by Cb and Cb.

The transformation (3.11}can be carried out approxi-
mately. If we choose S such that its commutator with H,'

cancels H, ',

H,'= i [H—,', S], (3.12)

+@n n(i'&}5P,]+]] i

then (3.12) is satisfied. To 0( W]] ), Hs] is given by

then the electronic eigenenergies are produced to O( p'p3)
and the eigenstates to 0 ( W~p ). If

i8'0
Sn]n n']'n.'= p [4 nn (I —1;~)5

E~r~ E„.

Expandiny this expression in terms of the nested commu-
tators of S with Cb, one readily finds that Hs] =H,'+ [H,S—] . (3.14)

cb = g Ubb. Cb. , Ubb. (e )—bb
b'

(3.10) is a Bogolubov transformation.
modified representation is given by

)' Hsge' =Hsp+j[Hsp, S]

(3.10)

Hsz in the

Evaluating the commutator, one has

HsL g EnlnCnlnCn]n
n, 1,]c

+ g Rn];n ] (]r)Cn, nC (3.15)

~ 2

+ ( [H s]S ],S)+, (3.11)
2

where

l@„„(i;~)I'
nln Enid. ~0 g p p

+
En", l —1 Enl En",1+ i

—E„)
(3.16)

Rn];n ] (&)= r~o X [5] z, ]Ann-—(l —1;]r)4n-n. (l —2;a)+5]](1—5nn, )@nn-(/ —1;~)4n'n-(i —1;a)]

1 1
0 0 0 0E„-) )

—E„) E„. ) )
—E„

+ [5]](1 5„„)4„'.„(—I;~)4n n (l;a)+5]+~ ] 4n"-„(l;a)4„'„-(l+1;a)]

1 1
0 0 0 0E„-(+) —E„( E„-(+) —E„

(3.17)

En]„ is the electronic eigenenergy to O(Wp). Rn].„.].
represents the electron-impurity coupling left over be-
cause of the approximate nature of the transformation
(3.13). I should point out that (3.13) is valid only if the
zeroth-order subband energies E„& are not degenerate.
In case of degeneracy, the elements of the transformation
matrix must be obtained from the degenerate perturba-
tion theory. One way to handle degeneracy is discussed
in Appendix B.

Let us consider (3.16). Let i be positive. Assume that
the original band is parabolic. To avoid problems associ-
ated with degeneracy, let us also assume that a is finite.
To zeroth order, the subband energies are given by

]]12(~+Jq )2

E„] =E„(0)+
mn

Since sc is confined to the superlattice BZ, one has

qo- -qo2

2l~.qo lqo ( I qo

(3.18)

(3.19)

for l ) 1. Therefore, the subband energy is determined in
the zeroth order largely by the term proportional to I:

g2 j'2 2

E ]-E„(0)+ (3.20)
2mn
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As one goes higher in the subband ladder, the separation
of the steps increases:

Q2
E„ i+, „—E„I„= [2a"qp+(21+1)qp] .

2m
(3.21)

The subband separation is proportional to I. Note that
on the basis of (2.23b), one might expect that the electron
should act like a harmonic oscillator, at least in the
troughs of the potential field. (3.21) shows that the elec-
tron actually acts like an anharmonic oscillator.

If we take just two parabolic bands, one conduction
and one valence, and consider the radiative interband
transitions corresponding to the same I, we find that ab-
sorption (or luminescence) peaks are at

$2j'2q 2
1 1

m m*
C U

(3.22)

Note that in the parabolic-band approximation, the sub-
bands corresponding to l=~1~ and I= —

~l~ may be close
to each other for small x. Their separation is given by

2
~
I

~

vari'x" qp5E= (3.23)

4e m*(3Np)' '
2=

g2 1/3 (3.24)

Therefore, two distinct No dependences are possible for
68'„i ..

No 1f qo&q,
6W

No if qo &q,
(3.25)

The regimes qo & q, and qo & q, may be called the weak
and strong screening regimes, respectively. For qo & q„
the influence of an impurity is felt by carriers outside the
superlattice cell in which the impurity is located. For

Thus, the peaks of (3.22) are broadened if a is small; they
are split if ~ is suSciently large.

