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The semiclassical Boltzmann equation for a dense electron gas is generalized to a quantum kinetic
equation beyond the approximation of isolated collisions. The resulting quantum kinetic equation for
the Wigner function contains memory effects, which are determined by the retarded and advanced non-
equilibrium Green's functions of the scattered electrons and the screened Coulomb potential. A closed
set of equations for the distribution and the spectral functions is given which is exact within the general-
ized Kadanoff-Baym ansatz and the random-phase approximation. Simplifying approximations are
given which result in a quantum kinetic equation with memory kernels similar to those obtained for the
electron-phonon scattering. In the limit of completed collisions, the quantum kinetic equation reduces
to a Boltzmann equation in which the energy conservation is smeared out due to the finite time interval
and due to collision broadening.

I. INTRODUCTION

Femtosecond pump and probe spectroscopy with semi-
conductors' allows one to investigate the regime of ul-

trafast relaxation kinetics in an electron-hole plasma
governed by Coulomb and electron-hole interactions.
Monte Carlo simulations and direct numerical in-
tegrations' ' of the semiclassical Boltzmann equation
have been used to describe the time development of the
nonequilibrium electron distributions. Closely related
studies (see, e.g., Refs. 14 aud 15) of the nonequilibrium
electron kinetics are required to describe the transport in
semiconductor microstructures. The large electric fields
in these small devices cause large deviations from equilib-
rium distributions.

It is obvious that on a very short time scale the
Boltzmann picture of individual, successive collisions
breaks down and has to be replaced by a quantum kinetic
theory (see, e.g., Refs. 15—20). The quantum kinetic
equations can be derived in the framework of density ma-
trices (see, e.g. , Refs. 15—17), or of nonequilibrium
Green's functions (see, e.g., Refs. 18—20).

The quantum kinetics is characterized by the absence
of a strict energy conservation and by the presence of
memory e6'ects. In particular, for the electron —LO-
phonon interaction' the quantum kinetic equation for
the electron distribution is firmly established and already
well studied. Zimmermann has shown recently, ' by
direct numerical integration of the fully retarded kinetic
equation, that the electron distribution shows initially re-
laxation oscillations with the frequency of a LO phonon
before it enters the regular relaxation regime. The transi-
tion from the quantum-beat regime to the relaxation re-
gime illustrates beautifully the transition from coherent
to irreversible kinetics. It is important to note that quan-
tum beats are only present in a quantum kinetic equation
with memory; they are lost if the retardation is neglected.

The quantum kinetics of a dense electron gas with
Coulomb kinetics is less developed and understood, even

though several studies have been devoted to some aspects
of this problem, particularly for transport in strong fields
(see, e.g., Refs. 21 —23). In the present paper we will
derive a closed quantum kinetic description of a dense,
spatially homogeneous electron gas with Coulomb in-
teraction in the absence of any field. The idea is to study
for this rather basic system the initial quantum kinetic re-
gime, starting from a given initial nonequilibrium distri-
bution (e.g. , generated by a femtosecond laser pulse). We
assume that a separation between a "macroscopic" time
scale and a "microscopic" time scale is not possible. Ka-
danoff and Baym have shown that the assumption of
such a separation allows a quantum-mechanical deriva-
tion of the semiclassical Boltzmann equation also for a
Coulomb system with screening. The macroscopic coor-
dinate is introduced as the central time T =(t, +t2)/2 of
a two-time single-particle nonequilibrium function
G(t„tz); it describes the slow change of the distribution
function. The microscopic time t =t, —t2 describes spec-
tral properties, i.e., the fast oscillations and decay of the
microscopic correlations. Therefore one changes with a
Fourier transformation from t to ~. Products of two
two-time functions imply in the Green's-function theory
a time integral over common inner time variable. In
( T, to) space, these products are simple if the variations of
all functions with the macroscopic variable are
sufficiently slow. We will avoid such assumptions and
stay for the whole derivation strictly in the original two-
time representation. We will use a nonequilibriurn
Green's-function theory rather than a density-matrix
theory because the former is particularly well suited to
describe consistently the kinetic and the spectral proper-
ties. It will be shown that the kinetic equation couples to
the spectral functions of the electron and of the screened
Coulomb potential. The Green's-function theory allows
one to derive, on the same level of approximations, equa-
tions for the spectral functions. However, it is in princi-
ple a matter of individual preference whether nonequili-
briurn Green s-function or density-matrix theory is used.
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Our derivation relies strongly on the generalized
Kadanoff-Baym ansatz (GKBA) (Ref. 18) between the ki-
netic two-point function and the one-point distribution
function. Lipavsky and co-workers' showed that this
GKBA takes properly into account the causal time evo-
lution of the two-point function and gave a systematic
derivation of this relation, which allows one, at least in
principle, to check for a given system the quality of the
GKBA. All these features are not present in the original
Kadanoff-Baym ansatz, which was an intuitive generali-
zation of an equilibrium relation.

