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Born-Oppenheimer surface of triatomic silicon and its relationship to potentials in the bulk
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The Born-Oppenheimer (BO) surface of triatomic silicon is investigated and accurately described us-

ing two- and three-body potentials. The topology of the BO surface is found to be unstable with respect
to fluctuations in these potentials, indicating that it is nongeneric. Examination of the two- and three-

body components shows that the topology of the three-body term is fundamentally different from that of
potentials usually used to model crystalline silicon. A study was therefore made to determine under
what conditions this topology could successfully reproduce the diamond cubic structure of crystalline
silicon. Two limiting methods for applying these potentials in the bulk have been considered and ap-
praised. One of them uses the exact two- and three-body terms, and approximates the effect of the
remaining terms in the X-body expansion (the screening effect) with a four-body term. The other
method consists of screening the two- and three-body terms directly. Both methods were unsuccessful in

reproducing the diamond cubic structure, which indicates the importance of terms of order higher than
4.

I. INTRODUCTION

Extensive technological interest in the elemental semi-
conductor silicon has resulted in many fundamental stud-
ies of a theoretical nature aimed at understanding the
basic interatomic forces that bond this important co-
valent material. Both quantum-mechanical and classical
approaches have been employed to study silicon in either
its bulk state' or in the form of small atomic clus-
ters. Atomic and electronic structures have been pre-
dicted based on interatomic potentials that are either de-
rived or assumed. Of interest have been the nucleation
and growth of clusters into the bulk crystalline or amor-
phous phase and of the properties of various defects that
affect the electronic characteristics of the crystalline ma-
terial.

All the calculations begin with a description of the
many-body interactions existing in the solid. The present
study is motivated by an interest in understanding how
the shape of an interatomic potential, used, for example,
in an atomistic calculation, influences the physical prop-
erties of the crystal it models. In particular, the investi-
gation focuses on the question of whether the exact first
terms in the N-body expansion of the potential are struc-
ture determining or not. Accurate approximations to the
two- and three-body terms of this expansion are therefore
computed, which together form the only existing model
for the Born-Oppenheimer surface of triatomic silicon.
The computational method employed and the topological
analysis of the results (the Born-Oppenheimer surface of
triatomic silicon is found to be nongeneric) are described
in Sec. II. For the construction of the three-body poten-
tial, a reduced coordinate scheme is used, which is de-
scribed in a companion paper. Section III describes two
approaches used to adjust these potentials to reproduce
the bulk properties of silicon. One approach uses the ex-
act two- and three-body terms that are computed and at-
tempts to account for the remaining terms that are

neglected through a four-body term. Another approach
employs only rescaled two- and three-body terms which
retain, however, their original topology. Neither of these
two limiting methods produced entirely satisfactory re-
sults, which indicated that terms of order higher than 4
in the X-body expansion are important.

II. THE BORN-OPPENHEIMER SURFACE
OF DIATOMIC AND TRIATOMIC SILICON

The construction of the exact two- and three-body po-
tentials for silicon relies on combining first-principles cal-
culations with an analysis of the configuration space of
two and three atoms. To calculate accurate con-
figurational energies, the total-energy pseudopotential ap-
proach is employed, which, for silicon, provides an ex-
cellent approximation to the interatomic interactions of
interest. The geometrical analysis of two and three-atom
clusters provides a way of selecting certain symmetry
configurations that will dictate the form of the potential.

The two- and three-body potentials differ widely in this
latter respect. Since the geometry of two atoms is deter-
mined by their interatomic distance, the value of the en-
ergies for a collection of interatomic distances (about ten
of them) is all that is required to obtain an idea of the
form of the two-body potential. The use of a similar grid
in the three-body configuration space would prove in-
tractable since it would require an order of 10 calcula-
tions. Instead, a procedure is used which relies on the
properties of subspaces of high symmetry present in that
configuration space. It is known that saddle points are
bound to be present on these subspaces from the principle
of symmetry-dictated extrema. Anticipating the topolo-
gy of the three-body term to be relatively simple (on
physical grounds), it is supposed that all the saddle points
are located on these subspaces. Each saddle point is then
examined in a systematic way. It is subsequently verified,
using general topological principles (in practice, by in-
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spection, given the relatively small number of distinct
forms), that the local behavior of the potential around
each saddle point are consistent with one another. The
result that is obtained is surprising in that the topology of
the three-body terms turns out to be one of the simplest
possible, involving no more than three different critical
points (one minimum, one maximum, and one saddle
point).

Sections II A —II D describe the pseudopotential calcu-
lations, the method used to account for spin polarization,
the total energies or two- and three-atom clusters, and
the use of these results in the construction of two- and
three-body potentials.

A. Pseudopotential method and treatment
of spin polarization

The total energy of the various atomic configurations
involving two or three atoms were computed using a
total-energy program developed by Payne et al. , which
uses a scheme of convergence based on the Car and Par-
rinello method. ' In this method ionic motion and elec-
tronic relaxations are treated simultaneously during the
computation of low-energy structures. However, in the
present study it is the energy of a series of specific ionic
structures that is of interest and therefore only electronic
relaxation was allowed. The approximations used to cal-
culate the total energy of the clusters are the local-density
approximation (LDA) within density-functional theory, "
the pseudopotential approximations, ' the use of super-
cells, a finite basis set, and a finite number of k points to
perform Brillouin-zone averaging.

The Hamann-Schliiter-Chiang (HSC) pseudopotential'
for silicon was used with a kinetic-energy cutoff at 10 Ry
and only one special k point was considered: (0,0,0). The
size of the computational cell was such that the motif
composed of clusters of two or three atoms did not in-
teract with its periodic images. A computation of the
electron density on the walls of the simulation cell pro-
vided a way of verifying that these image interactions
were small.