(3.20) indicates that the zeroth-order subband separa-
tion may be substantial if the impurity modulation wave-
length Ap=2~/qp is short. If Ap=50 A and m'=0. 1 m,
then A' qp/(2m")=0. 5 eV. This suggests that one may
rapidly run out of room in the original BZ for a valid
parabolic-band approximation, since typical bandwidths
are on the order of a few eV. A reasonable rule is that if
Ao & 100 A, one should use the actual dispersion relation
of the original band.

Next, let us consider the correction term arising from
the impurity potential in (3.16). Let us denote it by 5 W„I.
58'„I is proportional to 8'o. Since 8'o is proportional to
the impurity density Xo, this may suggest that 58'„( 1s

proportional to Eo. However, 8'0 also depends on the
inverse screening length q„which is determined by the
density of the free carriers. If the free-carrier distribu-
tions tend to follow the impurity distribution, then q, will
also depend on Xo. If one uses the Thomas-Fermi model
of screening and assumes that there are just two sym-
metric bands, then one may approximate q, by

qo & q„ the influence of an impurity is confined to dis-
tances less than the width of a superlattice cell. If one as-
sumes that Xo —10' cm and m*-0. 1, then q, —10
cm '. For the simple Thomas-Fermi model, the period
AO=100 A corresponds to the transition regime qo -q, .

Before we leave the subject of screening, two remarks
are in order. First, if %~WAD, and/or the conduction
and the valence bands are not symmetric, then the esti-
mate (3.24) cannot be used for q, . Even for
Nz =ND =Np, (3.24) is a rough estimate for q, . Because
of the reduction in effective bandwidths when bands are
split into subbands, one may expect the electron-hole
liquid to be sluggish and ineffective in screening individu-
al impurity charges. q, needs to be calculated self-
consistently, taking into account the reduction of the BZ.
This may yield a much lower calculated value for q, .
Second, q, depends on the free-carrier density, which
may decouple from the impurity density under, for exam-
ple, photoexcitation or carrier injection. In such cases q,
needs to be calculated self-consistently as well.

In the parabolic band approximation, the magnitude of
5$'„I can be quite small, since 8'0 is a small energy on
the order of 10 eV. If 1V0=10' cm E'o 10, and

(q, +qp) =10' cm, then Wp=1. 7X10 eV. To esti-
mate the terms multiplying Wp in (3.16), we may expand
the overlap function 4„„(k;q) in powers of q. This ex-
pansion is given in Appendix C. Using (C5), (C7), and
(3.18), one finds for the two-band model

4m 8'0
A' qp[2l+ 1+2~ qpqp ][2t —1+2~ qpqp ]

2 +72$2q 2
0 0

m *EG
(3.26)

IV. COUPLING TO LIGHT

This section discusses the effect of the wavelike impuri-

ty distribution on the electron-photon coupling. In the
following discussion, I assume that qo is much larger than
photon momenta and neglect radiative recoil. To
0( Wp ), the linear electron-photon coupling Hamiltonian
becomes

If AO= 200 A and m *=0. 1 m, then
2m'Wp/(A' qp)=0. 05. For band gaps on the order of 1

eV, (3.26) yields ~5W, I ~

~ 10 eV If E„.I, ,-E t„, or if
the band gap goes to nearly zero (making the pure crystal
a semimetal), 5W„i may become larger. However, in this
case, the transformation (C6) is not well defined because
of near degeneracy and one should use the method dis-
cussed in Appendix B.

Two further points should be noted. First, nonparabol-
ic and nearly degenerate band structures may be
manufactured by making the pure crystal itself a layered
superlattice. Second, the discussion above makes it clear
that the main function of shallow impurities is to break
the symmetry of the pure crystal. The impurity potential
is typically too weak to induce much of a spectral struc-
ture.
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H, ~=H,'r+i [H,',S] g„".*„(I;a )
G„"„.(l;~)= Wo

En, I+ l, x EnIx

n, n', l, ~,p
[[g„"„.(l;a)C I„C„,I~„+H.c. ] gg'„(l+ I;a)

n'lz n', 1+1,~

(4.3}

+[G„"„.(l;~)C„ I+, „C„ Consider an interband transition and set n =c, n ' =v, and
~=0. In the parabolic-band approximation, one has

where

X(a„+a„}+H.c.]], (4.1a)
2WO(m, '+m„')