In Sec. II we evaluate all self-energies within the
random-phase approximation (RPA). Using the GKBA
one can express the scattering rates by retarded electron
distribution functions. The retardation is determined by
the retarded electron Green's function and by the propa-
gator of the screened Coulomb potential. The particle-
like potential propagator can be expressed exactly in
terms of a convolution of the particlelike polarization
function and the retarded and advanced screened
Coulomb potential. The particlelike polarization con-
tains the distribution of the electrons in the initial and
final states of the scattering partner at still earlier times.
Within RPA and the GKBA the equations of the retard-
ed electron Green's function and the retarded screened
Coulomb potential can be evaluated and form, together
with the quantum kinetic equation, a closed set of in-
tegral equations.

In Sec. III we describe simplifying approximations for
the spectral functions. With these approximations one
obtains a quantum kinetic equation with one simple re-
tardation of all distribution functions of the initial and
final states of the two scattering particles. The retarda-
tion is determined by the collision broadening of all four
involved particle states but also dispersively by phase
cancellation effects which are obtained from the integra-
tion over the transferred momentum and the momentum
of the scattering partner. This simplified Coulomb quan-
tum kinetic equation is suitable for numerical integration.
If one disregards, in a further approximation, the retarda-
tion of the distribution, one gets a Boltzmann-like equa-
tion in which the energy conservation is broadened by the
finite evolution time and by the collision broadening.

II. DERIVATION OF A CLOSED
QUANTUM KINETIC DESCRIPTION

The two-point particle Green's function
G» (t„t2)=i (a»(t2)a»(t, )) forms the basis of the kinet-
ic theory. For the Keldysh nonequilibrium Green's func-
tions the notation of DuBois is used. For simplicity a
spatially homogeneous system is assumed in order to con-
centrate fully on the time arguments. ak is the annihila-
tion operator of an electron in momentum state k (the
vector notation is suppressed}. Obviously the equal-time
limit of the particle function G» (t, t)=if»(t) yields the
particle distribution function f„. The equation of motion
for the particle propagator in the equal-time limit

+G»'(t, t ')X» (t', t)

X—»'(t, r')G»'(t', t)

—G» (r, t')X»'(t', t) ] .

Here X~ (t „t2 ) is the particle self-energy.
G» (t), t2) = i—(a»(t) )a»(t2 ) ) is the hole propagator
and X» (t), t~) its self-energy. The first two terms on the
right-hand side of Eq. (1) give the scattering rate into
state k, while the last two terms describe the scattering
rate out of state k. As shown in Eq. (1) these scattering
rates are convolution time integrals between the self-
energies and the particle propagators. The kinetic equa-
tion (1) connects thus a one-time distribution function to
two-time particle and hole propagators and is thus not
closed. Kadanoff and Baym (KB) suggested intuitively
how the two-time propagators should be connected ap-
proximately with the one-time distribution function. The
KB ansatz yields indeed the semiclassical Boltzmann
equation, but fails to give any retardation effects. Lipav-
sky and co-workers' developed a systematic theory for
this connection. In lowest order their result, called
GKBA, is a slight but very important generalization of
the old KB ansatz which expresses correctly the causality
of the time development of the two-time propagators us-
ing its equal-time value as an initial value:

iG» (t), tz) —G»(t„t2)G» (t~, t2) —G» (t„t2)G»(t, , t2)

=+i[ G»(r) t2}f» (&2)—f» (r) )G»(&) &2) l .

