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Reduced coordinates on the configuration space of three and four atoms
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A framework for constructing three- and four-body interatomic potentials is proposed. The study is

motivated by a need for an understanding of the morphology of these potentials and consequently the

morphology of the Born-Oppenheimer energy surface (i.e., the location of the surface minimum and sad-

dle points). Invariant coordinate systems on the configuration space of three and four atoms are there-

fore developed which allow the morphology of three- and four-body terms to be chosen. Direct applica-

tions of these coordinates include the construction of interatomic potentials and an analysis of the local

geometry around an atom in a crystal.

I. INTRODUCTION II. OBJECTIVES

Classical potentials have been used extensively to study
the properties of various crystals, including those with
covalent bonding. Some of these potentials, such as
Tersoff's for silicon, were derived from the tight-binding
approach to total-energy calculations. This method has
the advantage of providing a mathematical form that can
be fitted to experimental data. Other approaches have
been more phenomenological, such as the one proposed
by Keating. In this approach the total energy is expand-
ed as a sum of many-body terms. Construction of the
terms in this expansion, which together reproduce the
properties of crystalline silicon, is then dependent on an
intuitive understanding of the space containing many
atoms.

The goal of this paper is to present coordinate systems
for the configuration space of three and four atoms that
will provide the geometrical insight required to construct
many-body terms. The improvement is twofold. First,
the use of these coordinates allows the morphology of the
potential to be chosen. Second, the use of a radius in the
three- or four-body configuration space permits definition
of specific cutoff radii for the three- and four-body terms.
This latter condition results in a significant reduction in
the number of three- or four-body terms that need to be
accessed, thus increasing the efficiency of the computa-
tion.

This paper is structured as follows. Sections II and III
describe the motivation for deriving reduced coordinates
together with a summary of the main results obtained. In
Sec. IV a mathematical analysis of the problem is
presented, the details of which are given in the Appendix.
Section V describes the general approach for constructing
the three- and four-body coordinates which are subse-
quently derived in detail in Secs. VI and VII. An applica-
tion of the three-body coordinates to the construction of
potentials in silicon is given in a companion paper.

The idea in constructing three- and four-body coordi-
nates is to develop a tool that describes the three- and
four-body configuration spaces in terms of their symme-
try configurations, since this will, in turn, provide a
better understanding of the morphology of the three- and
four-body terms of the interatomic potential. The sym-
metries present in these spaces necessitates the existence
of critical points for interatomic potentials in symmetric
configurations. If a simple shape for the interatomic po-
tential is assumed, then it could have all its saddle points
on such configurations. A description of the potential's
topology therefore requires a good understanding of the
neighborhood of symmetry configurations. As seen
below, such a description can be obtained fully in the
three-body configuration space, but only partially so in
the four-body case.

A p-body potential is a function defined on the
configuration space of p particles, which is the space
R XIR X XIR . Its elements are p-uplets
(u „u2, . . . , u~ ), where u; is a vector in R and represents
the position of particle i. Notice that this space can also
be viewed as lR~R . The symmetries relevant to a p-
body term are the following.

(a) Global translations: group R . This term does not
depend upon the position of the p-uplet center of mass.

(b) Global rotations and inversion: group O(3). This
term does not depend upon its orientation in space.

(c) Permutations of identical atoms: group S when
the p atoms are identical, which is the case under present
consideration.

The method for constructing such a potential is to use
some internal coordinates which are sufficient to
represent the relative atomic positions. A pair potential,
for example, is seen as a function of the interatomic dis-
tance. In this case, it is easy to check that this parameter
(the interatomic distance) is enough to specify the relative
positions of two atoms independently of symmetries of
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types (a), (b), and (c). The case of three atoms is more
complex. Previous studies have used internal coordinates
that describe the triangle geometry independently of sym-
metries of types (a) and (b). Symmetry of type (c) is then
taken care of by symmetrizing the potential itself. The
Stillinger-Weber potential for silicon, for example, is
constructed using two interatomic distances and one an-
gle. More precisely, the triangle (i,j,k) is represented by
the distances d(i,j), d(j, k) and the angle Qijk He. nce,
it is seen that substituting i for k does not change these
coordinates, but that substituting i for j does. In fact,
this coordinate system places special emphasis on the
atom j. A symmetric three-body potential is then ob-
tained as

III. STATEMENT OF MAIN RESULTS

A. Three-body configuration space

Reduced coordinates are constructed in the three-body
configuration space, which map this space on the set
[0, + oo ) X [0, 1]X [0,1]. They are denoted as

(r,s„s2)

The first coordinate is a radius in the reduced three-
body configuration space. It defines the spatial extension
of the configuration. The two other coordinates define
the geometry of the configuration. They can be expressed
in terms of atomic coordinates as

(r, s &,s2 ) = (r, sin (38/2), sin(2y) ), (2)

V3 =
—,
'

( V;, k+ Vk, + V, ,I) .

The problem with this method now appears: Insight
into the shape of V;k (the location of the minimum in
particular) is lost in V3. Compared to V, k, the location
of the V3 minimum cannot be expressed in terms of any
of the three possible coordinates systems, which em-
phasize only one of the i, j, or k.

In order to avoid this problem in the present study,
coordinate systems have been constructed that are invari-
ant under the symmetries (a), (b), and (c) with specific ap-
plications to three and four atoms. These coordinates are
called reduced coordinates for they are coordinates of the
reduced configuration space, which is the configuration
space divided by symmetries (a), (b), and (c). Any func-
tion of these reduced coordinates can then be considered
as a p-body term (where p is equal to 3 or 4). Construc-
tion of these coordinates will provide improved insight
into the topology of the potential and subsequently en-

able greater use of geometrical intuition in the modeling
of condensed matter.

with

r =A, (X)+A2(X)+A3(X),
A 3(X)

sine=
[ A7(X)+ A 3(X)]'

A3(X)
sin0 =

[ A 2(X)2+ A 2(X)2]1/2

[A2(X)+A (X)]
sing= cosf = A, (X)

(3)

(4)

where

A, (X)=X,+X~,
A~(X) =X —X

A3(X)=2X, X~,

with

Xo

X2

(1/&3)(u, +uz+u3)
(1/&2)(u, —u2)

(1/&6)(u, +uz —2u, )

where ( u „u2, u 3 ) are the atomic positions in R .
The symmetry configurations then have these equa-

tions:

Equilateral triangles
Isosceles triangles

Obtuse
Acute

Linear configurations

s2=0 (one dimensional)

s, =0 (two dimensional)

s, = 1 (two dimensional)
sz=l (two dimensional)

Note that the coordinate s, is not defined when s2=0
(equilateral triangles). Also, the half-planes s, =O and

s, =1 are the two halves of the same plane (isosceles
configurations) which intersect on the line of equilateral
triangles. These two conditions impose restrictions on
the functional form of the three-body term.