2(2I+1)
(4.4)

and

G„"„(I;v) = Wo g
g„"'„-( I;~)4„„-(I;~)

0
n, I+ 1,z n "lz

eA„
gt'„.(I;a)= "a„p„„(a+Iqo),

mc
(4.1b)

2$'Oe A„G&= "a qcA'qo(21+1)
(4.5)

Thus, the matrix element is proportional to the square of
the superlattice period. As one goes higher in the sub-
band ladder, G,"„decreases inversely with ~l~. If one
remains within the same band,

gt"„(l+1;a.)4„-„(l;~)
En. I~

—En- I+),
(4.1c}

All radiative transitions in (4.1a) take place at the same
wave vector, since radiative recoil is neglected. The first
group of terms, which are proportional to the coupling
constant g, is stronger than the second group proportion-
al to G. The latter is reduced relative to the first by the
ratio of 8'0 to a band gap or to a subband separation.

Consider the first group. Only subbands having the
same l label are coupled, although their band indices may
differ. If nAn', then p„„ is given by the interband
momentum matrix element, whose wave-vector depen-
dence may be neglected in III-V semiconductors. This
implies that g„"„ is nearly independent of 1 and ir for
nAn'. If there is any dependence on subbands, one
would expect this dependence to be weak. The opposite
is true if n =n'. If one uses the effective-mass approxima-
tion, g„"n becomes

eAA„
g„"„(l;a) = "a„(a.+ iqo),

mn
(4 2)

where m„* is the effective mass for the band n. The cou-
pling coefficient becomes linearly dependent on l. Radia-
tive transitions within the same band, as well as within
the same subband, can take place only in association with
another elementary excitation such as a phonon in order
to conserve momentum. For these free-carrier absorp-
tions, the absorption coefficient varies as l qo. Every-
thing else being equal, the free-carrier absorption is
stronger for higher subbands. Of course such a con-
clusion may be drawn only if the effective-mass approxi-
mation may be made for p„„(a.+lqo). If the original
band structure does not permit this, then the free-carrier
absorption may have a more complicated relation to
different subbands.

Consider the second group of terms. If one uses the ex-
pansion (Cl), the leading term for 4„„,is 5„„,. Thus, to
lowest order in qo, G„"„.is given by

61=0 to 0( Wo/5E),

El=+I to O(WO/5E ),
b, l =+2 to O(WO/5E ),

(4.6)

etc. One should keep in mind that these selection rules
are based on the assumption that there is no degeneracy
in the folded BZ. If there are degeneracies, the strength
of some radiative transitions may be affected.

Two further points should be noted. First, the ex-
istence of selection rules is not restricted to the wavelike
impurity distribution. As we shall see in the next section,
the piecewise-constant-impurity distribution also has a
hierarchy of selection rules. Second, the existence of
these selection rules contrasts with the quantum tunnel-
ing picture, which does not yield any selection rule. Ex-
perirnental observations reported to data are not
sufficiently controlled and precise to decide between these
two contrasting physical pictures.

Next consider H, ~~. Neglecting radiative recoil, using
(2.10a), (2.10c), and (3.13), one readily verifies that

where (4.2) is used. The matrix element is now linear in
the modulation wavelength. Interestingly, it is also in-
dependent of the effective mass.

The interaction Hamiltonian (4.1a) couples a subband l
either to itself or to I'=lkl. The l~l'=l+I transitions
arise from the commutator [H,',S]. If higher-order
commutators are kept in the canonical transformation
(3.11), one may also obtain couplings among subbands
whose indices differ by more than one. For example, the
second-order commutator [ [H,'r, S ],S ] generates cou-
plings between l and l' = l+2. The strength of this cou-
pling is reduced by the square of the ratio of Wo to a sub-
band separation or a band gap. We may summarize these
results as follows. Let 5E represent either a subband sep-
aration within the same band or a forbidden gap of the
original pure crystal. There is a hierarchy of selection
rules for the radiative transitions of impurity superlat-
tices. The hierarchy depends on powers of Wo/5E. If
hl =l —l', then
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[H, ,S]=0 . (4.7) Mo =2M+ 1 (5.4)