An important drawback in the above approach is that
it does not take into account electron spin. It is well
known that when degeneracies appear near the valence
level, the electrons first occupy the various degenerate or-
bitals with parallel spins so as to minimize their exchange
energy. In the following discussion this effect is analyzed
qualitatively for the case of the isolated silicon atom and
the diatomic molecule. Previous results obtained else-
where for the triatomic molecule are also summa-
rized. It is concluded that the spin-polarization effect is
important for the isolated atom and diatomic molecule,
but relatively small for triatomic molecules. Consequent-
ly, a procedure for modifying the results of the pseudopo-
tential calculations is proposed.

Isolated atom. The atomic number of silicon is 14, so
that the 3p orbitals are populated by two electrons. To
be consistent with the molecules treated below, the two
orbitals p„andp are called a, and p, . As the energy of
these states is different from that of the other levels and
does not mix with them, they are treated independently

in a Hartree-Fock formalism.
The spatial part of the two-electron wave function is

equal to

where U and I are the Coulomb and exchange integrals,
respectively, given by

U= (a, (1),P, (2)
~ V&2~a, (1),P, (2) &,

I= (a, (1),P, (2)
~ V,2 ~a, (2},P, (1}& .

(3)

The exchange energy per atom is therefore equal to 2I.
Diatomic molecule. The valence configuration of dia-

tomic silicon at equilibrium is

. . .3scrg3scr„' 3pog3pm„.

It therefore exhibits two degenerate m. states populated by
only two electrons. To a first approximation, the analysis
above applies. The corresponding one-electron states are
approximately

)a &
= [~a, (l) &+ (ab(1) &],

2

where a, and p, represent the p„andp~ orbitals of atom

a, and ab and pb represent the p„andp~ orbitals of atom
b. The exchange energy is then equal to

2I'=2(a(1),P(2)
~ V, 2 ~a(2), P(1)&,

which can be represented as

2I'= —,
' [(a,(1),P, (2)

~ V,z ~a, (2),P, (1)&

+(ab(1),pb(2}~ V,2~ab(2), pb(1) &]

+two center integrals .

Neglecting the two-center integral terms yields an ex-

change energy equal to

2I'=I .

It is one-fourth of the exchange energy for two isolated
atoms. It is not small, and should be taken into account
when fitting the two-body potential.

For small interatomic distances, the electronic
configuration becomes that of carbon, which is

. . .3sog3scr„* 3pn.„(the3pog state and the 3pm. „states
switch their order), so that all valence levels are fully oc-
cupied. The spin-polarization effect is therefore equal to
zero in that case. Hence, the curve of spin-polarization
effect versus interatomic distance (which we refer to as

the spl curve) is expected to go smoothly from zero (short
distances) to 4I (large distances), with an intermediate

where c=+ 1 corresponds to the antisymmetric state of
spin and c= —1 is the symmetric state of spin. A simple
derivation shows that the average electron-electron in-
teraction energy is equal to

(2)
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value of I at the equilibrium distance. The curvature of
the spl curve should therefore be small at the equilibrium
distance so that the energy values given by the pseudopo-
tential calculations accurately reproduce the vibration
frequencies. The slope of the spl curve should result in a
displacement of the equilibrium distance, but this effect is
small since the curvature is large at this location. The
main effect of spin polarization appears to be a
modification of the long-range interaction behavior which
is taken into account by truncating the computed ener-
gies so as to restore the cohesive energy of diatomic sil-
icon.

Triatomic molecules. A generic configuration with no
particular symmetry will have nondegenerate energy lev-
els. Its spin-polarization energy will therefore be
significant only in the region of configuration space where
atoms are far enough from each other to be considered
isolated. In this case, the approximation which truncates
the computed energies so that they do not exceed the
reference energy of three isolated atoms seems fully
justified (only the spin-polarization energy of isolated
atoms is taken into account). The only approximation in-
volved occurs far away from the region where the energy
is low and therefore far away from the region of interest.
The problem is more complicated for symmetric
configurations.

Symmetric configurations of triatomic silicon have
been studied extensively. Reproduced here are some
of the previously published results from which it can be
concluded that the spin-polarization energy is equal to
zero over a neighborhood of the critica1 points of the
Born-Oppenheimer surface. The configurations of sym-
metry considered are the linear configuration (group
D„z), the isosceles triangle (group C2„),and the equila-
teral triangle (group (D31, ).

The previous studies report the following electronic
structures for the valence levels:

D„I, . . .2o u lm

C2„.. .3a ) 1b ),
D3I, . . . 1a2' e'

10 Ry, it defined a sphere containing 1989 plane waves
used to span reciprocal space. Only one special k point
was used: (0,0,0), and the first four electronic levels were
filled with two electrons each. The spin-polarization en-
ergy was taken into account through a truncation of the
computed energies. It was estimated to be equal to 0.75
eV for the isolated atom. The results are summarized in
Table I ~

The three-body calculations were performed in a rec-
tangular box with dimensions 15 X 15X 8 A . The three
atoms were located in the (0,0,1) plane. Since the cutoff
energy was still be equal to 10 Ry, it now defined a sphere
containing 6503 plane waves used to span reciprocal
space. Again, only one special k point was used: (0,0,0),
and the first six electronic levels were each filled with two
electrons. The energies of configurations surrounding
each saddle point were calculated. The configurations
were indexed by their reduced coordinates:

(~, sin (38l2), sin(2y) ) .

where ~ is a radius in the three-body configuration space
and the two other coordinates define the geometry of the
configuration. This coordinate system is described in
more detail in a companion paper. The energies corre-
sponding to geometries surrounding those of the different
saddle points, for different radii, were therefore comput-
ed. The spin-polarization energy was taken into account
through a truncation of the computed energies. It was
estimated to be equal to 0.75 eV for the isolated atom.
These results are summarized in the first two columns of
Tables II—V.

C. Choosing a functional form
for the two- and three-body potential

To construct the two-body potential, a function is re-
quired which reproduces the computed total-energy data
as closely as possible. However, uncertainty in the es-
timated spin-polarization energy (SPE) created a large set

TABLE I. Computed two-body energies.

