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The static dielectric susceptibility of a two-dimensional electron plasma in a strong perpendicular

magnetic field is obtained, including the electron-electron interactions with use of a Green's-function

formalism at finite temperature. Below a critical temperature, the susceptibility ceases to be negative

definite, having poles related to a second-order transition into charge-density-wave states. Below yet

another critical temperature, the negative sign is restored for some wavelengths and for some filling fac-

tors that correspond to unstable homogeneous states. The dielectric constant, as well as the thermo-

dynamic density of states, can take on negative values.

I. INTRODUCTION 271 B(p )
q B)M,

(1.2)

It is known that, due to the electron-electron interac-
tion, the two-dimensional electron plasma in a strong
perpendicular magnetic field undergoes a transition to a
charge-density-wave (CDW) state. ' At extremely low
temperatures and for low filling fractions of the lowest
Landau level, the inhomogeneous states become a Wigner
solid. '

The stability criterion of the homogeneous states
against the spontaneous appearance of a CDW with wave
vector q is given by the inequalities

e(q) ~1 (l.la)

or

e(q) &0 (1.1b)

satisfied by the static dielectric function.
The random-phase approximation (RPA) for e(q) of

the two-dimensional electron gas in a perpendicular mag-
netic field had been considered in several papers. ' For
any temperature T and wave vector q, the inequality
(l.la) is fulfilled so that the CDW instabilities are absent
in this approximation. This conclusion remains true even
if the nonlinear components of the dielectric response are
taken into account. " When the highest Landau level is
only partially occupied, the RPA for the static dielectric
function diverges like 1/T as T~O, yielding perfect
screening (e= 00) for any q; for finite T the screening be-
comes perfect only for q —+0. When the highest level in-
volved is totally occupied, long-wavelength (q ~0)
screening is absent (e= 1). These properties are exten-
sively discussed in Refs. 7 and 12.

Experimental measurements on high-mobility silicon
(MOSFET's) (Refs. 14 and 15) show a negative thermo-
dynamic density of states B(p)/Bp, (p) being the aver-
age electron density and p the chemical potential, as
another manifestation of strong electronic correlations at
low temperatures (but higher than those involved in the
fractional quantum Hall efFect). In terms of the dielectric
response, since in the long-wavelength limit ' ' '

this means a negative dielectric constant' ("overscreen-
ing"), according to inequality (l.lb).

The present paper is an attempt to extend the calcula-
tion of the dielectric response to include the above-
mentioned effects of the electron-electron interactions.
The starting point is the Hartree-Fock approximation
(HFA) for the temperature-dependent Green's func-
tion. ' ' The RPA for the dielectric susceptibility may
be regained by neglecting the exchange term in the self-
energy, i.e., by considering it in the Hartree approxima-
tion. ' However, due to the very high degeneracy of the
Landau level, this term yields drastic deviations from the
RPA; this approximation then leads to CDW instabilities
and overscreening. In Sec. II, after a brief review of the
dielectric response functions of noninteracting electrons,
the desired approximation is obtained. Section III is de-
voted to the dielectric function and the conclusions are
collected in Sec. IV.

II. DIELECTRIC SUSCEPTIBILITY

A. Noninteracting electrons

In this subsection the response functions of nonin-
teracting electrons are briefiy reviewed in order to in-
crease the self-consistency of the paper and to establish
the main notations.

The two-dimensional electron system (neutralized by a
uniform and positively charged background) will be con-
sidered under the action of an external electrostatic po-
tential,

V,„,(r)= Vcos(q r), (2.1)

where r=(x,y).
Throughout this paper, magnetic units are used: the

cyclotronic-resonance energy fico, =Ae8/mc =1 and the
magnetic length ls =(A'c/e8 )'~ = 1. Moreover, the elec-
tronic charge e and Boltzmann's constant are also taken
equal to unity.
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The magnetic field will be described in the Landau
gauge, i.e., the vector potential will be A=(O, x). The
directions of the coordinate axes may be chosen such that
the electrostatic potential (2.1) varies only along the x
axis, as long as boundary effects are neglected in the ther-
modynamic limit. Therefore in the following calculations
we will assume the presence of cos(qx) in Eq. (2.1), even
if not explicitly mentioned.