Therefore, to 0( $VO ), H, ~~ is given by

He y y 2 2 Cnl»Cn I»2m'

represent the total number of the cells in the structure.
The sum in (5.3) may be written as

X g e.„e„A„A„[a„(a„+a„)
PP

+H. c. ] . (4.8)

V. PIECEWISE-CONSTANT DISTRIBUTION

Thus the light scattering from the electron-hole plasma of
an impurity superlattice is influenced only by how vari-
ous subbands are 61led and where the Fermi surface is.

s= —M

A Ae z —sA+ ——e z —sA ——
4 4

MoqA
sin

qA
sin

2

(5.5)

To simplify the algebra, let us assume that n and p lay-
ers have the same width A/2. Let us also assume that
the crystal is compensated and the superlattice axis is
along the z direction. From Fig. 2, one may write the
piecewise-constant-impurity distribution as

+M A
pD(z)=No lim g 8 z —sA+-

M~ oo 4

A—e z —sA ——
4

pD(z) becomes

sin
qA

(q —ia)

MoqA
sin

qA
sin

2

+" "q i»pa(z) =No lim iqz

M —+ oo —cc 2770

(5.6)

+M
p~ (z) =No lim

M

Ae z —sA+—
2

(5.1)
Since pD(z) can be written in terms of its Fourier trans-
form as

A—e z —sA+—
4

A+e z —sA ——
4

A—e z —sA ——
2

where the e's are step functions and s varies over in-
tegers. M is a large positive integer. If the macroscopic
length of the structure is L„then there are 2M+1 super-
lattice cells in L, . Let s be an integer in the interval
—M s ~M and take the limit M~ ~ after performing
certain sums in the Fourier space (the reason for this ex-
tra care is to avoid convergence problems ). In order to
determine 8'», one needs the Fourier transforms of
pD(z) and p~(z). The Fourier transform of the step func-
tion is

L,
pD(z) = f dq e'q'PD(q),

27T

one has

1
pD(q) =No lim

M0 —+ oo Lz

+~, , qA
dqe q s1n

oo 4

Moq
sin

qA
sin

2

(q i a)—

(5.7)

(5.8)

e(z) = — dq2' — (q i a)—
where a~O . Using (5.2), one finds

(5.2)

Consider the 1imit Mo —+ ~. In order to take this 1imit,
one must also let L,~ ao, while keeping the ratio of Mo
to L, constant, because this ratio represents the number
of superlattice cells per unit length

s= —M

Let

A Ae z —sA+ ——e z —sA ——
4 4

—iqA(2M+ 1)

—iqA
)

—iqAM
(5.3)

M

A

0
lim

Mo~ oo Lz
(5.9)

As Mo~ ~, the last factor in (5.8) becomes a series of 5
functions:
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lim sin
~0~ oo

MpqA

2
qAsin
2

lim Mo+5 z„,z~,~0~ oo

(5.10)

AG,s=l+ 2'
1 A——1
2 a

1 A

2 a

(5.13)

No . ~s
PD(q) = g sin

277 2
S 5q, 2n.s/A '

where s varies over all integers. (5.8) becomes

(5.11)

Here a is the lattice constant and G, is a reciprocal lattice
vector. Note that because of (5.4) and (5.5), A/a must be
odd for the geometry of Fig. 2. The sum over s becomes

The same procedure yields

P„(q)= PD(q—) . (5.12)

If the z axis coincides with one of the basis vectors of
the reciprocal lattice of the pure crystal, then the integer
s may be split into two parts:

s G, 1

(5.14)

It is clear from (5.13) that l is the subband index and that
there are A/a subbands for a given band.