Here, the states corresponding to u, a&, b&, az' belong
to one-dimensional representations and can be occupied
by no more than two electrons. The states corresponding
to m and e' belong to two-dimensional representations
and are filled with four electrons. There is no partially
occupied level, so that the spin-polarization effect is equal
to zero for all of these configurations.

The same procedure is then applied to symmetry
configurations as was introduced for generic
configurations. The computed energies are truncated in
the region where atoms are far away from each other so
that the total energy does not exceed the energy of three
isolated atoms.

B. Total energies for two- and three-atom clusters

The two-body calculations were performed in a cube
with side equal to 9.2 A with the two atoms aligned along
the main diagonal. Since the cutoff energy was equal to

Interatomic
distance (A)

1.352
1.577
1.803
1.915
2.028
2.141
2.253
2.480
2.704
3.155
3.606
4.056
4.507
4.958
5.408
5.634

Total energy
(eV)

—194.7694
—203.9289
—207.3952
—208.0196
—208.3020
—208.3715
—208.4260
—208.2043
—207.7306
—206.5825
—205.5915
—204.84
—204.25
—204.08
—203.95
—203.93

Including spin
polarization and

atomic energy (ev)

10.683
1.5233

—1.9430
—2.5674
—2.8498
—2.9194
—2.9738
—2.7521
—2.2785
—1.1303
—0.1393

0.0
0.0
0.0
0.0
0.0
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TABLE II. Equilateral triangles (r, 0,0). Geometry of the first saddle point.

Reduced
coordinates

(3,0,0)
(4,0,0)
(5,0,0)
(6,0,0)
(9,0',0)
(13,0,0)
(20,0,0)
(30',0',0)

Total energy
(eV)

—307.8612
—314.7442
—315.9692
—315.5578
—312.6777
—309.7837
—307.0580
—305.7014

Including spin
polarization (eV)

—307.8612
—314.7442
—315.9692
—315.5578
—312.6777
—309.7837
—307.45
—307.45

Minus two-body term
and atomic energy

3.2487
1.4945
0.2999

—0.3560
—0.6007
—0.0703

0.0
0.0

of functions from which to choose. The choice of a func-
tional form for the two-body term was actually guided by
the need to find a functional form for the three-body
term. A major requirement for this choice is that the en-
ergy differences between the three-body energy (as given
by the pseudopotential calculations) and the two-body
contribution be small and smoothly varying. This re-
quirement enabled various two-body terms to be selected
as well as providing a choice of different methods to ac-
count for the SPE.

The final choice of functional form was a Morse poten-
tial and it was found necessary to account for the SPE us-

ing the same procedure used for the three-body term.
Specifically, the computed energies were truncated at a
value equal to the computed energy for a large interatom-
ic distance minus twice the atomic SPE (equal to 0.75
eV). The SPE at the equilibrium distance was therefore
disregarded, so that the two-body potential obtained is
relatively inaccurate. The cohesive energy it yields is too
low by 0.2 eV and the vibration frequency at equilibrium
is too small by a factor of 2. This proved to be the only
procedure considered that enabled a smooth three-body
term to be constructed. It was chosen as a compromise
between the need to reproduce diatomic properties and

TABLE III. Linear geometry (r, 0, 1). Geometry of the second saddle point.

Reduced
coordinates

(8,0, 1)

(10,0,1)
(13,0,1)
(20,0,1)
(30,0,1)
(50,0, 1)
(80,0, 1)

Total energy
(eV)

—308.3076
—313.7810
—315.5952
—313.4613
—309.8668
—306.7667
—305.4709

Including spin
polarization (eV)

—308.3076
—313.7810
—315.5952
—313.4613
—309.8668
—307.45
—307.45

Minus two-body term
and atomic energy

1.1520
—0.6922
—1.8225
—1.6296
—0.0976

0.0
0.0

(8,0,0.99)
(10,0,0.99)
(13,0,0.99)
(8,0.01,1)

(10,0.01,1)

(13,0.01,1)

(10,0.01,0.99)
(10,0.01,0.99)

(6,0,0.946)
(8,0,0.946)
(10,0,0.946)
(14,0,0.946)
(20,0,0.946)
(30,0,0.946)
(50,0,0.946)

—313.6574
—315.6742
—315.2464
—307.4299
—313.2381
—315.3468
—315.4917
—315.1765

—312.3486
—315~ 8504
—315.7248
—313.4796
—310.4338
—307.7213
—305 ~ 8230

—313.6574
—315.6742
—315.2464
—307.4299
—313.2381
—315.3468
—315.4917
—315.1765

—312.3486
—315.8504
—315.7248
—313.4796
—310.4338
—307.7213
—307.45

—0.5233
—1.5804
—1.9969

1.2801
—0.6021
—1.7465
—1.5336
—1.9576

0.1751
—1.3626
—1.8970
—1.6465
—0.5549

0.0
0.0

(5,0,0.9)
(6,0,0.9)
(8,0,0.9)
(10,0,0.9)
{14,0,0.9)
(20,0,09)

—310.3895
—314.4295
—316.1203
—315.2996
—312.6691
—309.7028

—310.3895
—314.4295
—316.1203
—315.2996
—312.6691
—309.7028

1.0133
—0.3340
—1.5748
—1.8823
—1.3837
—0.2710
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TABLE IV. Geometry of the equilibrium position (6.125,0,0.666).