In the absence of the external potential (2.1) the wave
functions of the free electrons in the lowest Landau level
are oscillatorlike:

L
—) /2 —) /4 iky —(x —k ) /2

&k y (2.2)

p(r) = g qk(r)l'&((Ek p)/T), —
k

(2.3)

V(x)=(e"+1) ' being the Fermi function, one can find
the isothermal density-response function

y' 'cos(q r)= Bp(r)
(2.4)

The corresponding energy will be taken as the origin of
the energy scale. The system is assumed to be enclosed in
a large rectangular box, i.e., lx I &L„/2, Iy I &L~/2, these
giving I

k
I

& L„/2, and k =2m /L~ X (integer) (from
periodic boundary conditions along the y-axis direction).

Taking into account the external potential (2.1), the
new single-particle states are described by the wave func-
tions (pk (r) which may be found using, e.g., the perturba-
tion theory with respect to V,„,. The energies constitute
an energy band, Ek. Starting from the density of parti-
cles (all in the lowest Landau level},

which diverges for T~O and satisfies (l. la). This means
that the CDW instabilities are absent in the RPA. "

g(HF+)(p)gnk~nk~h (r)~b» (r')

„k l&j (Enk, o P')
(2.9)

where e is the spin index, n denotes the Landau band,
coj =(2j+1)n T j(integer); e„k together with g„k(r) are
the single-particle energies and wave functions given by
the T-dependent Hartree-Fock equations. They give the
lowest band (n =0 and 0 = + 1) as

Ek=(lklV-(Ilk &+&k (2.10)

with the self energy

&k —g&k & 1(k 1(k I UI 1(k 1(k &
—2

&k'(/krak'I

U
1 &k'Qk &

k'

= TD+ TJ
k'

(2.1 1}

where Tk and Tk denote the direct and the exchange
contributions and Vk —= P((ek —p)/T) (all the electrons
are again assumed to be in the lowest band).

Using (2.9) the particle density may be written as in

Eq. (2.3) with the Hartree-Fock wave functions and ener-
gies replacing the noninteracting ones. The interacting
density-response function can now be calculated just like
in Eq. (2.4). One gets

B. Hartree-Fock approximation

Taking into account the electron-electron interaction
U(r) = 1/r, the many-body system may be described with
the temperature-dependent Green's function. ' ' In the
HFA it has the form

the label (0) denoting the absence of the electron-electron
interaction. It has the form y(q)cos(q r)=v g Igk(r)lav, V=O

X vX] +X2 (2.5)

where the temperature is taken to be sufficiently low so
that the Fermi function in (2.3) reduces to the filling fac-
tor v when the external perturbation vanishes.

The first term of Eq. (2.5) comes from the action of the
electrostatic potential on the wave functions and has the
expression ' ' '

n —1

~(0)( )
— 7 —

q /22
2

2n „&ntn 2
(2.6)

(o)( )
— —

q /2v(1 —v)
27TT

(2.7)

Equations (2.5)—(2.7) yield the random-phase approxi-
mation of the dielectric function, i.e.,

which is the susceptibility of the lowest Landau level to-
tally occupied (v= 1). The second term of Eq. (2.5) is due
to the influence of the external potential on the occupa-
tion numbers of the single-particle states in the energy
band Ek and is given by "' v(y(q)), )cos(q r) . (2.13)

Assuming now that for a totally occupied Landau level

the electron-electron interactions have no dramatic effect,
these will be taken into account in the first term of Eq.
(2.12) through the random-phase approximation [Eq.
(2.8)],

(2.14}

T BV BVk V=o

(2.12)

Let us focus on the first term of Eq. (2.12). If the
electron-electron interaction is ignored in this term,
which means 1(k(r)=(pk(r), then it becomes [see Eq.
(2.5)]

vy() )(q)cos(q r} .

If only the dependence of the Hartree-Fock wave func-
tions on v is ignored then it may be written as

e(q) = 1+ y(q)—2' x"'(v»
q

(2.8) and, as will be seen later, this term will behave like a
small correction in the susceptibility g(q) unless for v= l.
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Now we shall proceed with the evaluation of the
second term of Eq. (2.12). To first order in V, the
Hartree-Fock energies (2.10) must have the form

ek = Vv](q )cos(qk ),
where q(q) will be determined later.