Substituting the above results into (2.18), and using the
fact that if k, and k,' are confined to the original BZ, then

k —k ' —G —G, 2ml /A+ G" G —G', G" k —k', 2nl/A ' (5.15)

one obtains

4e No

E,o

5
k —k, 2ml" /A

„'(k—G) „.(k' —G')
I(k —k' —G+G')I+[(2nl")/A+G, —G,'] +q, j

A(G, —G,')
X sin +

2

A(G, —G,')l"+ 2' (5.16)

k is reduced to the superlattice BZ by setting

2m.l
(5.17)

In the superlattice BZ, the Kronecker 5 in (5.16) becomes

k k 21/A 1 I 1 (5.18)

At this point one may make an approximation by noting that if GAG, the matrix element in (5.16) is rapidly de-
creased because of the denominators. One may therefore set G=G ' and find

~nl»;n'I »'
&z&z

sin —(I —l')
24e No

"
(1—I')[(x—a')I+(4m /A )(I—1') +q, ]

(5.19a)

where Let

2mlII+Z —G
G

Ep p 2ml
1]c

—
n K Z

A
(5.22)

Note that from (2.16b) one has

(5.19b)

nl»;n I » (~'nn ''~ll 8' ) ~nl» «''I' ' ~»n Ic, n K (5.23)

@nlz; n'lx' ~nn' (5 2()) Because of (5.20),

The diagonal elements in (5.19a) are therefore given by (5.24)

~nl~;nl~—
2me No

2
&oqs

(5.21) for all n and n'. Thus, 8 bb. is nonzero if l&l', or KyWK~,
or both. The superlattice Hamiltonian becomes
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HsL =H, +H; HsL= X E.i.&.i.c.i.

n, l, K

nlKCnlKCnIK

LTr'
nIK; n'I'K' nlK n'I'K' (5 25)

where

n, I,K

+ nIK; n'I'K'cnlK~n'I'K (5.29)

n, I, K', n', I', K'

Note that because of the sine factor in (5.19a), the
piecewise-constant-impurity distribution couples only
those subbands whose indices either do not differ or differ
by an odd integer:

p 2vrl'A —W'
S

(5.30a)

b, l=l —1'=0 or odd integer . (5.26)

W,'= W +5W (5.27a)

where

6W = W ln 1+
2m„' W

f2q2
(5.27b)

One can now proceed as before. For the piecewise-
constant distribution, the matrix S is given by

~ ""nlK; n 'I'K'

nl n'I' 'n(EpnEp )nlK n 'I'K'
(5.28)

Carrying out the transformation, one finds

Wbb. vanishes for other pairs. This leads to an interesting
conclusion for parabolic bands. As I pointed out in the
previous section, the lowest-order subband energies E„IK
for parabolic bands may become degenerate for the sub-
bands 1 and —

~

1
~

as K becomes small. From (5.22), one
finds that Enl, as a function of ~, obtains its minimum at
K = —~/A and its maximum at K, =m /A for the sub-
band 1= ~1~. On the other hand, for the subband 1=—

~l ~

the minimum and the maximum are at a', =m/A and

x, = —~/A, respectively. The two subbands are degen-
erate at ~, =0. Although there are second-order correc-
tions to these bands, one would expect them to be small;
hence, these pairs should remain nearly degenerate, since
Wb& of (5.19) does not couple them. One then has two
sets of states such that their energies cross each other as
~, varies.

Next, let us consider the canonical transformation. In
order to define a well-behaved operator S whose commu-
tator with H, cancels H, , one needs to use a suitable ap-
proximation of (5.25), because if n = n', l = l', and Ki&Ki,
then W' is finite, and the energy denominator for the ma-
trix S can approach zero as K~ continuously approaches

One cannot then perform the canonical transforma-
tion perturbatively. To avoid this problem, let us restrict
the second sum in (5.25) to the range of Ki such that

~E„&, E, ,
~
) W, . —On the other hand for the range ofn K~ nlK~

KI such that tE„~„E,,
~

( W„ le—t us take an average

over Ki of W„I .„I, in (5.19a) and add the correction to
W, (thus adding this part of the Hamiltonian to E„I„).
W, thus becomes

1

zp
n IK

1

KO z, p
IIII I II ~ I

(5.30b)

To first order in Np, all the bands (and their subbands)
are lowered by an amount —8', relative to the bands of
the pure crystal by the potential field of the impurities.
8', depends on the square of a screening length r, :

2me No
W, =

p~s

2me N r

Ep
(5.31)

Thus the effects of the impurity potential depend on the
screening length r, . r„ itself, depends on Np and on sub-

band widths, hence on A. However, the relationship be-
tween r, and A is not simply linear. It is more complex,
since the lowering of the bands and their subbands de-

pends on the superlattice period A only indirectly,
through the screening length. This conclusion
significantly differs from Ref. 1. In the theory of Ruden
and Dohler, the band gap of the crystal is reduced by