Reduced
coordinates

(4,0,0.666)
(5,0,0.666)

(6.125,0.0.666)
(7,0,0.666)

(12,0,0.666)
(20,0,0.666)
(40,0,0.666)

Total energy
(eV)

—311.4111
—315.4131
—316.3046
—316.0342
—312.0214
—308.1916
—305.6584

Including spin
polarization (eV)

—311.4111
—315.4131
—316.3046
—316.0342
—312.0214
—308.1916
—307.45

Minus two-body term
and atomic energy

1.5478
0.0141

—0.9545
—1.3517
—1.0435

0.0
0.0

(5,0.02,0.666)
(6.125,0.02,0.666)

(7,0.02,0,666)
(5,0,0.6)

(6.125,0,0.6)
(7,0,0.6)

(5,0.1,0.666)
(6.125,0.1,0.666)

(7,0.1,0.666)
(5,0,0.6)

(6.125,0,0.6)
(7,0,0.6)

—315.3678
—316.2760
—316.0124
—315.7424
—316.2782
—315.8650
—315.2540
—316.1616
—315.9077
—315.1650
—316.2890
—315.9890

—315.3678
—316.2760
—316.0124
—315.7424
—316.2782
—315.8650
—315.2540
—316.1616
—315.9077
—315.1650
—316.2890
—315.9890

0.0273
—0.9414
—1.3379
—0.0264
—0.9461
—1.3038

0.0118
—0.8899
—1.2654

0.0528
—0.9459
—1.2431

V2(r)= A exp' " '+B exp' (10)

Is it possible to approximate the two-body contribution
it gives for a system of three atoms by a pure three-body

I

the need to construct a three-body term.
Another way of viewing the relationship between two-

and three-body terms is to think of the three-body term
as partly screening in the two-body tenn. Consider the
Morse form that was used:

term? Since the interatomic distances and the reduced
coordinates have the following relationship:

r f2
=~[cosy+ sing cos8],

r» =~[cosy —sing cos(n. /3 —8)],
r23 =~[cosy singe—os(n. /3+8)],

the two-body term contribution to the total energy of
three atoms is obtained as

g Vz(r) = 3 exp[ —a cos(p)~] j exp[ —a sin(y)cos(8)~]+ exp[a sin(p)cos(m /3 —8)~]+exp[a sin(tp)cos(n /3+ 8)~]]

+B exp[ —Pcos(y)~][exp[ —Psin(qr)cos(8)~]+exp[Psin(qr)cos(n/3 —8)~]+exp[Psin(p)cos(m/3+8)~]} .

(12)

TABLE V. Additional data, related to oher regions of the configuration space.

Reduced
coordinates

(4,0.5,0.666)
(6.125,0.5,0.666)

(8,0.5,0.666)
(12,0.5,0.666)
(20,0.5,0.666)
(30,0.5,0.666)
(60,0.5,0.666)

(4, 1,0.666)
(6.125,1,0.666)

(8,1,0.666)
(12,1,0.666)
(20, 1,0.666)
(30,1,0.666)
(60,1,0.666)

Total energy
(eV)

—309.6575
—315.5473
—314.9607
—312.0096
—308.3068
—306.3154
—305.2155

—307.7806
—314.5756
—314.3587
—311.3587
—308.3980
—306.4473
—305.2412

Including spin
polarization (eV)

—309.6575
—315.5473
—314.9607
—312.0096
—308.3068
—307.45
—307.45

—307.7806
—314.5756
—314.3587
—311.3587
—308.3980
—307.45
—307.45

Minus two-body term
and atomic energy

1.9431
—0.6052
—1.2492
—0.9770
—0.3295

0.0
0.0

2.4236
—0.0809
—0.7542
—0.8588
—0.3169

0.0
0.0
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It is therefore not possible, in general, to express the
two-body contribution along a direction (defined by 0 and
]p) as a Morse form in terms of (~)'~ (with coefficients
depending upon 8 and ]p). It is expected, however, that
as r increases, one of the three exponential terms appear-
ing in each of the summation factors to A or 8 will be-
come dominant so that a Morse form would correctly ap-
proximate the two-body contribution along such a direc-
tion. This, indeed, was found to be the case with surpris-
ing accuracy. However, this form was not successful in
reproducing the three-body energies summarized in the
last column of Tables II—V. Instead, a Morse form in
terms of ~ was used [instead of (~)'~ ] which then yield-
ed very good results. Further consideration of the mor-
phology of the three-body potential led to a three-body
term with the form

V3(~ps]ys2)=t(s, )g(s2, ~)+ [ 1 —t(s, )]g( —sz, ~), (13)

with

g(s2, ~)= A(sz)exp[ —a(s2)~ ]+B(s2)exp[ —]t3(sz)~ ],
(14)

where

(s],s2)=(sin (38/2), sin(2]p))

and A, a,B,P are polynomials in s2. t is a monotonic
function taking values between zero and 1 such that
t(0)=1 and t(1)=0.

To conclude this section, it is emphasized that there
exists an important dependency between the functional
forms of the two- and three-body terms. It is this depen-
dency that guides the choice of both functional forms.
The results obtained can be summarized with two points.
First, the spin-polarization effect was accounted for in a
unified way for both the two- and the three-body ener-
gies. Second, it was found that the Morse form gave
good results for both the two- and the three-body term,
but involved different forms of exponential decay. The

two-body term decreases as exp( —ar ), where r is the in-
teratomic distance. The three-body term decreases as
exp( —a~ ), where ~ is the radius in the three-body
configuration space and varies as r .

D. Fitting the functional forms to the total energies

For the two-body potential, a conjugate gradient
method is used to optimize the data given in Table I. The
following values for the coefficients of the Morse form
[see Eq. (10)] are then obtained:

A =194.86709664277,

IÃ = 1.359 991 465 251 6,
8 = —7.722 190281 325 6,
13=0 178 90. 9 578 526 89 .

These coefficients yield the two-body energies that are
summarized in Table VI (second column). The equilibri-
um distance is found to be 2.11 A [expected value 2.23 A
(Ref. 13)] and the minimum energy is given as —3.01 eV
[expected value —3.21 eV (Ref. 13)]. The curvature of
the potential at the energy minimum is equal to 6.21
eV/A, compared to 13.45 eV/A for the experimental
value. '

Consider now the three-body potential. Tables II-V
indicate the existence of four critical points on the Born-
Oppenheimer surface of triatomic silicon. These saddle
points are (i) a global minimum in an obtuse isosceles
configuration, (ii) a first saddle point (degenerate, due to
symmetry) in an equilateral configuration, (iii) a second
saddle point (in order of increasing energy) in a linear
isosceles configuration, and (iv) a global maximum at the
origin.

