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We present a model of the electronic density of states {DOS)for a wide class of ternary and quaternary
semiconductor alloys. Our approach is based on a large-cluster calculation using a semiempirical tight-
binding model for the electronic structure. The microscopic lattice configuration is eSciently deter-
mined by a Keating potential for the strain energy. The electronic DOS is calculated numerically via the
recursion method. Results are presented for ZnSe& „Te„. It is shown that the strong band bowing ob-
served for this material is due to pure compositional disorder and bond-angle fluctuations. Bond-length
fluctuations are found to be of minor significance. Without any free, adjustable parameters for the alloy,
our model is in quantitative agreement with experimental data on the composition dependence of the
main energy gap.

I. INTRODUCTION

A sound understanding of ternary and quaternary
semiconductor alloys is an important prerequisite for suc-
cessful design and fabrication of a new generation of elec-
tronic devices. Combination of group-IV, III-V, and II-
VI semiconductors of various energy gaps and lattice
constants has allowed the creation of artificial semicon-
ductors with band gaps ranging from below zero to
several eV.' A large variety of optoelectronic devices
which are based on these alloys has been built or pro-
posed. Semiconductor lasers and infrared detectors are
probably the most prominent examples. More recently,
the diversity of material properties has been largely
broadened by successful growth of high-quality materials
from lattice-mismatched constituents, II-VI materials, as
well as their incorporation into superlattices and quan-
turn wells.

While a sound understanding of the electronic struc-
ture of pure group-IV, III-V, and, to a lesser extent II-VI
materials can be claimed, the electronic structure of ter-
nary and quaternary alloys is still under extensive investi-
gation. The disorder which characterizes these alloys
makes conventional band-structure calculations which
rely on the Bloch-Floquet theorem and the use of crystal-
lographic unit cells rather inconvenient. For ab initio
and other expensive computational techniques, the size of
supercells which can be handled numerically is too small
to represent an alloy. Recently, methods have been pro-
posed which may help to overcome this problem for ab
initio calculations. Next to the adoption of small-size su-
percells, several other approximation techniques have
been applied to disordered semiconductor systems. The
simplest approximation is the virtual-crystal approxima-
tion (VCA) which artificially reintroduces the fcc unit cell
by resorting to virtual atoms. The properties of the virtu-
al atom on a certain lattice site are composition-weighted
averages of the properties of all the atoms which may oc-
cupy this particular site. All other information about

substitutional disorder, such as the signature of the atom
which actually occupies the site, and the local environ-
ment of the atom is lost. This approximation has been
made within a variety of band-structure models. ""

Agreement between experimental data and VCA pre-
dictions for the composition dependence of the main en-
ergy gap is generally rather poor. We have shown previ-
ously for Al Ga& As that the neglect of compositional
disorder is fully responsible for the failure of the VCA to
reproduce the experimental composition dependence of
the main energy gap. Moreover, whereas some of the
macroscopic properties of the system scale linearly with
composition, various experiments on ternary and quater-
nary semiconductors have clearly established the failure
of the VCA. For example, anion-cation bond lengths are
remarkably independent from composition ratios. Con-
sequently, the nearest-neighbor positions cannot be per-
fectly tetrahedral. This has been confirmed by ferroelec-
tric behavior and chemical shifts of nuclear magnetic res-
onance. ' Photoemission spectroscopy has revealed that
the density of states of the valence bands contains the sig-
nature of individual atoms and their local environment. '

There is experimental evidence that k-vector conserva-
tion is not fulfilled in semiconductor alloys. " Phonon
spectra of ternary and quaternary alloys maintain optical
phonon modes which can be associated with the constitu-
ents. ' Finally, band edges of ternary and quaternary al-
loys show considerably stronger band tailing than their
binary constituents. '

Alternative to the VCA, a (single-site) coherent-
potential approximation (CPA) has been used. ' ' It has
been shown to lead to a considerably better account of
compositional disorder for Al Ga& As than the VCA. '

A refined method which is, to some extent, capable of ac-
counting for both on-site and off-site disorder is the
molecular coherent-potential approximation (MCPA). '7

Essentially, the CPA accounts for site disorder but uses
an average local site environment. The incorporation of
angle variations and strain fields is somewhat tedious and
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agreement with experimental band-structure data is fre-
quently unimpressive.