2VO =
4e.p

(5.32)

Since the superlattice period A may be varied at will, the
effective band gap of the crystal may be varied at will ac-
cording to (5.32). In the present theory, it is not A that
directly affects the lowering of the bands, but r, . Furth-
ermore, to first order in Np, all of the bands and subbands
are lowered by the same constant amount W, . Light
transitions probe only energy differences and therefore
would not detect the constant shift —W, if the entire
macroscopic sample were one long superlattice. Howev-

er, if the impurity superlattice cells are sandwiched be-
tween two layers that are made of a different material,
then —W, appears in the lineup of the bands between the
superlattice crystal and the boundary layers. Light tran-
sitions may then detect such shifts. Clearly, the shifts ob-
served in some luminescence experiments and usually at-
tributed to Vp actually have a more subtle many-body
origin. They may be associated with the filling of sub-
bands and with the second-order corrections, in which
the screening wave vector sets the scale, or with the re-
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where

+ [G5.;n i.C.'i.Cn re&„+H c ) ] (5.33a)

n"

g„"„(l;~)W'-( .

E~'I'~' —E„-I„
(5.33b)

The g terms are the same as for the wavelike distribution.
They couple pairs of states which have the same wave
vectors and the same subband indices. The 6 terms are
different. They couple pairs of states that differ either in
subband indices, or in wave vectors, or in both.

Using (5.24), one sees that an important contribution
to the sum in (5.33b) comes from the case where n"=n,
1=1',but a~Az~, which can be written as

W, q, eA„a„p,„[~j+.zir, +z(2~1/A)]
(5.34)

[q, +(~ a')~][E I„—„E, , ]—
This shows that a radiative interband transition does not
need to be vertical in the momentum space if it is accom-
panied by an impurity scattering. Nearby momentum
states may be strongly coupled, depending on the energy
denominator. One should keep in mind, however, that
the difference between K~ and K~ is not allowed to be
indefinitely small. As discussed before, (5.33) may be
used only for [E„&„EI, ] & W, . —

For the wavelike distribution, the coefficient 6 coupled
neighboring subband indices. For the piecewise-constant
distribution, we have a difFerent rule because of (5.26). G
in (5.33a} couples pairs of states whose subband indices
differ by 0 or by an odd integer. If one carries out the
canonical transformation to higher orders, b, l may be-
come an even integer, although such transitions would
take place at a much reduced rate. Clearly, one again has
a hierarchy of selection rules, in contrast to the quantum
tunneling picture.

Finally, the commutator [H,'~r, S'] vanishes in the
recoilless radiative transition approximation as before.
For the piecewise constant distribution, H, ~~ is the same
as in (4.8) to O(S ).

At the present time, one may compare the preceding
results with experiment only to orders of magnitude,
since the commonly used semiconductors have a variety
of degeneracies which must be evaluated for
identification of spectral resonances and for quantitative
comparison of their spacing. Furthermore, the spectral

normalization of the original band gap of the pure crystal
from the high density of free carriers. This band-gap re-
normalization is dynamic in origin and is not associated
with the static impurity-charge distribution.

Next, let us consider the linear electron-photon cou-
pling. Taking the denominator as indicated in (4.la) and
using (5.28},one finds

H„= g [ [g~„.(I; s)C„'«C„,,~„+H.c. ]

data reported to date usually involve some form of com-
positional plus impurity superlattices. In these struc-
tures, the impurity distribution has a complex form
which cannot be approximated by a simple piecewise-
constant distribution.

VI. CONCLUDING REMARKS

The basic conclusion of the preceding theory is that, if
the atomic nature of impurity charges is taken into ac-
count rather than assuming that these charges form a
continuous jellium, then subband structure arises from
symmetry breaking. The interband absorption and ernis-
sion spectrum should therefore display a hierarchy of
selection rules. Furthermore, free-carrier absorptions or
emissions should get stronger for higher subb ands.
Another conclusion is that the static potential field asso-
ciated with impurity charges is not strong enough to in-
duce the shifts in effective band gaps that are presently
attributed to it. One should rather look for the source of
these shifts in a dynamic renormalization process.