Here G» (t, t)=if» (t)=if»(t) and G» (t)= if» (t)—
i [1 f»—(t)], wh—ere f»(t) is the Wigner distribution

function (here for a spatially homogeneous system).
G»(t), t2) and G»(t), t2} are the retarded and advanced
Green's functions, respectively. For t, & t2 only the term
with the retarded Green's function contributes. This
function describes the time development of G»~(t„t2)
away from its diagonal value at the earlier time t2. For
t, ( t2 the time development is governed by the advanced
Green's function. For t) =t2 the relation (2) is obviously
exact. From (2) one recovers the KB ansatz by the fol-
lowing rough approximation:

G» (t„t2)-+ f» ((t, +t2) l2)

X [6»(t„t,) —G»(r„t, ))

=+if» ((t, +t2)/2}A»(t„t2),

where A»(t„tz) is the spectral function. While the KB
ansatz also has the correct equal-time limit, its midpoint
approximation for the distribution functions violates
causality. Recently, a further interesting derivation of
the GKBA has been given. In the following the GKBA
of Eq. (2) will be used to close the kinetic equation (1).

For Coulomb scattering the self-energies X&~(t, , t2) are
given in RPA by
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~k( 1 r2) t rj Gk —q( 1 r2)Vs~q( 1 2)
q

(3) last term of the right-hand side of Eq. (7), one gets

The particlelike screened Coulomb potential V,q ( t1, t 2 )

will first be expressed in terms of the particlelike polar-
ization function L . In obvious matrix notation we
write (the explicit momentum and time arguments and in-
tegrals are suppressed)

V, =L "( VV, —VV,"L V;)+ V,"L V; .

By using Eq. (7) again one gets

V, =L "(VV, —V,"V, +VV,"L "V, )+V,"L V; .

(9)

V I1~2 Vg + VL 1 3VI3 2
S 7)1712 S

and particularly

V,
+ = V(L++ V,

+ +L+ V, )

(4)

(5)

For the third term on the right-hand side we use Eq. (8b)
and get a complete compensation between the resulting
first four terms. (Note that V is a scalar, not a matrix. )

The simple final result is

t1
V„(r„r2)= dr3 dr4V, ",(r„r3)L, (i„t4)V;(r„r2) .

or

V& V(LtV& L & Vt ) (6)

where L' and V' are time- and antitime-ordered func-
tions. They can be expressed in terms of particlelike, re-
tarded, and advanced functions: L '=L "+L and
V,'= V, —V;. Equation (6) becomes

This result (see also Ref. 28) means that one can express
exactly the two-time particlelike potential in terms of a
convolution of the retarded potential, the particlelike po-
larization L, and the advanced potential. This result is
a generalization of the corresponding equilibrium result
given, e.g. , by Kadanoff and Baym.

In RPA the polarization bubble is given by

V, =VL "V, +VL V,
' .