For the moment we can see that

(2.15)

p
~V v=o

(2.16}

in Eq. (2.12); taking the derivative of
v- gk P((ek —p)/T) and using Eq. (2.15) one gets
(dp/dV)q 0-L„'fdkcos(qk) and then Eq. (2.16) in

the thermodynamic limit (2mL~ 'gl, ~ J dk has been

used).

C. From HFA to RPA and beyond

Tk =fdr dr'p(r) U(r —r')
~
g„(r')

~
(2.18)

and can be expressed with the help of the susceptibility
y(q) replacing p(r') by Sp(r') —=p(r') —(p )
=y(q)Vcos(q r), with V assumed to be small. This is
possible because the average density (p ) gives no contri-
bution in Eq. (2.18) since the electrical neutrality condi-
tion can be taken into account as U(q= 0)=0. Then us-
ing Eq. (2.2) we get, to leading order in V, 0

To first order in V, the matrix elements of the electro-
static potential in Eq. (2.10) are

V cos(qk )e (2.17)

The direct term in the self-energy (2.11) may be written
as

IkJ7

qk( ) ]/pL

' 1/4
CO

exp[ —co(x —g) /2] . (2.22)

turbed Hartree-Fock wave functions are plane waves,
fz(r)=e'"'/(L„L )'/, k=(k„,k~). The corresponding
energies, ez =R k /2m +Xz, may be represented in a
Brillouin-zone scheme by repeated translations with arbi-
trary q along k . Since all the matrix elements of the
external potential V,„,(r)= Vcos(qx) vanish except the
off-diagonal (in k„) ones (V,„,)+ /z + /z, the only effect of
the perturbation, to first order in V, is a small splitting at
the crossing of the nearest-neighboring energy branches,
thereby opening an energy gap. This means the perturba-
tion gives (Be&/BV)z 0=0 for any k, except along the
lines k+=(+q/2, k ), which is a set of measure zero.
Consequently the second term of Eq. (2.12) vanishes in
the thermodynamic limit.

A natural step to extend the calculation of the dielec-
tric susceptibility of 2D electron plasma under a magnetic
field would therefore be to take into account the ex-
change term in Eqs. (2.10}—(2.12). In order to avoid ex-
plicit calculations of the Hartree-Fock wave functions
f„(r), we shall approximate them in Tk with teak(r), i.e.,
the wave functions for the noninteracting problem with
the external potential (2.1). In fact, this should be the
zeroth-order approximation for the Hartree-Fock wave
functions in an iterative scheme of solving the Hartree-
Fock equations (2.10) and (2.11). Note that as V~O,
both gk(r) and teak(r} tend to fk(r).

For small V, the functions yk(r) may be expanded in
standard perturbation theory. However, since this would
imply the manipulation of infinite series, this wave func-
tion will be used in a simpler, variational, oscillatorlike
form:

Tk = y(q) V cos(qk )eD 2K 2/4

q
(2.19)

The variational parameters co=co(k) and g=g(k) must
satisfy the system of nonlinear equations

ek = V cos(qk)e ~ 1+ y(q)
2 /4 2'

q
(2.20)

Combining now Eq. (2.12) with Eq. (2.14) and with Eqs.
(2.16), (2.20), and (2.2}we obtain

Before starting to calculate the exchange term in the
self-energy, suppose we neglect it. Then, the Hartree-
Fock energies (2.10) become, in the linear approximation
in V,

co =1—
q Vcos(qg)exp( —

q /4'),
$=1+qVsin(qg)exp( —

q /4') .
(2.23)

The exchange-term contribution is in fact given by its
derivative with respect to Vincluded in (Bek/BV)v o in
Eq. (2.12). This contribution is evaluated in the Appen-
dix [Eq. (A4)] and depends on the Hartree-Fock energies
through g(q), which can now be calculated from the
equation obtained by identifying the derivative of Eq.
(2.10) [see (2.17), (2.11), (2.19), and (A4)], i.e.,

X(q)=vXI""'(q) — e ' " 1+ X(q}(Rp~) v( 1 —v) ~/p 2m

2&T

(2.21)

BGI

av v=o

8Tk
X

=cos(qk)e ~ / 1+ y(q) +
q BV vo

(2.24)

For low enough temperatures and for v&1, yP '(q)
may be neglected in Eq. (2.21}, which leads to the
random-phase approximation of the susceptibility y(q),
given also by Eq. (2.8).