It is assumed, as the data strongly suggest, that these
saddle points are the only ones. This assumption was the
final guideline used in deciding the functional form of the
three-body term. Examination of this form given in Eq.
(13) shows that the function g represents the V3 values

Interatomic distance
(A)

1.352
1.577
1.803
1.915
2.028
2.141
2.253
2.480
2.704
3.155
3.606
4.056
4.507
4.958
5.408
4.634

TABLE VI. Two-body potential energies.

Computed energies
(eV)

10.6473
1.6592

—1.9726
—2.6792
—2.9746
—3.0186
—2.9177
—2.5264
—2.0777
—1.3009
—0.7544
—0.4067
—0.2039
—0.0950
—0.0412
—0.0264

Reference energies
from Table I (eV)

10.683
1.5233

—1.9430
—2.5674
—2.8498
—2.9194
—2.9738
—2.7521
—2.2785
—1 ~ 1303
—0.1393

0.0
0.0
0.0
0.0
0.0
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8 QV2
($2=0)=a~(a~+3)A exp( —a~)

Bs

+P~(P~+3)B exp( —P~) (16)

when s2 =0, is different from zero everywhere except on a
finite set of points along the line of equilateral triangles.
The second differential of the two-body contribution is
therefore generally nondegenerate. The three-body term
that is added to obtain the total energy has to cancel ex-
actly this behavior, since otherwise the equilateral saddle
point will not be degenerate and will correspond to either
a local minimum (undercompensation of the two-body
energy) or to a saddle point between two local minima in
the plane of isosceles triangles (overcompensation of the
two-body energy).

Since exact compensation is difficult to obtain, two
types of three-body potential have been constructed
which illustrate both types of behavior. The first of these
potentials (potential a) gives a good fit to the computed
data and illustrates the situation of overcompensation. It
was developed using the functional form given in Eq. (13}
and the following expressions for A, a, B, p, and t:

for the isosceles triangles (s, =O or 1). The obtuse
configurations of isosceles triangles (among which is the
energy minimum) are such that s i =0 and then V3 will be
equal to the values of g taken on positive values of the
first variable (+sz}. The other isosceles configurations
(acute) are such that s, =1 and then V3 will be equal to
the values of g taken on negative values of the first vari-
able ( —sz). The coordinate s, allows a nonsymmetric
configuration to be viewed as an intermediate state be-
tween two isosceles configurations, one being obtuse and
the other acute. The three-body energy is then interpo-
lated between these two points using the coefficients t and
1 —t. Hence, it is seen that if g is chosen such that

g($2, ~) &g( —$2, ~) for all ($2, ~}ER+XR,

then the monotonic nature of t implies that the critical
points (extrema and saddle points) of the potential will all
be isosceles triangles as intended.

Among the various saddle points, special attention
should be given to the equilateral configuration, since its
highly symmetric structure makes it likely to be degen-
erate. Intuitively, it is expected that the total energy will
increase during deformation of the structure from the
equilateral saddle point towards an acute isosceles
configuration and then to decrease again as the structure
is deformed into an obtuse isosceles configuration. This
behavior would imply that the second derivative of the
total energy with respect to s2 is equal to zero and conse-
quently the local behavior is controlled by the third-order
term. The equilateral saddle point would then be degen-
erate (the local shape would not be entirely controlled by
the second differential), and appear as an inflection point
on the curve of energy versus s2 (at constant ~ in the
plane of isosceles triangles).

Upon consideration of the two-body contribution to
the total energy [Eq. (12)], it can be seen that its second
derivative with respect to s2, which is equal to

A =ao+($2) a3+a4
1.1+st

2. 1

a5

a=ao+a2(s2) +a3(s2) +a4(s2)

B=b o+b2(s2) +b3(s2) +b4(s2)

po+p2($2) +pi(s~ ) +p4(s2)

t = 1 —s i ri —s i r2 —s i (1 r i
——r2) .

(17)

The numerica1 values of the various coefficients in these
expressions are given in Table VII.

The second of these potentials (potential p) gives a
slightly poorer fit to the computed data and illustrates the
situation of undercompensation. Since the secondary
derivative of the two-body contribution with respect to sz
is small, a three-body term is chosen which also has a
zero secondary derivative with respect to s2. This condi-
tion was obtained with the following forms for A, a, B, p,
and t:

A =ao+($2) a3+a4
1.1+s2

2. 1

a=ao+a&($2 } +a4(s2 }

B=b +05 ( i$)2+b4( $)2+b S( $2)

p pa+ p3($2 ) +p4(sp ) +p5(S2 )

t=1 sir i sirg si(t ri &2) i

TABLE VII. Fitted coefficients for potential u.

ao =9.274 009 096 770 5

a3 =0.229 263 361 11633
a4 =5.962 675 583 054 5

a5 =403

a0=6.526 187043 519 8 X 10
a2 = —1.444894119065 7X10
a3 =4.241 528 351458 6X 10
a4 = —3.594439 Q6Q 8QQ 4X 1Q

bo = 2.040 650 939475 2
b2 = —2.042 714932 6444
b3 = —1.972 202 404 850 3
b4 =2.094273 453 941 2

b p
= 1.195 906 845 501 3 X 10

b2 = —5.483 188 734 8503 X 10
b3 = 1.371 158 806 7390X 10
b4 = —5. 104720900 1662X 10

t l
=0.477 915 973 567 38 t2 =0.286 636 849 418 61

where the various fitted coefficients are given in Table
VIII.