The retarded potential obeys the equations

V"= V+ VL "V"

and

V"= V+ V'L "V

(7)

(8a)

(8b)

Lq' '(t„t2)= i ), g —Gk'+'q(t„t2)Gk' '(t2, t1) .
k'

From Eq. (12) one gets

Lq (t1, t2) = —i g Gk +q(t1, t2)Gk (t2) t1) .
k'

(12)

(13)

Putting the Coulomb potential V from Eq. (8a) into the
With these results the first term of the quantum kinetic
equation reads

q ( I ) I t t t
dt'Xk (t, t')Gk (t', t)=g dt' dt3 dt4V," (t, t3)Gk, + (t3, t4)Gk. (t4, t3)V; (t4, t')Gk (t, t')Gk (t', t) .

to 0 to to
q, k'

(14)

In order to be able to use the GKBA, one has to establish a definite order between the times t3 and t4. By splitting the

t3 integral one gets

g f d 'Gk, (t, t')Gk'(t', t)fk, (t')[1—fk(t')] f dt4V;, (t4, t')
q,

0

t4
x f dr3 ~q 3 k+q 3 4 k 4y3fk, +q(t3[ fk' 3]

+ f dr3 Vq(r, r3)Gk, +q(r3, r4)Gk, (r4, r3)fk +q(r4)[l —fk, (r4)]
t4

(15)

The second term of Eq. (1) which belongs to the rate-in is obtained from Eq. (15) by interchanging in all spectral func-

tions the time arguments and by replacing all retarded functions by advanced ones and vice versa. By these means the
second term becomes just the complex conjugate of the first one. The total resulting kinetic equation which one gets
from Eq. (1) is
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—f„(t)=y f'dt 6„" (t, t')G„'(t', t)fk (t')[1 f—k(t')]
Bt k, P

I f4

Xf «.V:,(t't') f «3 sq &3 k'+q 3 4 k' 4 3fk'+q 3[ fk' 3t 4 sq 4&
fp

+ f dt3V'q(t&t3)Gk+q(t3&t4)Gk (t4&t3)fk+q(t4)[1 fk—.(t4)] +[c.c}
4

—g I dt'G„",(t, t )Gk(t, t)[1—f, ,(t ))f,(t )

q, k'

4 t4
X dt4V; (t4, t') dt3Vq(t, t3}Gk+ (t3, t4}Gk (t4, t3)[1—fk.+q(t3)]fk(t3)

tp

t+ dt3 VIq(t& t3 )Gk&+q(t3& t4)Gk&(t4& t3 )[1 fk~+q(t4 )]fk&( t4 ) + [c.c }
t4

(16)

Equation (16) is the central quantum kinetic equation.
The collision rates contain the distribution functions of
the scattered particles before and after the collision as re-
quired by the Pauli principle. However, the initial- and
final-state occupation probabilities of the considered elec-
tron which is scattered from k~~k —

q enter at the retard-
ed time t' & t, and those of the scattering partner enter at
still earlier times t3, t4. These memory effects are the
trademark of the quantum kinetic regime. Due to the ex-
tra retardation introduced by screening, they are particu-
larly involved in a dense Coulomb system.

In order to close this quantum kinetic description, one
has to calculate the spectral (i.e., retarded and advanced)
functions of the screened Coulomb potential and of the
electron propagator. The RPA retarded screened
Coulomb potential obeys Eq. (8a}which is explicitly

I

der with the free-particle Green's function

6„'+,(t, , t, )= —i8(t, —t, )e
"""'""',

&e/ '[t)6;(t,, t, )=i8(t, t, )e—

and with t =t, —t2 the result

Lq(t l, t2) = —i8(t) g e' '" "+' ~[fk(t2 } fk+q(t2)] —
~

k

(23)

In equilibrium one gets with a Fourier transform with
respect to t the well-known Lindhard formula

V,",(t, , t, )= V,5(t, —t, )

f)
+v, f «3Lq(tl&t3}V,"(t3&t2) .

The retarded polarization L" is given by

Lq(t„t2)=Lq++(tl, t2)+Lq+ (tl, t2)

=L,'(t„t, ) —L,'(t„t, ) .