The description that is therefore obtained is one of a
regular dihedral with well-defined faces, edges, and
corners, thus making an analysis of the three-body term
topology possible.

B. Four-body configuration space

Reduced coordinates are constructed in the four body-
configuration space. When expressed in terms of
Demazure's polynomials (see the Appendix and Sec. IV
below), they are

x&=+r2, x4=[r7 —(r4/3) )Ir7, x7 r7I(r2)

x& =(r& /Qr2) —v 3, x& =r4(r5 —2r7 I 3)/(r2), x& rs /r7—5/2 2

x3 =(r3 l(r2) )
—1/3&3, x6= r6lr2 .
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Demazure's polynomials are

r, —A2+B2+C2& r5= A2A )+B2B,+C2C)

A2+B2+C2 r A2A2+B2B2+C2C2

3 A2B2C2 r7 A1B ) C)

r4= A +B +C r8 = A ] +B
&

+C&

where

and

A ) =X2 X3, A2 —X),
B& =X]'X3, B2 =X2

C& =X~'X2& C2 =X3

(10)

Xo
'

X)

X2

X3

(u ] +u) + u 3 + u4 )

—,'(u, —u2+u3 —u4)

—,'(u
&

—u2 —u3+ u4)

2(u)+up u3 u4)

where (u „u2,u3, u4) are the atomic positions of the four
atoms in 1R .

The reduced coordinates map this space onto a hyper-
surface of R+ XI(, where E is the product of six bounded
intervals. The boundaries of this surface are not all un-
derstood so that a complete analysis of the topology of a
four-body term is still not possible. However, this choice
of coordinates allows an understanding of the vicinity of
some symmetry configurations of interest for the descrip-
tion of a simple crystalline solid such as silicon. Their
equations are

Tetrahedron
Triangular pyramid
Triangular star

X2 X3 X4 X6 X7 0
X2 =X3 =X4=0
X2 =X3 =X4 =X5 =0

The derived coordinates therefore permit construction
of four-body terms that reach their lowest values for
these configurations.

IV. MATHEMATICAL BACKGROUND

Remark. In the following the term "coordinate sys-
tern" will be used in an extended sense. A coordinate sys-
tem (p-body coordinates) will be a set of invariants
[through symmetries (a), (b), and (c)) that are sufficient to
define the relative positions of atoms. The coordinate
system will be said to be proper if it comprises as many
invariants as there are degrees of freedom in the system,
that is, 3p —6 for p atoms. In this case, the invariants are
independent: There does not exist any relationship be-
tween them.

The problem of dividing the configuration space by the
orthogonal group O(3) has been addressed by Yon Neu-
mann, who proved that any function defined on the
configuration space which is symmetric under O(3) is in
fact a function of the scalar products q;~

= ( u; ~
u 1 ).

Indeed, he showed that any polynomial in the atomic

coordinates that is symmetric under the action of O(3)
can be written as a polynomial in the q, -'s. The q,. 's

therefore define p(@+1)/2 invariants, which are in-
dependent when p equals 3.

The condition that these polynomials are also sym-
metric under the action of translations is then equivalent
to p conditions on the q; 's, which are that the sum of
each row of the matrix (q;J) is equal to zero (it is
equivalent to stating that the u s are taken in a barycen-
tric reference state). This implies that, within each row,
the diagonal term is equal to minus the sum of the off-
diagonal terms. Hence, the configuration space divided
by the rotations and the translations is fully described by
the off-diagonal terms [in number p (p —1)/2], which are
independent when p equals 3 or 4 (they form a proper
coordinate system for the configuration space divided by
rotations and translations).

The problem of dividing further by the finite group of
permutations is more difficult. The method used to
achieve this goal is the following. The algebra of polyno-
mials in the q; s, i & j, is considered and the structure of
the subalgebra of polynomials symmetric under the atom-
ic permutations (which induce a subgroup of the full per-
mutation group of the q, .'s) is studied. A typical result
that is required is something similar to what exists for the
polynomials of n variables symmetric under the full per-
mutation group. It can be shown that any symmetric po-
lynomial can be written as a polynomial in n elementary
symmetric polynomials. These elementary symmetric po-
lynomials would then appear as a proper reduced coordi-
nate system. Unfortunately, this result is generally
wrong if a division by a subgroup of the full permutation
group is made. Noether conjectured that the field of ra-
tional fractions symmetric under the specific subgroup of
cyclic permutations could be generated by elementary po-
lynomials and it is only recently that a counterexample
has been found.

It will be seen below that there exist three symmetric
polynomials that generate the field of symmetric rational
fractions in the case of three atoms and that there does
not exist a set of six symmetric polynomials that would
do the same thing in the case of four atoms (see the Ap-
pendix for a proof of the latter result). As far as the
present problem is concerned, this means that it is possi-
ble to find proper reduced coordinates for the
configuration space of three atoms and that it is not pos-
sible (at least using this approach) in the case of four.
This study will, however, indicate how four-body poten-
tials can be understood and constructed.

The final goal is to understand how the topology of the
p-body potential can be chosen. This will be relatively
easy if proper p-body coordinates exist. The existence of
a proper p-body coordinate system is therefore the first
question that needs to be addressed.

In this section some recently proved results will be
stated that allow this question to be answered. The
description will be focused on aspects of the analysis that
are directly related to the present problem. The aim is to
give a global view of the structure within which the p-
body coordinates are constructed and therefore to give
some insight on how they can be used.
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S(Q)= g (r(Q).1

Card S
P

(13)

S is a projector from A to A~ (it projects any polyno-
mial in a symmetric polynomial).

Consider next the monomials. Their image through S
S

generates A~ . A monomial can be represented by a la-
beled graph such as

which represents the polynomial q Izq23.
The image of this monomial through S can then be

represented by an unlabeled graph such as

I l~ Q
Notice that the degree of a graph is equal to the num-

ber of links and that the number of nodes has to be less
than p. Among the graphs, the reduced graphs can be
defined, which are the graphs with no multiple link.
They are, in some sense, the simplest symmetric polyno-
mials that can be considered.

The first question to be asked is, do the reduced graphs
S

generate the whole algebra A ~ (so as to reduce the size
of the problem)? The answer is that it is true for p less
than or equal to 4 and false for p equal to 5. For this
reason, the analysis is restricted to three- and four-body
coordinate systems. Consider the reduced graphs with
less than four nodes. They are shown in Fig. 1.