The main difference between these two potentials con-
cerns their local morphology around the equilateral sad-
dle point. This difference is shown schematically in Fig.
1, which represents the location of the saddle points in
three-body configuration space. Figure 1(a) shows the lo-
cation of the equilateral saddle point (E) in the three-
body configuration space. Figures 1(b)—1(d) represent
slices with z =const through the three-body
configuration space that include the saddle point E. Ar-
rows indicate the directions of the energy gradients. Fig-
ure 1(b) represents the expected shape of the Born-
Oppenheimer surface around the saddle point E. Figure
1(c) represents the situation of overcompensation (poten-
tial a), and Fig. 1(d) represents that of undercoinpensa-
tion (potential p). Each figure shows the existence of sad-
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TABLE VIII. Fitted coefficients for potential P.

ao =9.171 260792 103 9
a 3

=0.327 587 552 644 87
a 4

=5.856 275 547 915 8

a, =403

ao =4.845 697 957 441 8 X 10
a, =3.2783227683581X 10-'
a4=1.455299 1869654X 10
a5 = —6.218 9448110308X10

bo = —3.068 181 597 7644
b, = —1.9139010094352

b~ = 1.263 933 651 815 4
b5 =7.354614232 295 1 10

bo = 1.126 428 485 3960 X 10
b, =1.438 327 6690864X10-'
b, = —1.018 165 605 647 6 X 10-'
b ~

= —3.556 988 817 812 1 X 10

t
1
=0.477 915973 567 38 t, =0.286636 849418 61

die points m and M of type (3,0) and type (2, 1), respec-
tively. The meaning of the shaded symbols is given in the
caption. Note that the eigenvalue relative to the z direc-
tion is always positive and that because of its symmetry
the saddle point E always has two identical values.

An alternative way of describing the shape of the de-
rived potentials is with figures showing the isoenergy
curves drawn on the plane of isosceles triangles (embed-
ded in the configuration space). In this description (see,
for example, Fig. 2), the x axis represents the radius in
configuration space, and the y axis represents the coordi-
nate sz. Hence, y represents the geometry of the
configuration (equivalent to knowing the angles in the
isosceles triangle), and x represents the extension of the
configuration. The various geometries can be seen as fol-
lows: y =1 (top of the figure), degenerate isosceles trian-
gles (configuration D„h. the three atoms are aligned);

y) 0, obtuse isosceles triangles; y =0, equilateral trian-
gles; y (0, acute isosceles triangles; y= —1 (bottom of
the figure), degenerate isosceles triangles (two atoms at
the same location).

Figures 2 —6 illustrate the bottom of the energy sur-
faces so as to emphasize the order of the first saddle
points. The white areas in Figs. 2, 3, and 5 represent low
energies, and the dark areas represent high energies. Fig-
ures 4 and 6 illustrate the total isoenergy curves of poten-
tials a and P, and are concentric around the energy
minimum. The only critical point omitted in this
description is the global maximum which is the origin
(x =0, not represented). Note in Fig. 4 the appearance of
a first saddle point close in space and energy to the equi-
lateral saddle point. Two additional saddle points (ob-
tained through atomic permutations) surround the equi-
lateral point, and this results in a large increase in free
volume above this point. This may significantly increase
the probability of finding the system above the first saddle
point and therefore affect the hopping frequency between
the three minima in the total energy. Figure 6 illustrates
a more desirable topology. The equilateral saddle point is
actually a local minimum although too shallow to be seen
in the figure. The maximum increase in energy away
from the equilateral saddle point along the +y direction
is less than 5 X 10 eV.

III. APPLYING THE TWO- AND THREE-BODY
DESCRIPTION TO BULK SILICON

A. Basis for an N-body expansion

(a) (bj

The S-body expansion for the total energy of bulk sil-
icon is poorly understood. It is obvious, for reasons of
convergence, that the magnitude of each term should de-
crease with its increasing order in the expansion. There
is however, no definitive information on the rate with

(c)

FIG. 1. Possible morphologies which approximate the three-
body energy surface around the equilateral saddle point (denot-
ed F). The symbols are ~, degenerate saddle point: Two eigen-
values are equal to zero; the other one is positive. o, type (3,0):
Three eigenvalues are positive; it is a minimum. e, type (2, 1):
Two eigenvalues are positive; one is negative. (3), type {1,2): One
eigenvalue is positive, two are negative.

FIG. 2. Two-body contribution, used with potentials a and

P. Note the presence of a deep minimum for an equilateral
configuration (A) and a saddle point for a D„I,configuration
(8).
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FIG. 3 Three-body contribution; potential a. Note the pres-
ence of a minimum for a D „qconfiguration ( A), a first saddle
point for an acute isosceles configuration (B), and a second non-
degenerate saddle point for an equilateral configuration (C).

which this magnitude decays, or on the values taken by
the first terms in the expansion. It would therefore seem
possible. to assume that the convergence is fast enough to
consider the terms neglected in the expansion (fifth order
and above) as a perturbation (the meaning of which is
clarified below) of the terms that are retained, and then
subsequently check the validity of this hypothesis. Hav-
ing stated this assumption, it is soon apparent that the
overall contribution of the neglected terms is not small
and that their effects must be taken into account through
a screening of the terms of lower order. Yet, from the

FIG. 5. Three-body contribution, potential P. Note the pres-
ence of a minimum for a D„qconfiguration ( A ) and a single de-
generate saddle point for an equilateral configuration (B).

morphological point of view (which is of current interest),
the neglected terms would be considered as a small per-
turbation if they did not change the topology given by the
first terms of the expansion. This leads to the following
hypothesis upon which subsequent discussion is based:
Despite their non-negligible contribution to the total ener-

gy, the terms of order higher than 4 in an N body expan-
sion do not perturb the topology dictated by thegrst terms
of the expansion

The principal reason for believing that this is true is
the following. The number of p-body terms to be con-
sidered increases rapidly with p. Hence, the magnitude
of each term will be that much smaller as p increases.
After summation over the various p-body configurations,

FIG. 4. Total energy, potential a, case of overcompensation.
Note the presence of a minimum for an obtuse configuration
( A) (intermediate between the equilateral minimum of the two-
body term and the D„zminimum of the three-body term), a
first saddle point for an acute isosceles configuration (8), a
second nonde generate saddle point for an equilateral
configuration ( C), and a third saddle point for a D„q
configuration (D) (saddle points are ordered according to their
energies).