Using the identity

(17)

(18)

&(}y fk fk+q

k CO+ t~+ek ek+
(24)

Finally, one has to address the problem of calculating the
retarded electron Green's function from its Dyson equa-
tion which in the integral form is given by

Gk(tl&t2)= Gk (tl, t2)
t) f2+ f dt3 f dt46„' (t„t3)

Gk(tl t2 } 8(tl t2 }Gk (t2 tl }
XX"(tk3 t4)Gk(t4, t2), (25)

+8(t, —t, )6„(t„t,)
one gets

L;(t, , t, )=8(t, t, )[L,'(t, , t, ) —L,'(t, , t—,)],
which reduces with the GKBA to

(19)

(20) V,', (t„t,) = V,gt, t, )+8(t, t,—) V„(t„t,)—
+8(t, —t, )V„'(t„t,) (26)

with the retarded RPA Coulomb self-energy
Xk =Xk —Xk . Using Eq. (19) and a corresponding repre-
sentation of the screened Coulomb potential

(tl&t2 } 1 y Gk'+q(tl &t2 }Gk'(t2&tl }
k'

X [fk.(t2) fk+q(t2)] . —(21)

and

lim Gk(t„t, ) =6„'(t„t,), (27)

From the polarization function (23}one gets in lowest or- one finds for the retarded self-energy the form



2130 HARTMUT HAUG AND CLAUDIA ELL 46

&k(ti tz) —&I (ti@(ti tZ)

+B(t, t—, )[X„'(t„t,) —X„'(t„t,)], (28)

where Xk(t, ) is the instantaneous exchange self-energy With the GKBA one gets

Xk(t„tz) = X—f„q(tz) VqS(t, t, )
—&e—(t', —tz) Q Gl,

" q(t„tz) [[I f„—,(t, )]V q (t„t,)+f„,(t, ) V
q (

q q

In equilibrium the retarded self-energy Eq. (30) reduces
to the usual RPA self-energy.

Now we have derived a closed system of equations
which is, within RPA and the GKBA, exact: The quan-
tum transport equation (16) for the electron distribution,
Eqs. (17) and (21) for the retarded potential, and Eqs. (25)
and (30) for the retarded electron Green's function. The
particlelike potentials in Eq. (30) can be eliminated with

Eq. (11). The advanced functions do not have to be cal-
culated separately, they can be obtained from the retard-
ed functions by the relations Gk(t„tz) = [Gk(tz, t, )]' and
V q( t ],tz ) = [ V,q( tz, t

/ ) ]
These equations have to be solved self-consistently,

which seems to be quite involved even with the use of
supercomputers. Simplifying approximations are neces-
sary to proceed with numerical analysis.

4nen (.tz )
~p)(tz) =

EO

coq(tz) =a)p, (tz) 1+ +Cq
tz

(33)

where the time-dependent plasma frequency co~~(tz) and
the frequency of the efFective plasmon pole coq(tz) enter
in Eq. (32) at the earlier time tz (and not at the central
time T,z) as the polarization (23) shows. If one studies
the femtosecond relaxation by Coulomb scattering the to-
tal number of electrons n (t) =n is constant and therefore
the plasma frequency is also constant. The inverse
screening length a can be obtained by integrating the
long-wavelength limit of (23) over the microscopic time
t =t, tz —In th. ree dimensions (3D), one finds

477e2 ~ de
+3D(tz )= f p(e)f (e, tz)

6O e
(34)

III. SIMPLIFYING APPROXIMATIONS

In transport problems with electron-phonon scattering
damped free-particle approximations, of the form used to
derive Eq. (23), have been used' ' for the electron spec-
tral functions

assuming that the nonequilibrium distribution is isotro-
pic, i.e., depends only on the energy e; p (e) is a parabol-
ic density of states.

In 2D, one finds correspondingly

( —icy pk )(t& t2)G„"(t„t,) = i8(t, t,—)e—
(31)

2 2e m
K2D(tz)= f (O, t2) .