In this paper, I have not pursued such a renormaliza-
tion effect, nor the effects of temperature and carrier
scattering on symmetry breaking. In order to analyze
such many-body effects, one needs to add the Coulomb-
scattering Hamiltonian, as well as the electron-phonon
coupling Hamiltonian, to (2.1). Hopefully, this will be
done in the near future. Such an analysis is necessary in
order to understand basic processes in impurity superlat-
tices. Ruden and Dohler analyzed many-body effects on
subbands by using the density-functional formalism.
They found a relatively small effect on subbands. Howev-
er, the density-functional formalism does not take into
account interband coupling. Furthermore, the effect of
symmetry breaking on such an analysis is not clear at the
present time, at least to this author. For these reasons, I
consider conclusions based on the density-functional for-
malism to be suspect.

A basic result of the symmetry-breaking mechanism is
that the number of subbands of an original band is given
by L and A/a for the wavelike and the piecewise-
constant probability distributions, respectively. These
are usually large integers. However, only a relatively
small number of subbands will be accessible to observa-
tion in a direct-band-gap semiconductor, depending upon
where the Fermi surface is. In a semiconductor such as
GaAs, the conduction-band energy has its lowest values
near the center of the BZ. As one moves away from the
central region, towards the boundaries of the BZ, the
conduction-band energy increases. When these higher-
energy regions are folded onto the superlattice BZ, they
yield higher subbands. On the other hand, subbands
which are associated with the folding of the central re-
gion of the original BZ are lower in energy. In GaAs,
they are the ones that are accessible to observation, for
example, in a luminescence experiment, because they usu-
ally lie below the Fermi surface.

The folding of the BZ for impurity superlattices leads
to an interesting prediction for indirect-band-gap semi-
conductors. For semiconductors such as Si and Ge, the
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conduction-band energy decreases as one moves toward
the BZ boundaries in certain directions. If one were to
make impurity superlattices of these materials, these re-
gions of lower energy would be folded into the superlat-
tice BZ, creating conduction and valence subb ands
separated by a direct band gap which would be approxi-
rnately the same as the original indirect band gap. In
other words, impurity layers would convert Si and Ge
into a direct-band-gap material. Such a conversion, being
a superlattice effect, would depend on the electronic
mean free path in a given sample, as I pointed out in the
introduction. In order to observe a possible indirect-
band-gap —direct-band-gap conversion, this mean free
path must be much longer than the superlattice period.
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APPENDIX A: EVEN L

Consider Wb& . For the subband indices

(L —2) ( I I, ( (L —2)
(Al)

the matrix elements W&b are the same as in (3.5). If one
or both indices equal L /2, then

L L (L —2)~,L/2, ;
'l' ' eBz +

2 qo ~ '~l', (L —2)/2~0 —X 0 2 qO
G

L L (L —2)+eBZ + qo ~ ~l', (L —2)/2~020: +—
qo G (t ( + q()

—G ), (A2)

and

—TSE+
~n1 K; n ', L /2, K' n, L /2, K', n lK (A3)

~n, L /2, K; n ', L /2, K' (A4)

When I is confined to the interval in (Al), the portion of the superlattice Hamiltonian involving these subbands is still
given by (3.7a). However, there will be additional terms in the Hamiltonian because of the subband L /2. Let Hst be

the superlattice Hamiltonian for even L. It can be written as

Hsg =HSp+AHsp .

Hst is given by (3.7a). AHsL is given by

xr (~~~SL ~n, L/2, K n, L/2, K n, L/2, K ' ~ ~ n, L/2, K n', —(L —2)/2, K n, L/2, K", n', —(L —2)/2
In, n, K

+ n, L/2, » n', (L —2)/2, »~n, L/2, »;n', (L —2)/2) &

where

(A5)

(A6)

0 L p L L p L
E„L/2 K =8Bz K+ qp E K+ qp +eBz K qp E„K qp

7 2 " 2 2
J

(A7)

The modification of other formulas is readily inferred
from the above.