A question then arises as to whether the RPA can be
retrieved in the same way, in the absence of the magnetic
field. The answer is negative. In this case, the unper-

with the derivative of Eq. (2.15). Taking the Fourier
transform with respect to cos(qk) one obtains g(q) as a
linear function of y(q). Now, introducing Eq. (2.15) in
Eq. (2.12), together with Eq. (2.16), a new closed-form
equation is obtained for the susceptibility y(q) [compared
to Eq. (2.21)]. Using (2.14) in the first term of Eq. (2.12),
the susceptibility is obtained as
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2
2

vy' '(q) 1+(2~')' y' '(q)e~ I1 2 0 4
+y~2o'(q) 1+—

q g(q)

(2.25)
2

1 —y' '(q) (2—vr )' e~ I

the functions g and Io being defined in the Appendix.
This approximation is identical with the RPA only for

q « 1, when all the terms introduced by the exchange in-
tegral, i.e., those -g and -Io, as well as gI '(q), can be
neglected. Both approximations give then
y(q)= —q/2n. If in the exchange term, Eq. (2.11), the
wave functions (2.2) of unperturbed electrons would be
considered instead of those of noninteracting electrons,
Eqs. (2.22) and (2.23), the term -g would be absent.

The susceptibility (2.25) has poles as well as changes of
sign. The poles are given by the (at most) two roots of
the second-degree polynomial in v in the denominator
[see Eq. (2.7)].

For any T & T, =0. 139 (in units of A'co, ) the susceptibil-
ity (2.25) has no singularity and is always negative. For
T=T„a single pole, g —+ —~, appears at v= —,

' and
q=qo=1. 57, showing the onset of CDW instabilities.
For lower T, an instability domain of positive dielectric
susceptibility [see (1.1) and (2.8)] grows between the two
roots v, (q)(v2(q) as shown in Fig. 1(a). The change of
sign is made discontinuously, from —~ to + ~, which
means the CDW will appear even for vanishing external
potential. Accordingly, these boundary curves obey the
electron-hole symmetry condition,

lated by a weak external electrostatic potential. The
electron-hole symmetry no longer holds, the relevant
Hamiltonian being now the full one, i.e., the kinetic-
energy term [generating the higher Landau levels neces-
sary to describe, e.g., yI '] plus (2.27) plus (2.1). If V,„,
would vanish a spontaneous CDW should also appear for
any filling factor contained in the smaller closed curve of
Fig. 1(b), as shown in Refs. 1 and 3. However, under the
influence of an external potential having a wave vector
corresponding to this domain and an amplitude V large
enough, the spontaneous CDW can be destroyed, with
the external modulation imposed on the particle density.
Then V may be lowered until the linear regime (with

1.0

(a)

0.6—

0.&—

v, (q)+ v2(q) = 1, (2.26)

imposed by the many-body Hamiltonian of the electrons
in the lowest Landau level without external field,

(2.27)

For any fixed temperature the extreme critical filling
factors, i.e., the minimum of v, (q) and the maximum of
vz(q) are the roots of the equation

v(1 —v) —e,'&& 2m
e

2mT q0

0.2—

0,00

1.0

X&0

I I

1 2

q (unit~ of f B
)

(b)

'=0

(2.28)
where q0 = 1.57 corresponds to the minimum of the ex-
pression contained in the curly brackets. This may be in-
terpreted as the equation of the critical temperature
T= T(v) of the second-order spontaneous CDW transi-
tion discussed in Refs. 1 and 3.

For T & T,
' =0.0754, the sign of the susceptibility

(2.25) is no longer determined only by its denominator.
Due to the term -yI '(q), an "island" with g(0 de-
velops inside the instability region with y&0, Fig. 1(b),
and it becomes wider for lower T. This boundary is
crossed continuously by the susceptibility and encloses
another domain of stability of the electron system modu-

0.6—

Qg—

0.00
I l

'l 2

q(Units of 7-&)-1

FIG. 1. Sign diagram of the static dielectric susceptibility:
(a) for T=O. 10 (units of fico, ); when T~0.139 the enclosed re-

gion converges to the marked point; (b) for T=0.070; the small-
er closed area reduces to the indicated point when T~0.0754.
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y &0) is reached so that the system becomes prepared in
the state corresponding to a point inside the bounded sta-
bility region.