Gp

G„'(t, , t, ) =ie(t, —t, )e

where yk has to be calculated from the imaginary part of
the retarded electron self-energy. But normally a self-
consistent treatment of yk is omitted and some reason-
able collision broadening is used. A mean energy renor-
malization by the real part of the retarded self-energy can
be included in the single-particle energy ek. The retarded
potential also needs some extra simplifying approxima-
tions, because its integral equation is still too diScult
even if one uses Eq. (31) for the polarization function. A
large simplification is obtained if one uses a nonequilibri-
um version of the plasmon pole approximation. In the
time representation we get

V,",( t, , t, ) = V,5(t, —t, }

V,",(t, , t, )= V„(tz)5(t, t, ), —

where V, is in the simplest approximation

(36)

In relaxation experiments in which the originally created
electrons are not too energetic the inverse screening
length ~ will also depend only weakly on time. With the
potential (32) the quantum kinetic equation describes pro-
cesses in which at an early time an electron is scattered
k'+~k'+q under emission (absorption) of a plasmon,
which propagates in the system for some time before it is
absorbed (emitted) by the scattering of the other electron
k~~k —

q at time t' giving rise to a change of the distribu-
tion at time t.

A still simpler approximation is obtained if one uses a
statically screened (nonretarded) potential

~p((tz)—V 6( t, —tz ) sin [coq ( tz )( t
~

t 2 )], —
~q tz

(37)

(32)
The resulting quantum kinetic equation for a statically
screened potential is with to =0:with
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Bf„(t)= —2 g doV', (t)V, (t —o')cos((ek+ek —ek q
e—k+q)tr)e

Bt k' 0

X I fq(t —o )fk, (t —0 )[I f—k q(t —o )][1 f—k.+q(t —o )]

(38)

where I kk q pk+pk +pk q+pk +q is the sum of all collision damping coefficients. Now all four distribution func-
tions enter the collision rate at the same retarded time t —cr, while the statically screened potential enters at the times t
and t —0.. The non-Markovian memory terms extend over a time interval which is given by the sum of the four damp-
ing coefficients. These coefficients are determined in turn by the imaginary parts of the retarded Coulomb self-energy.
In a complete theory this collision broadening should be included self-consistently. An urgent problem to investigate is
in which sense the energy in this system is conserved. But even with I kk q 0, the memory would have only a finite
duration because the integrations over q and k' cause a cancellation due to interferences in the cosine function.

A direct, numerical integration of this nonlinear, retarded quantum kinetic equation (38) seems to be difficult but not
impossible, as the recent work of Zimmermann' for an electron system interacting with LO phonons shows.

A further simplification is possible in the limit of completed collisions, where all retardations of the distribution and
of the screened potential are ignored. In this limit one gets with the much simpler equation

= —g Vq(t)V„(t)D(ek+ek ek q
—ek+q)—[fk(t)fk(t)[1 —fk q(t)][1—fk+, (t)1

q, k'

fk'"]fk -q' "fk -«' "fk +«("] (39)

where D (co) is a broadened 5 function

D (co)= 2
[co sin(tot)e ' —I cos(cot)e "'+I ] .

co +I
(40)

method.
For detailed application to ultrafast optical semicon-

ductor spectroscopy, one has to generalize this theory to
the multiband case. This extension of the theory will be
given in a separate publication.

The only difference of the quantum kinetic equation in
the completed-collision limit to a semiclassical
Boltzmann equation is that the energy conserving 5 func-
tion is replaced by a broadening function D, which takes
into account the finite lifetime of a particle state in a plas-
ma and the finite evolution time of the system. Reggiani,
Lugli and Jauho have already shown for electron-
phonon scattering that the quantum kinetic equation in
the completed-collision approximation can be treated
again by an extension of the Monte Carlo simulation

ACKNOWLEDGMENTS

This work has been supported by the Deutsche
Forschungsgemeinschaft and by the Volkswagen Stif-
tung. D. K. Ferry, A. P. Jauho, and R. Zimmermann are
gratefully acknowledged for communicating results of
their work prior to publication. The authors thank L.
Banyai, R. Zimmermann, and A. P. Jauho for stimulating
drscussrons.

J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexan-
dre, Phys. Rev. Lett. 55, 2074 (1985).