Cluster calculations, which do not require the presence
of periodicity in the structure, represent an alternative to
large supercell band-structure calculations. Numerically
feasible cluster sizes scale inversely with the level of so-
phistication adopted for the representation of the atoms.
Unfortunately, rather large clusters of more than
30X30X30 atoms are needed for a realistic representa-
tion of ternary or quaternary alloys. '

In this paper, we present an efficient and accurate
method to calculate the local density of states (LDOS)
and density of states (DOS) of ternary and quaternary
semiconductors. Our approach does not rely on the
VCA, CPA, or the adoption of small unit cells and is cap-
able of handling any alloy formed from (lattice-
mismatched) ZnS-structured isovalent semiconductors.
It reliably accounts for the composition dependence of
the main energy gap and reveals the origins of band bow-
ing as a function of composition. In particular, one can
separate the contributions from purely compositional dis-
order, bond-length and bond-angle fluctuations. It makes
possible a reliable quantitative prediction of the band gap
for a large class of tetrahedral semiconductor alloys, and
band-gap engineering is given a microscopic foundation.
This is achieved by the use of the sp s' semiempirical
tight-binding (TB) model and the d scaling law to
represent the atoms and interatomic bonds in the alloy.
The efficiency of the sp s* model allows the use of clus-
ters which may contain more than 50000 atoms and,
therefore, provide a realistic representation of all possible
local atomic configurations. The latter are efficiently ob-
tained by means of a Keating potential to relax a lattice
of given composition into a state of minimum strain ener-

gy.
' ' The tight-binding parameters and the parameters

in the Keating potential are adjusted to reproduce experi-
mental band-structure data and the elastic properties of
the constituents, respectively. With use of the experi-
mental values for the band offset between the constituents
to relate TB parameters for different materials to each
other, there are no free adjustable parameters in this
model of the alloy. The evaluation of diagonal elements
of the Green's function (resolvent) associated with the
cluster is most conveniently performed via the recursion
method. ' Contrary to the CPA, there is no need to in-
troduce an effective medium as long as the cluster is
sufficiently large. As this approach gives the LDOS, it
provides a theoretical means to probe local details of the
electronic structure of a system, including disordered ma-
terials, heter ostructures, and defect complexes. We
have developed an efficient code to calculate Green's-
function matrix elements via the recursion method. Ap-
proximately 95%%uo of the code could be vectorized to en-
sure efficient computation on a supercomputer.

Our model is presented in Sec. II. In Sec. III we dis-
cuss numerical aspects of our calculations. Section IV is
devoted to a study of ZnSe& Te„. This material is of in-

terest because of its wide band gap which makes it a po-
tential candidate for green-blue light emitting optical de-
vices. Moreover, it has extremely strong band bowing
which is remarkable because there is no direct-

gap —indirect-gap transition in this alloy. The energy gap
of the alloy between x =0.3 and x & 1 lies below the gaps
of the two constituents, ZnSe and ZnTe. The VCA total-
ly fails to reproduce this feature which makes this materi-
al an ideal candidate for testing our approach and for
studying the origins of strong band bowing, as well as the
limitations of the VCA. Moreover, s-p-orbital based TB
models are sometimes believed to be too simple to ac-
count for the properties of II-VI semiconductors. By
comparison with experiment, we show that they can be
used successfully for the present purpose. Summary and
conclusions are presented in Sec. V.