It is seen that three of the graphs in Fig. 1 have less
than three nodes. As only three coordinates are needed
to describe the configuration space of three atoms and,
since in the case of three atoms the reduced graphs gen-
erate the whole symmetric algebra, it is concluded that
the three symmetric polynomials constitute a proper
coordinate system for the configuration space of three
atoms. Hence, the problem of the existence of three-body
coordinates is solved, and any function of these coordi-
nates will constitute a symmetric three-body term.

The problem is now to look for the smallest set of gen-

FIG. 1. Reduced graphs with less than four nodes.

First consider q;J
= (u; ~

u. ), where u; represents the po-
sition of atom i .Hence, i and j belong to [ l,p]. Consider
next A~ =K [q;.] the algebra of polynomials in the q;. 's

on a field E. It is seen that S, the permutation group of
[l,p] acts on A~, through

Vo ES~, cr(q, )=(u (,.) ~u (.)) .

Let A ~ be the ring of invariant elements of A
through S . Consider then S, defined on A by its action
on QEA by

erators in the four-body case. The fact is that the re-
duced space is six dimensional and that there are ten
different invariants. There are therefore algebraic rela-
tions between these invariants. The problem of finding a
proper coordinate system will be solved if it is possible to
use these relations in order to express four of the invari-
ants in terms of the other six.

This may not be possible, but suppose it is. Then, four
of the invariants can be expressed as rational fractions in
terms of the others. However, these rational fractions are
defined only where their denominators are nonzero. In
other words, the four invariants cannot be expressed in
terms of the others where the denominators are equal to
zero. Thus, it is, in general, not possible to use the six
coordinates to distinguish points that lie on the hypersur-
faces defined by the nullity of the denominators. It is, at
best, expected that the coordinates allow points to be dis-
tinguished on the complementary to these hypersurfaces
(which is, however, open and dense in the configuration
space).

It has been shown that in the present case even this is
not possible. The problem is a practical one since in try-
ing to solve for four invariants, an equation quadratic in
terms of the variable that need to be extracted always ap-
pears. This implies that given six invariants, there are
two ways of choosing the seventh. The six invariants are
therefore not sufficient to describe fully the configuration
space since they define at least two different confi-
guration.

These two difficulties will be illustrated for the four-
body coordinates that are derived below, and it will be
shown how this affects the choice of the four-body poten-
tial. The reader is referred to the Appendix for a proof of
the nonexistence of six generators in the four-body
configuration space. To conclude this section, the main
results are summarized as follows.

(i) It is possible to find a proper coordinate system in
the case of three atoms that describes the totality of the
configuration space (as opposed to a dense subset).

(ii) It is not possible to do so in the case of four atoms,
for two reasons: (a) At least seven coordinates are needed
to describe a point without ambiguity, and (b) given a
choice of coordinates, there may exist hypersurfaces in
the configuration space on which the coordinates will not
distinguish points.

V. A CHOICE OF COORDINATE SYSTEM

The construction that is now presented was initiated
independently from the one described in Sec. IV. Howev-

er, it was found to be an application of the more general
scheme introduced above and therefore of interest. First,
it provides a convenient framework within which some of
the previous results can be simply demonstrated. Second,
it enables invariants to be constructed whose simple alge-
braic form is a decisive advantage in a computational
context.

The configuration space of three atoms can be seen as
R~(3) R . Elements of this space can be written as
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p 3

m,~ e;8 e~
i =1 j=1

where m; represents the jth component of atom i. The
interest in this formalism lies in the way the various
relevant groups are then seen to act.

(a) A global translation of vector v in R is seen as a
translation of vector u v, where u is equal to (1, . . . , 1)
in lRP.

(b) An element S in O(3) acts as I S, where Iz is the
identity in lRP.

(c) A permutation r in S~ acts as TsI3, where I3 is the
identity in Rp and T is the matrix representation of 7 on
Rp.

Division by translations and rotations

Translations are considered first. The division by glo-
bal translations in RpR is performed through restric-
tion to a subspace of 1Rp. The quotient space is then
F1R, where F is the orthogonal in Rp to the vectorial
space generated by the p-uplet,

u =(1,1, . . . , 1) .

This is in fact equivalent to choosing a barycentric refer-
ence state. As the two other groups let FlR invariant,
this space can be further used for division by rotations
and permutations.

It can be seen that this is equivalent to considering the
off-diagonal q;J's (as in the previous approach} and the ac-
tion of the quadratic forms defined on F1R by the ma-
trices MI3, where M is symmetric. A sketch of the
proof is the following: It is shown that the q; 's can be
considered as a free family of quadratic forms. The sub-
space that they generate has dimension p (p —1)/2,
which is the dimension of the space of these quadratic
forms. The q; 's therefore constitute a basis of this space
which is equivalent to the above statement. As the atom-
ic permutations are seen to act on the space of quadratic
forms, this space can be used further to divide by permu-
tations.

Division by permutations

The idea of dividing by permutations is to look for a
basis of the space of quadratic forms in which atomic per-
mutations can be expressed simply. As the problem has
been reduced to that of a group (the finite group of atom-
ic permutations} acting on a vectorial space (the space of
quadratic forms), it seems natural to use group theory to
look for a decomposition of the space on which the group
elements will be simultaneously block diagonalized. An
even more powerful approach is to look for a generating
family of the space that will be globally invariant under
group action, using the same idea that underlies the con-
struction of root systems for finite reAection groups. It
is emphasized that the purpose here is to find the simplest
invariants possible in order to generate simple coordinate
systems.

In the specific case of three and four atoms, such gen-
erating families of the space of quadratic forms which are

globally stable under the group elements can be recog-
nized. This provides a decomposition of the space which
is the result that is required.

Step I: Action of an atomic permutation on a quadratic form

Let MI3 be the matrix of a quadratic form (hence, M
is symmetric real) and A (X) be the quadratic form itself.
Then, for all X in F 1R,

A(X}=-,' 'X M@I,.X . (14)

i.e. , M~'T M T . (15}

Notice that since permutations are normal operators, 'T
is the matrix of the permutation 7

Step 2: Similarity with conjugation relation
and interpretation of involutive permutations

as quadratic forms

Consider the conjugation relation A defined between
permutations by

V7])72 ESp )

(r,lr2) (3rGS~, such as r, =r '
r2 r) .