~W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S.
Chemla, and C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).

W. Z. Lin, J. G. Fujimoto, E. P. Ippen, and R. A. Logan, Appl.
Phys. Lett. 50, 124 (1987).

4P. C. Becker, H. Fragnito, C. Brito-Cruz, J. Shaw, R. L. Fork,
J. E. Cunningham, J. E. Henry, and C. V. Shank, Phys. Rev.
Lett. 61, 1647 (1988).

5M. A. Osman and D. K. Ferry, Phys. Rev. B 36, 6018 (1987);
R. P. Joshi, R. O. Grondin, and D. K. Ferry, ibid. 42, 5685
(1990)~

6C. J. Stanton, D. W. Bailey, and K. Hess, IEEE J. Quantum
Electron. 24, 1614 (1988).

7S. M. Goodnick and P. Lugli, Phys. Rev. B 38, 10 135 (1988).
D. W. Bailey, C. J. Stanton, and K. Hess, Phys. Rev. B 42,

3423 (1990).
K. El Sayed, T. Wicht, H. Haug, and L. Banyai, Z. Phys. B 86,

345 (1992).
J. Collet, T. Ammand, and M. Pugnet, Phys. Lett. 96A, 368
(1983); J. Collet and T. Ammand, J. Phys. Chem. Solids 47,
153 (1986).

M. Asche and O. G. Sarbei, Phys. Status Solidi B 141, 487
(1987).
W. Schafer, in Festkorperprobleme, Advances in Solid State
Physics, edited by U. Rossler (Vieweg, Braunschweig, 1988),
Vol. 28, p. 63.
R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henne-
berger, and S. W. Koch, Phys. Rev. B 45, 1107 (1992).
C. Jacobini and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).
D. K. Ferry, Semiconductors (MacMillan, New York, 1991).
J. R. Barker and D. K. Ferry, Phys. Rev. Lett. 42, 1779
(1979)~

R. Zimmermann, J. Luminesc. (to be published).
P. Lipavsky, V. Spicka, and B. Velicky, Phys. Rev. B 34, 6933
(1986); P. Lipavsky, F. S. Kahn, A. Kalvova, and J. W. Wil-



2132 HARTMUT HAUG AND CLAUDIA ELL 46

kins, ibid. 43, 6650 (1991).
A. P. Jauho, in Granular Nanoelectronics, edited by D. K. Fer-
ry (Plenum, New York, 1991),p. 133.
L. Reggiani, P. Lugli, and A. P. Jauho, Phys. Rev. 8 36, 6602
(1987);J. Appl. Phys. 64, 3072 (1988).

2 D. Lowe and J. R. Barker, J. Phys. C 18, 2507 (1985).
~T. F. Zheng, %. Cai, and M. Lax, Phys. Rev. B 38, 1406

(1988).
I. I. Baike, Yu. M. Sirenko, and P. Vasilopoulos, Phys. Rev. B
43, 7216 (1991).

~~L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(Benjamin, New York, 1962).
D. F. DuBois, in Lectures in Theoretical Physics IX C, Kinetic

Theory, edited by W. E. Brittin, A. O. Barut, and M. Guenin
(Gordon and Breach, New York, 1967), p. 469; see also L. D.
Landau and E. M. Lifshitz, Course of Theoretical Physics Vol.

X, Physical Kinetics (Pergamon, Oxford, 1981}.
See, e.g., G. D. Mahan, Phys. Rep. 145, 253 (1987).
H. C. Tso and N. J. M. Horing, Phys. Rev. B 44, 1451 (1991).

8M. Hartmann, H. Stolz, and R. Zimmermann, Phys. Status
Solidi B 159, 35 (1989).

29H. Haug and S. Schmitt-Rink, Prog. Quantum Electron. 9, 3

(1984).
MSee, e.g. , H. Haug and S. W. Koch, Quantum Theory of the

Optical and Electronic Properties of Semiconductors (World
Scientific, Singapore, 1990).