FIG. 6. Total energy, potential P, case of undercotnpensa-
tion. Note the presence of a minimum for an obtuse
configuration ( A ), a first degenerate saddle point for an equila-
teral configuration (B), and a second saddle point for a D„z
configuration ( C).
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an averaging of the shape is expected, resulting in a flat
contribution.

It is then a natural step in this approach to use the "ex-
act*' two- and three-body terms of the N-body expansion
computed in Sec. II. The potentials thus obtained would
determine the basic features of the X-body potential to-
pology. The four-body term can then be chosen so as to
account for all the remaining terms in the expansion.
Since the process of exploring the four-body con-
figuration space is too demanding (it is six dimensional),
the morphology of the four-body potential is chosen and
the properties of bulk silicon are obtained by means of
parametric adjustment. In this process, the potential is
subject to limited deformations that preserve the chosen
morphology.

The special appeal of this approach lies in the fact that
the screening of the neglected terms is only taken into ac-
count in the last term retained. The advantages of this
method may be listed as follows.

(a) This approach is necessary if construction of a clas-
sical potential that correctly describes both small clusters
and the bulk is hoped for. Indeed, reproducing the prop-
erties of diatomic and triatomic silicon makes it neces-
sary for the two- and three-body parts to be the exact
terms.

(b) There are two main differences between a three-
body potential and a four-body potential. The first is the
fact that when evaluated, for example, on a configuration
of four atoms, a four-body potential vanishes if one of the
four atoms is far away from the other three. However,
this is not necessarily the case for the sum of the three-
body potentials. A similar difference exists between the
terms of the expansion that are neglected and the terms
that are retained. This difference can be interpreted as
the existence of asymptotic directions (subspaces) in the
barycentric configuration space (configuration space di-
vided by global translations) of p atoms, along which the
sum of three-body terms will keep nonzero values,
whereas the p-body terms will vanish uniformly far away
from the origin (the origin in the barycentric
configuration space is the configuration where X atoms
are at the same location). More generally, the barycen-
tric p-body configuration space is seen to contain subsets
I', composed of the configurations where q atoms are at
the same location. A sum of q-body terms will then take
nonzero values in the neighborhood of I', whereas a p-

body term will vanish on I', provided that the distance
to the origin is large enough. It is then noted that the
series of these subsets is decreasing, i.e., q greater than r
implies that F is included in F„.For this reason, a four-

body potentia1 is expected to represent a better approxi-
mation of a neglected term than a three-body potential
would. This, again, suggests that the screening term

should be accounted for in the last term not neglected.
(c) The second difference between a three- and a four-

body potential is the way the numbers of three- and four-
body terms vary with the number of neighbors of each
atom. In principle, each summation of p-body terms
should be made over all possible p-uplets contained in the
system. In practice, the p-uplets are limited to those con-
tained within the first shells of neighbors of each atom,
which is consistent with the physical idea that these po-
tentials have a finite range of interaction. Hence, if n is
the number of neighbors taken into account, the number
ofp-body terms to be considered per atom is equal to

1—C"
p

The number of neighbors to be considered should be
given by the range of interaction of the exact two-body
term which is found to become negligible between the
third and fourth nearest neighbor in the diamond cubic
structure of silicon. The number of neighbors n is there-
fore equal to 28, resulting in the various numbers of
terms per atom given in Table IX.

It is seen that the number of four-body terms varies as
n, whereas the number of three-body terms varies as n,
which makes the number of two-body terms relatively
more important when n decreases. Since the number of
five-body terms, for example, varies as n, it seems better
to account for the five-body term through a modification
of the four-body term, rather than through a modification
of the two- or three-body terms. In this way, it may be
possible to obtain a better description of the atomic
forces, especially in situations where the number of
neighbors is perturbed, which is the case near most crys-
talline defects.

B. Computational results

The computation of the exact first two terms of the N-

body expansion shows that the two-body term is large
with a long-range interaction (up to the fifth nearest
neighbor in the diamond cubic structure). It has a
minimum of about —3.0 eV reached at a distance of 2.11
A and a strongly repulsive short-range behavior. The
three-body term is comparatively smoother, being no-
where smaller than —2.0 eV and nowhere larger than 4.0
eV. It gives rise to an even longer range of interaction,
inducing correlations with the sixth nearest neighbor of
each atom. The contribution of these terms to the calcu-
lation of the total energy is as follows: two-body term,
—8.85 eV, three-body term, —40.94 eV.

The force constants for the first six nearest neighbors
have also been computed. They are represented by the
following matrices

TABLE IX. Number of terms per atom for the four-nearest-neighbor shells.

p shells
2 shells
3 shells
4 shells

Neighbors

n

16
28
32

Two-body terms

n/2
8

14
16

Three-body terms

n (n —1)/6
40

126
165

Four-body terms

n (n —1)(n —2)/24
140
819

1240

Five-body terms

n ( n —1)(n —2)( n —3 ) /120
364

4095
7192
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first-nearest neighbor (1,1,1): p& a&

pi

p&, second-nearest neighbor (2, 2, 0):
p2 y~

—r —r

third-nearest neighbor (
—1, —1, —3):

~3 p3 y3

ps a& y3, fourth-nearest neighbor (0,0,4):
(z4 0 0

0 a4 0

0 0 5,

fifth-nearest neighbor (3,3, 1):
as p ys

ps as ys, sixth-nearest neighbor (2,2, 4):

ys ys ~s

&6 p6 y6

p6 &6 y6

TABLE X. Computed elements of the dynamical matrix.

Force
constants

LCAO'
values

(Ref. 14)
Two-body

contribution
Three-body
contribution

Ql

bl
02
bq

d2

03
b3

—4.112
—2.854
—0.098
—0.089
—0.098

0.373
—0.0085
—0.0104

—1.505
—0.765

0.324
0.521
0.0

—0.198
—0.0250

0.0485

—12.62
—11.97

2.217
3.563
0.389

—2.080
—0.435
—0.337

d3
Q4

d4
a5
bs

gs

—0.0075
0.0110
0.0093
0.0051

—0.0093
0.0024
0.0411
0.0837

0.1454
0.3627

—0.0141
0.1350
0.0259
0.0312
0.0104

—0.0018

—0.412
—1.043
—0.342

0.372
0.349
0.511
0.102
0.092

'Linear combination of atomic orbitals.