(16)

The classes of this relation are composed of the permu-
tations with equal lengths of cycle. Notice now that the
matrix of r is symmetric (and therefore defines a quadra-
tic form) if and only if it is involutive. Moreover, this
property is compatible with the conjugation relation R:

V7])72 ESp

(r)Ar2)=(r) r)=&d~r2 rp=&d) .
(17)

Hence, if one element in a class is involutive
(equivalently, if its matrix is symmetric}, then all the ele-
ments in the class are involutive. The desired decomposi-
tion of the space of quadratic forms will therefore be
achieved if classes of permutations are found, the ma-
trices of which generate that space. The atomic permuta-
tions will then be seen as exchanging the elements of this
generating family.

Step 3: Listing the classes for three and four atoms

For the case of three atoms, it is found that the classes
IIdI, Ir,2, r», r23I are needed in order to generate the
whole space of quadratic forms. These two classes are
found to generate a decomposition of the space of quad-
ratic forms into two supplementary subspaces (respective-
ly, one and two dimensional), which correspond to irre-
ducible representations of the permutation group. The
way these quadratic forms are used to construct invari-

Let 7 be a Permutation of Sp. It acts on FlR as a
linear operator TI3, where T is the representation of 7
on F. This, together with the previous formula, shows
that A, or equivalently M, transforms with a permutation
7 as

A (TtsI3 X)=—,
' 'X ('T M T)SI3 X,
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ants is explained in Sec. VI.
For the case of four atoms, it is found that the class

[ 7)z, 1 )3,7 z3, 7)4 7z4, 73$ j is enough to generate the whole
space of quadratic forms. This representation breaks
down into three irreducible representations which are, re-
spectively, one, two, and three dimensional. The corre-
sponding coordinates are described in Sec. VII.

VI. THREE-BODY COORDINATES

When p =3, the following change of basis can be made
to separate the global translations:

u, Xo (1/&3)(u, +uz+u3)
(1/&2)(u, —u, ) . (18)

(1/&6)(u, +uz —2u3)

u2 —+ X]
Q3

e, =(1/v'2)(1, —1,0) and ez =(1/&6)(1, 1,2) . (19)

Consider now the matrices of the permutations when
represented in this basis. They are

—1 0

The space F(3R is then spanned by the tensors
X = (X„Xz) and F itself is spanned by the vectors

tions. Notice that these coordinates are bound by the tri-
angular inequality which imposes that

A, (X) & A z(X)+ A 3(X) . (25)

1 0
12' 0

&3/2

2

These coordinates can now be used to divide further by
permutations and generate a proper system of coordi-
nates. The first step to accomplish this is to look at the
action of the permutation group on these quadratic
forms, so that the division by permutations appears as a
restriction to a subset of the space that they span. This
can be done by looking at the action of transpositions,
since they generate the whole permutation group.

It is then seen that the transpositions leave A ] invari-
ant so that permutations can be understood through their
action on the plane generated by 22 and A3. With these
conventions, their action can be represented in the basis
( A z, A

& ) by the matrices

T]2 0 1 2
—&3/2

&3/2
2

13
2

T23 —&3/2

—&3/2
1

2

and a basis of the space that they generate is

Thus, for example, the configurations defined by
( A„Az, A3) and (A„Az, —A3) are symmetry related
(through r&z), and those such that A3=0 are symmetry
configurations (they are in fact isosceles triangles where
atoms 1 and 2 can be exchanged). The two other transi-
tions act in a similar fashion as inversions with respect to
planes constructed on the vectors:

1 0
M3=

0 1

1 0 (21)
and

((0, 1,&3),(1,0,0)) for r&3,

The identity permutation generates a one-dimensional
subspace supplementer to the previous one, and is
represented by

1 0
0 1

(22)

These three matrices generate a basis of the vectorial
space of quadratic forms through the relation

X]
~A, (X)=(X, Xz) M, SI3

. 2. 2

The coordinates that are obtained are given by

A, (X)=Xf+Xz,
Az(X)=X, —Xz,
A3(X}=2X, X

(23)

(24}

( A &, Az, A 3) therefore form a system of coordinates for
the configuration space divided by rotations and transla-

((0, 1, —&3),(1,0,0}) for rz3 .

The configuration space will therefore be divided by
permutations if A z and &3A&+ A 3 are restricted to be
positive (which implies that &3Az —A3 is positive). The
reduced space appears as the intersection between a cone
[defined by inequality (25)] and a dihedral with a basis
delimited by the directions A3=0 and V3Az= A3 (see

Fig. 2). Each of the lateral faces of the dihedral
represents isosceles triangles and the axis A ] represents
equilateral triangles. The surface of the cone, which is
the other limit, represents degenerate triangles (the three
atoms form a line).

At this point there are two different ways to proceed.
One is to apply the scheme introduced in Sec. IV. The
other is more geometrical than algebraic. It consists of
defining three families of surfaces (f, =K&, fz =Ez,
f3=E3), each being invariant under the action of the

group, such that their intersection defines symmetry-
related points. As this second option was the first to be
developed and used, and as the result it gives is
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ik
ml -—z

m2

Notice that r and y are invariant and that the action of
the group can be represented on 0 by symmetries around
0, n. /3, and 2m. /3. Moreover, there are boundary condi-
tions on the limits of the sector of cone of interest that
will be taken care of if the following coordinates are con-
sidered:

FIG. 2. Schematic of the three-body configuration space.
The figure on the left represents the full three-body
configuration space which is limited to the interior of the cone.
The z axis represents equilateral configurations. The isosceles
configurations are represented in the (r, q) plane (right-hand

figure). The division by permutations can be viewed as a restric-
tion to one of the dihedrals delimited by the planes of isosceles
triangles.

(r, s „s2 ) = (r, sin (38/2), sin(2y) ),

which can be expressed as

sin (38/2) =
—,
'

j 1 —cos8[4cos 8—3]],

where cos8 is given above and

(29)

(30)

equivalent to that obtained from the first method, it is the
one that is presented here. It will be seen that in the case
of four atoms a geometrical method such as this is not
efficient (mainly due to the fact that it is difficult to imag-
ine families of surfaces in six dimensions). The algebraic
scheme will therefore be used to circumvent this
diSculty. Even so, an attempt will be made to recover
some geometrical insight in constructing the final coordi-
nates.

Consider first the spherical coordinates (r, 8,y) that
will be used further to construct invariants. Thus, con-
sider

r = A f (X)+ A q(X)+ A 3(X)

sin(2y) =2 sing cosy, (31)

VII. FOUR-BODY COORDINATES

where sing and cosy are also given above.
The above coordinates form a proper system of coordi-

nates, as can be checked by solving for the A's (an equa-
tion of degree 6 is obtained which has indeed six real
roots). The four-body coordinates are now presented,
which are a direct application of the scheme described in
Sec. IV and could not have been constructed without it.