The dielectric susceptibility is presented in Fig. 2 as a
function of v for three wave vectors of distinct regions of
Fig. 1(b): the external region [Fig. 2(a)], the symmetrical
(with respect to v= —,') region [Fig. 2(b)], and the asymme-

trical one [Fig. 2(c)]. In the first case [Fig. 2(a}], as well

as for any q if T)T„the susceptibility (2.25) is not quali-

tatively different, but only larger, with respect to the
RPA susceptibility. As discussed above, the situation is

I

completely changed in Figs. 2(b) and 2(c). The dielectric
susceptibility has changes of sign from —~ to + ~ as
well as through zero. As the temperature is lowered, the
poles approach 0 and 1, respectively —and the zeros too,
but more slowly —with the negative susceptibility be-
tween them becoming larger.

III. DIELECTRIC FUNCTION

The static dielectric function can be found combining
Eq. (2.25}and the first half of Eq. (2.8).

In the low-temperature limit

e(q) =
e &'"[r (q /4)]

q

1+ vy', Rp~'(q)+(2/n. )'~ ve ~ ~ qg(q)[Io(q /4)]
(3.1)

0.1 5

(aj

0.0

E

-0.1

-0.200
I

0.2
I

0.&
I

0.6
I

0.8 1.0 %.0
I I

0.2 0.4
I

0.6
I

0.8 1.0

(b)

0

0.0
I

0.2
I

0.&
I

0.6 0.8 1.0
0.0

I

0.2
I

0.4, 0.6 0.8 1.0

0.10 1.2

0.05—
(c)

E
GOO 1.0

os—

-0.10
0.0

I

0.2
l

0.&
I

0.6 0.8 1.0
0.8

0.0
I

0.2
I

0.4
I I

0.6 0.8 1.0

FIG. 2. Static dielectric susceptibility, in magnetic units
(m.u.), vs the filling factor, for three wave vectors corresponding
to all distinct regions of Fig. 1 (T=0.07): (a) q =0.5, the dashed
line describing the RPA; (b) q =1.0; (c) q =3.2.

FIG. 3. The static dielectric function vs the filling factor for
the same three wave vectors of Fig. 2, i.e., q =0.5 (a), q = 1.0 (b),
and q =3.2 (c), for T=0.070.
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the low-temperature singularity of the RPA being now
removed, the screening becoming perfect only in the
long-wavelength limit.

For long wavelengths, but at finite temperatures,

e(q)=1+—1 v(1 —v)

q T—v m. /2v(1 —v)
(3.2)

The electron-hole symmetry is present in this limit be-
cause the terms influenced by the kinetic-energy operator
in the Hamiltonian (which does not have this symmetry)
vanish. They are y, (q) and the component of the ex-
change term denoted by 4(k) in Eq. (A4) which depends
on the perturbed-oscillator wave functions (2.22).

Equation (3.2) can be obtained directly from Eq. (1.2).
Assuming no external field the Hartree-Fock energy of
the lowest Landau level [Eqs. (2.10 and (2.11)] is given
only by the exchange term with gi, replaced by fi, . Us-
ing Eq. (Al), one obtains (see also Ref. 18) e= —v'ir/2v,
which combined with the Fermi function
P((s p)/T )—= v= 2'(p ) yields an equation for the ther-
modynamic density of states (TDOS), Dr=3(p)/Bp, ,
wherefrom Eq. (1.2) leads to Eq. (3.2).

It can be seen from Eq. (3.2) that, if T & T*=0.313 (in
units of A'co, }, the dielectric constant may become nega-
tive for some filling factors around —,', provided that the
wavelength is large enough. This fact, even if unusual, is
not surprising and is specific to strongly correlated sys-
tems. In Systeme International (SI) units T*=26 K for
a magnetic field of induction 8 =12 T and an effective
mass =0.2m as in the silicon samples used in Refs. 14
and 15.

In those papers negative TDOS, previously predicted, '

are reported for temperatures below T* =4 K. The nega-
tive values appear at filling factors close to integers, un-
like Eq. (3.2) in which v= —,

' is the critical one. The
reason for this difference can be better understood in
terms of D~ '=D~~'+D~~' since the contributions of the
disorder and of the Coulomb interaction can be separat-
ed. The disorder, inherent in the real case, yields Dz-z & 0
(Ref. 14) and consequently T* is lowered. On the other
hand, in the low-temperature limit, the electron liquid be-
comes more strongly correlated and the Coulomb interac-
tion needs to be more accurately taken into account, as
has also been pointed out in Refs. 14 and 15.