For the piecewise-constant distribution, the evenness
or oddness of the number of subbands of a given band de-
pends on Mp. The case of odd Mp is treated in Sec. V.
For even Mo, after taking the limit (5.9), the ratio A/a is
an even integer. There are A/a —1 subbands which are
labeled l in the range

1 A 1 A——2 ~l~ ———2 (Ag)
2 a 2 a

There are two pieces of the BZ left over, as in the case of

the wavelike distribution, which together form a single
zone. Corresponding to this zone, the integer s in (5.13)
may be partitioned as

s=+ +A
2a

AG,
(A9)

Thus the last subband may be labeled l =A/2a.

APPENDIX B: DEGENERACY

When a finite number of states is degenerate, they may
be decoupled from the rest by means of a canonical trans-
forrnation. Once isolated to the desired degree of accura-
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cy, their finite-dimensional Hamiltonian may be diagonal-
ized directly. To demonstrate the method, let us consider

HsL e

Hs„—g Ebcbcb+ g Wbb cbc&,0 I

b b, b'

p, B Ep —EB
'

EB —Ep

The modified superlattice Hamiltonian becomes

Hs„=HP) +H +H; +i [H;,S ]+ [H—,S]
where b is given by (3.3). Assume that a finite number of
states is degenerate with the same energy. Let us denote
this group by [B] and the reinaining states by [P]. As-
sume that [P] are well separated from [8] in energy.
Dividing the set [b] into two sets [P]+[B],one may
rewrite Hsg as

Consider

+H;" +i [H;,S]+

HD =HD'+H'+ '[HD—' S]

(85)

(86)

HD+HR +HD+HDR+HR

where

HP) = QEgcgcg& Ho = QE@iicp,
B p

H, = g Waa, cecil, , H, =g W. &&cii &,D R

B,B' p p'

H; "=g ( Wp~c pc~+ W~pc~cp) .
P,B

(82a)

(82b}

(82c}

(82d)

To 0(S ), the degenerate states are decoupled from the
rest. HsL may be written as

Hsi —g xiii CsCii,D (87a)
B,B'

where

MBB' EBSBB'+~BB'0

1 1 1——g W~pWpii 0 + 0 0 . (87b}
p

EG EG EG EG

One may perform a canonical transformation, as in
(3.11),and remove H~ to first order in S'by picking an 0
such that

One can now diagonalize the finite-dimensional matrix M
with a unitary transformation.

H = i[HO +—H, S] .

(83) is satisfied if

(83) APPENDIX C: EXPANSION OF 4„„
The Taylor expansion with respect to q yields

g g(k G)$„.(k— G q)—=5„—„.+iq&X„„.——qi q„X„„——qi q„g X„„X„"-„
G

where the repeated vector indices are summed over and X„„.is the interband part of the position operator

(Cl)

X„„(k)=ipse„'(k—G) P„(k—G) . (C2)

For the two-band model, X,„ is related to p,„by
l

m(E, E„)—
For the two-band model, the f-sum rule yields

(C3)

Ip,.I'

m EG
(C4)

where EG is the band gap and m is the effective mass. Thus,

&'eo
Iq,-x„I'-

m *EG
(C&)

For Ao—=(2m/qo}-100 A, EG —1 eV, and m -0.1 m, one finds Iqo.X,„I -0.2. If Ao is around 40 A, then this ratio
rapidly rises to 1 and the expansion (Cl} is not valid.

For (Cl) and for X„„=O(the conditions under which this holds are discussed in Ref. 10); the elements of S are given

by
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0

nlrb n 'I'Jt

i 8 1
(~l, l'+1+'5l+l, l') ~nn ' qo qo X„„(l;&) —g q, X„„-(l;Ir)qo.X„,.„,(l;&)

ll

(5/ I +t 5l+I I )[lqo X (1;K)] (C6)

In this approximation, E„l becomes

E»I»=Eni» ~o '
o 1 P [Iqo'X '(1 li&) I

+ Iqo'X (1+Iilr) I ]
1 1

En, I—1,~ Enl~ n'2

+ o o
I ——g [~qo X„„(l;z)~ +~qo X„„(1+1;1~)~]

En, I+ 1, K ~nllt n'2

n'

qo X„„(l;Ir)qoX„„(l—I;a) qo X„„.(1;lr)qo X„„(1+1;x)
0 0 0 0

En I —1,—Enl~ En 'I+ 1x Enl a.

(C7)
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