=(X +X ) +(X —X ) +(2X X ) (26)
A. From atomic coordinates to invariant polynomials

A2(X)
cos8=

[A (X)+ A (X))'

[(X2—X') +(2X .X ) ]' '

A3(X)
sin8=

[A (X)+A (X)]'

(27)

Xo

X)

u3 X2

—,'(u, +uz+u3+u4)

2(u) u2+u3 u4)

—,'(u, —
u~

—u3+u4) (32)

As in the case p =3, a change of basis is made to
separate the global translations:

2X) X2

[(X —X ) +(2X X ) ]'

Q4 X3 (u] +u2 u3 u4)

[[A (X)] +[A,(X)] ]'/
sing=

7

[(X2 X2 )2+(2X X )2)1/2

[(X2+X2 )2+ (X2 X2 )2+ (2X .X )2]1/2

A, (X)
cos((p =

T

X +X
[(X2+X2 )2+ (X2 X2 )2+(2X X )2]1/2

(28)

e, =
—,'(1, —1, 1, —1),

e2 =
—,'(1, —1, —1, 1),

e3 =-,'( l, l, —1, —1) .

(33)

Consider now the matrices of the permutations when
represented in this basis. They are

The space F(3)I is then spanned by the tensors
X (X] X2 X3 ) and F itself is spanned by the vectors
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TABLE I. Action of transpositions on quadratic forms, first basis.

T12

T13

T14

T23

T24

34

T]2

T12

T23

T24

13

T14

34

+]3

T23

T]3
34

T]2
T24

T]4

+]4

24

34

T]4
T23

T]2
T]3

723

T13

T]2
T]4
T23

34

T24

24

T14

T]3
T]2

34

T24

T23

+34

T]2
T]4
T]3
T24

T23

34

0 —1

T,2=
0 0

0 1 0

0 1

0, T)3= 0
1 0

1 0 0

0 0
0 —1

—1 0

0 0 —1

T)4= 0 1 0
—1 0 0

0 0 1
(34)

T34 1 0 0
0 0 1

T24 — 0 0 1, T23 =
0 1 0

0 1 0
1 0 0

0
1

0

1 0
A~= —,'(T24+T 3)= 0 0

0 0

0
1

'1
0 0

8~ =
—,'( T23+ T)4)= 0 1

0 0

0 0
0 1

1 0

0
0
0

0 1

0 0
0 0

0
0
0

0
C, =

—,
'

( T,2
—T34 ) =— 1

1

0

0 0
C2 =

—,'( T 2+ T34)= 0 0
0 0

1 0
0 0
0 0

0
0
1

and they form a basis of the space of symmetric matrices.
The action of the transpositions is summarized in Table I.

The change of basis (in the space of quadratic forms),

allows the action of transpositions to be rewritten in the
form shown in Table II.

There are two consequences. First, it is seen that per-
mutations do not mix A „8„C, and A 2, B2,C2 (since
the transpositions listed above generate the whole permu-
tation group). What is obtained here is the decomposi-
tion of a six-dimensional representation into two three-
dimensional ones. It can be seen further that one of these
representations is irreducible (the one spanned by A „B„
and C, ) and that the other breaks into a one-dimensional
and a two-dimensional representation [consider, in the
space spanned by A2, B2, and C2, the space generated by
(1,1,1) and its orthogonal space]. Hence, the action of
permutations can be viewed in R XR. The action of
permutations in that space can therefore be listed which
permits the division by permutations to be viewed
through a restriction to a sector of the total space, in a
manner similar to the case of three atoms. However,
constructing coordinate systems will require that the
A, 's and the A z's are mixed so that the kind of geometri-
cal construction developed for three atoms cannot be
used.

Second, the actions of perrnutations on the A's can be
listed so that invariant polynomials can be constructed in
the same way Demazure has done with the q;, 's. Eight
polynomials are obtained that are equivalent to the eight
first graphs of Demazure. The first eight invariants are

TABLE II. Action of transpositions on quadratic forms, second basis.

A]
8,
C,
A2

82
C,

712

Al
—C 1—8 I

Az

C2
82

13

—C 1

B]
—A 1

C2
82
A2

+]4

—8 1—A 1

C,
82
A2

C2

723

81
A]
C,
82
A2

C2

24

C]
B]
A]
C2
82
A2

+34

A]
C]
Bl
A2

C2
82
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listed below:

ri = A2+B2+C2& r5= A2A i+BqBi+C2Ci,
r=A +B+C r =A A +BB+CC
r3 A 2B2C27 P7 A )Bi Ci

r4= A +B +Ci, r8= A i+B)+Ci .

(36)

B. Geometrical approach to the reduced space

As mentioned above, the division by permutations in
thespace I XR spannedby A&, BI, C&, A2, B2, and C2
can be viewed through a restriction to the subset ofI XR defined by the inequalities

Ai+Bi &0, A2&B2,

B)+C) &0, C2 & A2,

A(+C) &0 .

(37)

It is seen that the group operations transform this sub-
set into other subsets which, together with the faces that
separate them, form a partition of the total space. In this
representation, the reduced space appears with faces and
edges of decreasing dimensionality. The structure of
these faces and edges turns out to be a good way to un-
derstand the total space, for the edges with the lowest
dimensionality correspond to symmetry configurations.
The edges with the lowest dimensionalities are therefore
listed, which allows meaning to be attached to the points
of that space. It is in this way that the final coordinates
chosen are understood. The final coordinates are seen as

A) &V B2C2,

B) &QA2C2,

C) &QA2B2,

A2A )+B2B)+C2Ci —2AiBiCi & A2B2C2 .

Table III lists the most important limiting cases.

(38)

C. Obtaining a coordinate system

The difficulties related to the existence of coordinate
systems are now presented. As shown by Demazure, the
seven first polynomials generate the field of rational frac-
tions. Since the space of interest has dimension 6, it
would be desirable to have only six coordinates. The first
set of coordinates to examine consists of polynomials r i,
r2, r3 p4 f5 and r7, since they are of lowest degree. To
determine whether they form a coordinate system or not,
an attempt is made to solve for the A's in terms of

i ~ p5 p7 If this can be done, then a solution can be
found for the configuration itself, which would show that
the corresponding configuration exists and is unique.
Consider therefore the set of equations

(i) r; =k;, (39)

where i belongs to I1,2, 3,4, 5, 7] and k, , . . . , ks, k7 are

families of surfaces in that space which admit some of
these edges as limiting cases. Hence, configurations with
high symmetry appear as extrema of the coordinates.