The values obtained for the various elements of these ma-
trices are given in Table X.

From these results it is seen that the sum of the total-
energy contributions is negative and one order of magni-
tude larger than the expected energy for silicon. In addi-
tion, the force constants show very strong correlations up
to the fourth-nearest neighbor. A four-body term cap-
able of screening this behavior would therefore have to
yield a large and positive contribution to the total energy.
Furthermore, the requirement that it must screen the
long-range interaction of the two- and three-body poten-
tials implies that it itself has a long range of interaction.

In an attempt to circumvent these problems, the four-
body term was decomposed into two parts, one being a
pure screening term with a long-range interaction and the
other being a short-range four-body term, the morpholo-

gy of which was well controlled. The screening term was
chosen to be

~s(+ 1& ~2& u39 ~4) ~2 y ~2+~3 y ~3 f(+I )
palrS triplets

(19)

where u; represents the position of atom i, the summa-

tions of Vz and V3 are extended over all pairs and triplets
contained in the quadruplet of interest, and f is a cutoff
function of the four-body con6guration-space radius x, .
Using this method, the total energy and lattice parameter
of diamond cubic silicon was successfully reproduced.
Acceptable force constants were also obtained but the
computed (001) surface energy was negative. As pointed
out earlier, the number of two-, three-, and four-body
terms vary as n, n, and n, respectively, where n is the
number of neighbors. Therefore, since the number of
neighbors of each atom decreases close to the surface, the
number of two-body terms becomes relatively more im-
portant than the number of three-body terms, and so does
the number of three-body terms with respect to the num-
ber of four-body terms. This implies that the positive
contribution to the total energy of the four-body terms
cannot, in these circumstances, compensate for the nega-
tive contribution of the two- and three-body terms. This
explains the resulting negative surface energy. A solution
to this problem would be to shorten the range of interac-
tion of the four-body term. The number of four-body
terms would then be constant almost up to the surface, in
contrast to the numbers of two- and three-body terms
which begin to decrease much earlier. Unfortunately, the
need to screen the long-range interactions of the two- and
three-body terms makes this approach intractable, be-
cause then a long-range four-body term becomes neces-
sary.

It is clear that the above results strongly indicate
(though do not prove) that the original hypothesis stated
above is incorrect and that the terms of order higher than
4 do perturb the global topology dictated by the exact
two- and three-body terms. To examine this further, a
diferent and final approach was attempted to try and ac-
count for the terms neglected in the truncated expansion.
Instead of retaining the exact two- and three-body terms
and accounting for the screening with a four-body term,
the total energy is determined only by the two- and
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+A3 g V3(A4r k41l 'A4r/ )

i,j,k

(20)

Using this formalism, however, it was found that the
diamond cubic structure was not the global-energy
minimum. The best parametric choices favored close-
packed structures (fcc, for example), so that the inclusion
of a four-body term is still necessary if this topology of
the two- and three-body terms is to be retained.

IV. CONCLUSIONS

In the first part of this paper a study of the Born-
Oppenheimer surface for three silicon atoms was present-
ed. For triatomic clusters, the three-body expansion for
the total energy can be expressed and computed precisely
using first-principles pseudopotentials. Preliminary un-
derstanding of the three-body configuration space and
that of the equilateral saddle point led to the surprising
conclusion that the Born-Oppenheimer surface for three
atoms is not likely to be generic (one of its saddle points
is likely to be degenerate). Intuitively, this may be under-
stood as follows. The total energy of three atoms should
increase during a deformation from the equilateral saddle
point towards an acute isosceles configuration, and subse-
quently decrease during a deformation towards an obtuse
isosceles configuration. This behavior implies that the
second differential of the total energy at this saddle point
is degenerate. It is therefore impossible, in general, to
choose two- and three-body potentials that will produce
this behavior. The model potentials (a and P) that were
constructed show slightly different topologies which may
affect the dynamics of the cluster. The best potential in
this respect was found to be potential P, which should, in
fact, represent an excellent approximation for the Born-
Oppenheimer surface of three silicon atoms.

Because it was not possible to model terms of order S

the N-body expansion for the crystal was truncated at or-

three-body terms which are screened directly. However,
in this approach the topology of both the two- and the
three-body terms is preserved such that the energy is
given by the following, using four fitting parameters:

E=A, ,g V~ ( A.2r, , A.2r, )

der 4. It was then assumed that the remaining terms did
not perturb the topology dictated by the first terms and
that their effect could be well represented in the four-
body term. An accurate modeling of the exact first two
terms of the N-body expansion showed that their contri-
bution to the total energy of the crystal and to the force
constants was too large by an order of magnitude and in-
duced a very long range of interaction. These charac-
teristics led to the construction of a four-body term with
a relatively large amplitude and range of interaction.
These resulting features of the global potential for the
crystal proved to be incompatible with obtaining a posi-
tive surface energy and invalidated the initial hypothesis.
It was therefore concluded that successful application of
the N-body expansion in the case of bulk silicon would
require knowledge of terms of order higher than 4, which
is presently dificult to obtain. Another method was at-
tempted which involved a rescaling of the two- and
three-body terms such that their morphology was
preserved. The resulting potentials proved incapable of
giving the correct equilibrium structure. It is possible
that this situation could be improved by the use of an ad-
ditional four-body term, but this was not attempted in the
present study.

Finally, the present study of the Born-Oppenheimer
surface of triatomic silicon shows that the terms of the
N-body expansion are strongly dependent on one another.
This remark is of profound significance, since it implies
that the morphology of the Born-Oppenheimer surface of
X atoms may show unexpected nongeneric characteristics
which would then preclude any analyses in terms of gen-
eric local potentials.
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