In Fig. 3 the dielectric function is plotted versus the
filling factor for the three wave vectors chosen in Fig. 2,
the temperature being T=0.070. For q =0.5, even if the
susceptibility is not qualitatively different from results of
the RPA, the dielectric function changes sign discontinu-
ously (from + ~ to —oo), according to inequalities (1.1)
[Fig. 3(a)]. For q=1, these inequalities are violeted, e
crosses continuously the horizontal axis in the forbidden
interval corresponding to unstable states [Fig. 3(b)]. In-
side the "island" of stability, e.g., for q =3.2, the dielec-
tric function is continuous and again positive [Fig. 3(c)].

IV. CONCLUSIONS

The static dielectric susceptibility of the electrons par-
tially occupying the lowest Landau level has been ob-
tained in an approximation leading to qualitatively
different behavior for low temperatures from RPA re-
sults.

While in the RPA, the dielectric susceptibility is nega-
tive definite, under the proposed extended approxima-
tion, for some wave vectors, it is positive inside the region
of the (T,v) plane bounded by

T(v) =0.557v(1 —v), (4.1)

I am grateful to Professor B. Ciobanu and to Dr. A. B.
Fazakas, Dr. P. Gartner, and Dr. G. A. Mezincescu for
helpful discussions.

APPENDIX: EXCHANGE- TERM CONTRIBUTION

Fourier transforming the Coulomb potential the ex-
change term in (2.11) may be expressed in the form

' yV, f "~l(gyle' 'lg, &l'
2' „, Q

Approximating in the matrix eleinents gi, with &pz, Eqs.
(2.22) and (2.23), a straightforward calculation gives

z X
k

and diverges on both sides of this boundary. Therefore
Eq. (4.1) gives the critical temperature for a spontaneous
transition to a CDW state. This is the second-order tran-
sition studied in Refs. 1 and 3.

For T &0.0754 (in units of fico, ), an "island" of filling
factors and wave vectors appears inside the instability re-
gion, in which the dielectric susceptibility becomes again
negative, this time continuously. Consequently a small
harmonic external potential, like those produced by a
periodic microstructured gate obtained by microlitho-
graphic techniques, ' could induce stable modulations of
the particle density having different wavelengths than
those of the spontaneous CDW. If the temperature rises
or if the filling factor (or the wave vector) is modified, as
the system leaves the "island" it will automatically adopt
the most favorable density modulation, regardless of the
form of the small external potential. This transition from
continuously modulable states to spontaneous CDW's
seems to be higher than second order.

In the approximation described, the static dielectric
function does not diverge as T~O, like in the RPA. The
dielectric constant, as well as the electronic thermo-
dynamic density of states, can take on negative values for
T (0.313. This means the long-wavelength components
of the total (external plus induced) and the external po-
tentials can have opposite signs, which is specific only to
strongly correlated states. In terms of the dielectric
function, the CDW instabilities are generated by
0&a&1.
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77 co+co' co+co' 2(co+co') 2(co+co')exp (A2}
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Eo being a modi6ed Bessel function. In (A2) the unknown Hartree-Fock energies (2.10) are contained in the Fermi
function 9'k, but we are interested only in the derivative of (A2) with respect to V for V=O [see Eqs. (2.10)—(2.12)]. The
derivatives of co and (may be easily evaluated from Eqs. (2.23), and

k' V( 1 V) ~Ek'

BV v p T BV vp
[see Eq. (2.16)] can be expressed with the yet-to-be-determined sl(q) from Eq. (2.15). We get

(A3)

gTx

BV y=p

' 1/2

ri(q)e e i Io cos(qk )+ 4(—k},v(1 —v) &g4 q V

2 T 0 4 7r
(A4)

where another modified Bessel function is used,

(z /2 )

o (n!)'

and

4(k) =Idq q e e i g(q)cos(qk),
' 3/2 (A5}

g(q) = — F —2—
2 11 2y ~ 2

,F, and 2F2 being hypergeometric functions.

3 3 ~ 1 2. —F 52—
2 2 2'2& 2' & 2 1 1 2y
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