It should also be noted that the A, 's and the A 2's are
not totally independent. They are bound by triangular
inequalities:

TABLE III. Symmetric four-body configurations expressed in the second basis of the space of quad-
ratic forms.

Zero dimensional

A2 =B2=C2 =0
One dimensional

Four atoms in one point

A2=B2=C2, A] =B]=C] =0

A2 B27 Cp 0~ A ] B] C] 0
or symmetry-related equations

Ay=By=C2= 2A] = 2B]= 2C]
or symmetry-related equations

A2 =B2=0
or symmetry-related equations

B2
or symmetry-related equations

A2 =B2, A, =B]=C] =0
or symmetry-related equations

A2=0, A] =B]=C] =0,
or symmetry related equations

A2 =82 =C2, A] =B]=C]
or symmetry-related equations

Two dimensional

Regular tetrahedron

Square

Equilateral triangular star

Degenerate: 2 points; 2+2

Degenerate: 2 points; 3+1

Distorted tetrahedron

Rectangle

Triangular pyramid
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values taken by r&, . . . , r5, r7 (so that the system has at
least six real solutions). In practice, at least as many
solutions are obtained as there are permutations because
the r, are symmetric. What is required is that there exist
no further solutions.

Consider first r, , rz, r3. Then if (i =7) r7 =k7, (43)

Case 1. Suppose that Az=Bz=Cz. The rank of the
system of equations with i =4, 5, 6 is then equal to 1.
Consider the system

(i =4) r~=k~,

S) =T), Sp —~(P) Pp), S3 P3
2 (40)

X —s,X +szX —s3

then Az, Bz, Cz appear as the three roots of the polyno-
mial

(i =8) rs =ks .

It implies

(i =4) X+ Y+Z =kg,

(i =8) X +Y +Z =ks, (44)

The roots are therefore defined up to their relative order.
Choosing an order, an attempt can be made to solve for
A, ,B&,C& using Az, Bz, Cz, r4, r„r7.

The first difficulty appears here: if Az=Bz=Cz, then
the equations with i =4 and 5 are equivalent. It is there-
fore not possible to solve for A

&
B i Ci ~ This illustrates

the existence of hypersurfaces on which the system of
coordinates would not be efficient, as pointed out in the
conclusion of Sec. IV.

Suppose that this is not the case. Then if X= A, ,
Y=B„and Z =C„equations with i =4, 5, and 7 imply
that

(i =4) X+Y+Z =kg,

(i =5) AuX+By Y+CpZ =ks, (41)

(i =7) XYZ =k7 .

The surface defined by i =7 cuts the plane defined by
i =4 along a complicated curve. However, the interest-
ing part of that curve (defined by X)0, Y & 0, Z )0) is
closed (and triangular looking). The plane defined by
i =5 cuts i =4 along a line, which generally intersects the
closed curve at two distinct points. These two points
then generate two families of solutions which are not re-
lated by symmetry (one considers the roots of X, Y, and Z
and selects the signs according to that of k7).

In order to eliminate this degeneracy, another equation
is needed. For example,

(i =6} A ~X+B~Y+C~Z =k6, (42)

then the point (X, Y,Z) appears as the intersection of
three planes, which is a single point when Az, Bz, Cz are
all diff'erent (the determinant of the linear system of equa-
tions with i =4, 5, 6 is a Vandermonde). This shows the
following.

(a) The two solutions of the system with i =4, 5, 7 are
not symmetry related, for they are discriminated by a
symmetric polynomial.

(b) The polynomials r, , . . . , r~, r7 are not enough to
define a proper coordinate system. At least seven coordi-
nates have to be used to describe a dense set in the
configuration space.

Now consider the problem in a more systematic way.

(i =7') XYZ =k7 .

This defines X, Y,Z up to relative order. It can then be
checked that the roots of X, Y, Z that give the correct sign
for r7 are symmetry related. This shows that r4, r7, and
rs are enough to obtain A&,B„C, in this case.

Case 2. Suppose, for example, that A z =Bz and
A&AC~. Then, the rank of the system i =4, 5, 6 is equal
to 2. Consider the system

(i =4) rq=kq,

(i =5) r, =k~,
(i =7) r7=k7 .

It implies

(i =4) X+Y+Z =k~,

(i =5) A~X+ A~ Y+CqZ =k5,
(i =7'} XYZ =k7,

(45)

(46)

from which s, =X+Y, sz =XY, and Z are easily comput-
ed. Hence, X and Y are obtained as the two roots x&,xz
of an equation of degree of 2. Two families of solutions
are therefore obtained. They are given by the square
roots of, respectively, (x, ,xz, Z) and (xz, x „Z), to which
we give signs such that r7 =k7. As Az =Bz, these two
families of solution are symmetry related. This shows
that r4, r„and r6 are enough to obtain A &, B, , and C, in
this case.

Case 3. Suppose that Az, Bz, and Cz are all distinct.
This is the first case considered, and it was seen that r4,
r5, r6, and r7 were needed to solve for A, , B,, and C, .

All the previous results may be summarized as follows:
(i) If Az =B&=Cz, then the six polynomials r~, rp p3 r 4,
r7 and r8 can be used in order to describe a configuration
without ambiguity; (ii) if A~=BzWC~ (or if
Az=Cz&B~, or C~=B~WAz), then the six polynomials
r, , r~, r3, r4, r~, and r7 have to be used; and (iii) if neither
of the previous conditions hold, then the seven polynorni-
als r, , rz, r3, r~, r5, r6, and r7 have to be used.

An equivalent and more concise way of stating the
same thing is to say that any symmetric function defined
on the configuration space can be written as

f(u, , uz, u3, u4)= f, (r, , rz, r3, r~, r7, rs)+gz(Az, Bz, Cz}f~(r, , rz, r3 p4 p5 p7)

+g3( A p Bp Cp )f3 ( r), r&, r3, r&, rz, r6, r7 ) (47)



46 REDUCED COORDINATES ON THE CONFIGURATION SPACE. . . 2143

where f, ,f2,f3 are general functions and gz and g3 are functions such as

g~( A2, B~,C~)—( A~ B—2) (B2 C—2) (C~ —A2)

g3(A2, B2,C2)=(A2 B2—)(B2 C2—)+(A2 B—2)(C2 —A2)+(C2 —A2)(B2 —C2)

(48)

(49)

In order to choose the functions f„f2,f3 more conveniently, a change of coordinates is made such that all but one of
the coordinates are bounded. The unbounded coordinate may then be thought of as a radius, whereas the others can be
thought of as "angular" coordinates. The final coordinates include the symmetry elements listed in Table III as limiting
cases, so that the symmetry configurations have simple equations in this coordinate system.

Taking into account the triangular inequalities, a good choice of coordinates seems to be

x& =Qr2, x4=[r& (r4/3—) ]j/r2, x7=r7/(r2)3~2,

x2=(r&/+rz) —&'3, xs=r&(r& 2r—7 r3)/(r—z) ~5, xs=rs/rz, (50)

x3=(r3/(r2) ) —1/3v'3, x6=r6/r2 .

We see the following.
(a) x

&
is positive and varies quadratically with respect

to interatomic distances. It is the only coordinate which
is not bounded, and can therefore be thought of as a ra-
dius in the configuration space. The other coordinates
are seen to define the geometry of the configuration. No-
tice further the following.

(b) x2 is negative and equal to zero when A2 =B2=C2.
(c) x3 1s negative and equal to zero when A2 =B2=C2.
(d) x4 is negative and equal to zero when

~
A

& ~

(e) x5 is negative and equal to zero when the
configuration is planar.

Presented below are the equations of some interesting
symmetry configurations. They are represented in Fig. 3.

Tetrahedron
Triangular pyramid
Triangular star

X2 X3 X4 X6 X7 0
XP =X3 =X4 =0
X2 —X3 =X4 —X5 =0.

VIII. CONCLUSIONS

tetrahedron triangular pyramid equilateral triangular star

FIG. 3. Symmetrical four-body configurations. The triangu-
lar pyramid is seen as an intermediate configuration between the
two others. The shaded atoms lie in a plane below the other
atoms.

The problem of understanding the morphology of local
potentials is addressed for the case of three- and four-
body terms. Coordinate systems in the configuration
spaces of three and four atoms are constructed that allow
for the analysis of these spaces in terms of their symme-
try configurations. The use of these coordinate systems
then permits the local potential morphology to be chosen.
For the case of three atoms, coordinates are constructed
on a reduced configuration space which is restricted to a
regular dihedral with well-defined faces, edges, and

corners. For four atoms, the coordinates are expressed in
terms of Demazure's polynomials on a reduced space that
exhibits singularities. These coordinates enable some
specific singularities, which are important symmetry
configurations, to be understood. Applications of these
coordinate systems include the construction of many-
body interatomic potentials (see companion paper ) and
the analysis of the local geometry around an atom in a
crystal.
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APPENDIX

This appendix shows that in the case of four atoms, a
generating family of the subalgebra of polynomials in-
variant under atomic permutations includes at least seven
elements.

S4 and the octahedron group

Let M be a set with four elements and Q be the set of
all subsets of M with two elements. Then the group eVM

of all 24 permutations of M acts on Q, defining a sub-
group SM of the group 4& of all 720 permutations of Q.
Q is made a graph by joining two subsets A and B by a
edge when A flB has exactly one element. Then each
element of Q is connected to all others except exactly one
(its complement in A), and the graph Q is an octahedron.
The eight triangular faces of this octahedron are of two
kinds: one, say, the white ones, are the four triangles of
the form I ah, ac, ad I, where a is a point of M and b, c,d
the three others; the four others, of the form t bc, cd, db I

are the black ones. Note that white and black triangles
are 2X2 opposites (nonintersecting) and that each pair of
opposed triangles can be labeled by an element of M (a in
the case above).
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The subgroup 6 of 4'& made by the automorphisms of
this octahedron has 48 elements and is exactly the nor-
malizer of S~ in S&. Moreover, 6 is a maximal sub-
group of S& and O'M is the subgroup of index 2 of 6
made of the automorphisms preserving the colors of the
faces.

It can also be noted that all the elements of S~ are
even permutations of Q and that 8 contains even and odd
elements, the even ones being those of S~.

The appearance of this larger normalizer can also be
explained in the following way. Given a set Q of six
points, to give them the structure of an octahedron is
equivalent to dividing them in three pairs of opposite
points, and connecting nonopposite points. This can be
done in 15=—",,

' ways. One such way having been chosen,
there are 48 permutations of Q which respect the given
decomposition in three pairs, and there are exactly two
possibilities of alternately assigning white and black
colors to the eight triangular faces. This assignment be-
ing fixed, each vertex belongs to exactly two white faces,
and this labels the vertices by the two-element subsets of
the four-element set of white faces.

The structure of 8
To fix notations, let 1, 2, 3, and 4 be the elements of M,

so that the six elements of Q are 12, 13, 14, 23, 24, and
34, where ij denotes Ii,j I. The opposite pairs are (12,34),
(13,24), and (14,23).

The structure of 8 is very simple. It contains an Abeli-
an subgroup H isomorphic to (Z/2Z), consisting of all
automorphisms respecting each opposite pair, and it is
the semidirect product of this invariant subgroup by the
symmetric group S3 of all the six permutations of these
three pairs.

A 1 X12 +X347 B1 X12X34

2 13 X24 ~ B2 X13X24

A 3 X14 +X23 B3 X14X23 ~

The group S'3 acts by permutation on the A's and the
8's, and its invariant ring ("bisymmetric functions"; see
below) is the invariant ring of 6 in P. The invariant ring
of SM is a super-ring of the latter which has twice as
many elements.

The ten basic invariants of SM correspond to sums ex-
tended to certain configuration of nodes of the octahed-
ron. Eight of them are invariant under 6, the two
remaining ones being v and w which correspond to sums
extended to triangular faces, and come in two "colored"
versions. Hence, v +w and vw are invariant under 6. To
simplify, write k =v+w, which with the other eight
gives us nine basic invariants for 8. Actually, vw can be
expressed as a polynomial in these nine basic invariants
because of the relation

vw = —(v +w)n ', tu +——', sun ——', n ——', s —y

+ —,ty +tz+ —,uz —
—,sr+16p .

The element v —w in anti invari-ant under 6: it trans-
forms under an element of 8 in v —w or w —v, according
to the signature of this element (as a permutation of Q).

Lemma. Any anti-invariant a of 8 is divisible by v —w

in the ring P; hence, a can be expressed as (v w)b, —
where b is an invariant of 6.

Proof. The transposition of X,2 and X34 is an element
of 8. Under it, a changes sign. This implies that a is
divisible in P by X,2

—X34. By the same argument, it is

divisible by X» —X24 and X,4
—X23. But a trivial calcu-

lation gives

Invariants of 4'& (X,~
—X34)(X,3 —X24)(X,4 X23 ) =V—

Consider the algebra of polynomials with rational
coefficients in six variables X,, with ij =

I i,j I EQ:

P —QIX,2,X,3 Xi4 X23 X24 X34 ] .

Then the group S& and its subgroups 8 and SM act on P.
The ring of invariants of the larger group S' is the poly-
nomial algebra X generated by the classical elementary
functions of the X's. Applying the notations used in this

paper for the ten basic invariants of SM associated to the
simple graphs on four vertices, these six elementary func-
tions are

s, t+u, v+w+n, y +z, r,p .

Invariants and anti-invariants of 6

The invariant ring of 0 is the polynomial ring in the
six variables:

Invariants of 4'~ and invariants of 8

Proposition Any invar. iant a of SM can be expressed in

a unique way as a =c +bv, where b and c are invariants
of 8.

Proof. Let a be an invariant of SM. Then, under all

elements of 8 not in SM, a becomes a certain element a',
also invariant under S'M. Also, a +a' is invariant under

6 and a —a is anti-invariant. By the preceding lemma,
there exists an invariant b of 6 with a —a'=(v w)b-
But this gives a —vb =a' —wb, so that c =a —vb is in-

variant under 8. This gives a =c +bv, as claimed. Uni-

city is obvious because, from a =c+bv, one deduces
a'=c+bw; hence, b(v —w)=a —a'.

This proposition means that the ring of invariants of
A'~ is obtained from the ring of invariants of 6 as the

quadratic extension associated to the quadratic polyno-
mial

(X —v)(X —w)=X —kX+( kn + +16p) . —
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Bisymmetric functions

ms, t
= A i As&s+i ' ' &s+t

O~s, 0+t, 1+s+t +r,
say, o, , For instance, the o., Q are the elementary sym-
metric functions of the A' s, and the crQ, are the elemen-
tary symmetric functions of the B's. Altogether, there
are r (r +3)I2 such elementary bisymmetric functions.

Proposition. (a) The o, , generate the algebra of all
bisymmetric functions: Every bisymmetric function can
be written as a polynomial with rational coefficients in
the o, , (b) Every bisymmetric function can be written
(in a unique way) as a rational fraction with rational
coefficients in the 2r elements o., Q for s =1, . . . , r and
o, &

fors =0, . . . , r —1.
Proof. The proof of (a) can be found in Bourbaki. '

The proof of (b) is a simple application of Galois theory.
To simplify the notations, we write o, =o., Q and '7 —o.

Let us consider the four fields E, E', L, and L' defined as
follows. E is generated by the o., and the ~„Lis generat-
ed by the A; and the ~„L' is generated by the A; and the
B, , and K' is the field of invariants of 1„in L':

q[( A,. },(r, )]=L CL'=Q[( A, ), (B, )]

U U

By construction,
L &1IlvRI'

so that L has degree ~r! (actually =r!) over E. By
Galois, L' has degree r! over E'. Suppose that L =L';
this will imply that L' has degree &r! over E, so that
E =E' and the field of invariants is generated by the o's
and the ~'s. Moreover, because L' has transcendence de-
gree 2r, so has E', and E' is the field of rational fractions
in this 2r generator.

The claim to be proven means that the 8; can be com-
puted as rational fractions of the A; and the ~, . But
there is by definition a linear system,

B)+ . - +8„=&Q,

B1(Ap+ + A„)+ . +B„(A 1+.. . + A„1)=w1,

Consider now the determination of the ring of invari-
ants of 8. More generally, consider a polynomial ring in
two sets of r variables,

R =Q[A„. . . , A„B„.. . , B,],
and the action of the symmetric group S„on it. The in-
variants of this action are by definition the bisymmetric
functions. Call elementary bisymmetric functions the ele-
ments obtained by bisymmetrization of the monomials of
the form

whose determinant is readily seen to be the Vandermonde
determinant of the A; (hence the square root of the
discriminant of the equation above with the o, as
coeScients). This ends the proof.

Invariants of 8
Take now r =3, coming back to the present ease, and

compute the nine elementary bisymmetric functions. We
find the following:

o1 p= A1+ =(X12+X34)+ =s,
opp A1A2+ ' ' ' (X12+X34)(X13+X24)+

3 p= A
1 A 2 A 3 (X12+X34 )(X13+X24 )(X14+X23 )

=U+w=k,

(XQ J
—8]+ —X]QX34+ . —u

+Q, 2 1~2 + X12X34 13X24+
o Q 3 8 ]8/8 3 X$2X34X]3X24X]4XQ3 p

I 1=A1B2+ ' ' ' =(X12+X34)X13X24+ =n

~2, 1 A 1 A2B3+ (X12+X34}(X13+X24)X14X23

+ ~ ~ o z 7

o 1,2 A 1B2 3+ (X12+X34}X13X24X14X23+

Hence, we have the following proposition.
Proposition (a) Ev. ery invariant of 8 can be expressed

as a polynomial with rational coefficients in the nine in-
variants s, t, u, k, n, y, z, r,p, of respective degrees
1,2,2,3,3,4,4,5,6. (b) Every invariant of 6 can be ex-
pressed in a unique way as a rational fraction with ration-
al coefficients in the six invariants s, t, u, k, n, z of respec-
tive degrees 1,2,2,3,3,4. (c) Every invariant of 8 can be
expressed in a unique way as a rational fraction with ra-
tional coefficients in the six invariants s, u, n, y, r,p of
respective degrees 1,2,3,4,5,6.

The expression given above for Uw can be found either
by brute force or by the following remark. Consider

(v —w) =(X,p —X,4) (X„—X24) (Xp, —X,4)

but

(X12 X34 } (X12+X34) 4X12X34 A 1 Bl

which gives

(v —w} =(A, —4B, )(A2 4B2)(A2 —4B2) . —

8)A2 . A+ . +RA) A,
Then one uses the classical computations to reduce the
bisymmetric functions to the elementary ones.
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Invariants of S~

From the preceding we have the following.
Theorem. (a) Every invariant of S4 can be expressed as

a polynomial with rational coei5cients in the ten basic in-
variants s, t, u, v, m, n, y, z, r,p of respective degrees
1,2,2,3,3,3,4,4,5,6. (b) The field of invariants of S4 is gen-
erated by the seven basic invariants s, u, t, v, m, n, z of
respective degrees 1,2,2,3,3,3,4,4 subject to a unique rela-

tion. In (a), the nine first invariants actually suffice, be-
cause the above-mentioned relation expresses p as a poly-
nomial in them.

The relation

Using the Macaulay computer algebra system designed
by Bayer, " an expression for R of degree 24 is obtained
the details of which are given by Dallot. '
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