II. MODEL

First, a perfect fcc cluster of finite size is selected
which may either be truncated at its surface or subjected
to periodic boundary conditions. According to the com-
position ratios x and y of an alloy A B& ~CyDf —y,
atoms 3 and B are placed onto the cation sites and atoms
C and D are placed on the anion sites, either completely
at random or according to some empirical occupation
correlation function. Every atom is given a label and
record is kept of the relative position and identity of its
four nearest neighbors. Once an atom has been placed
onto every lattice site, the lattice is relaxed into a state of
lowest strain energy. Generally, the constituent materials
will not be lattice matched, and so the local bonding envi-
ronment will deviate from the perfect tetrahedral fcc
configuration. The bond length between two atoms, say
A and C, is quite insensitive to the environment into
which this pair is put, whereas the average bond length
follows Vergard's law. The fact that in ZnS- and
diamond-structured semiconductors bond-stretching
forces dominate over bond-bending forces is well
represented by a Keating potential for the strain energy,
for which we choose the form

CXIJ.

't6 y 2 (re r j R j R j
I'J' RIJ

+
g y y g g (r~j'r/g R~j'R;k ) ~

J &k Ij ~k

Here, R;. and r... respectively, are the ideal (binary) and
actual bond lengths between atoms i and j. a;j and Pj;k
are force constants which determine the rigidity of bond
lengths and bond angles, respectively. This simplest ap-
proximation for the deformation energy in a covalent
solid has been verified to accurately reproduce experi-
mental data on the structural properties of semiconduc-
tor alloys. By reconsidering every site repeatedly, we
continuously relax the lattice from a perfect fcc structure
into a fourfold coordinate network of minimum energy.

Next, we account for the electronic properties of the
atoms and their bonds. In view of its efficiency and the
need for large-cluster sizes, the present model for the
(L)DOS is based on a semiempirical sp s* tight-binding
model. It was originally designed to account for the
band structure of (indirect) semiconductors, but has sub-

sequently been applied to numerous other problems.
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where c.k„ is on-site energy and vk„„ is the overlap in-

tegral for two states I
kp ) and jIv ) of nearest-neighbor

lattice sites k and j.
The TB matrix elements for the alloy are found by first

adjusting the TB parameters to reproduce the main
features of the experimental bulk band structure of the
constituent binary semiconductors, whereby special at-
tention is paid to the vicinity of the main energy gap.
The main Aaw of the present model, perhaps, is that it
does not account for spin-orbit effects. In particular, the
valence-band maximum is threefold (sixfold, with spin)
degenerate. This somewhat restricts the applicability of
the present version of the model. However, attempts
have been made to account for spin-orbit effects within
TB models.

As the TB parameters associated with an atom, in gen-
eral, depend on the host material, we adopt the following
procedure to determine their values for atoms in the al-
loy. First, the diagonal elements ck„of the atoms of a
given constituent are shifted by a common constant to
reproduce the experimental value for the band offset at
the interface with the other constituent(s). In this way,
we empirically establish a common reference level for the
diagonal elements of all the atoms involved in the alloy.
Then, the on-site energy associated with a given cation A

in the alloy, E „(A„B, „C«D, «), is determined accord-
ing to

e„(A„B, „C«D, «)= 4[Nce~(AC)+N~s„(AD)],

where e„(AI) are on-site energies for atom A in material
AI and NJ is the number of nearest neighbors I. We
proceed similarly for anions.

Off-diagonal elements are determined in the following
way. For bonds A-C, material AC values are used; for
bonds B-D, material BD values are used. However, these
of-diagonal elements are subsequently modified accord-
ing to the d scaling law to account for the actual bond
lengths in the cluster. Moreover, for overlap integrals
we follow Ref. 28 to account for the bond angles

Every atom is characterized by five basis states, one s,
three p, and one s* state. The latter is used to compen-
sate for the neglect of more than nearest-neighbor cou-
pling. The Hamiltonian is of the form

0= gek„lkp&&kpl+ & Uk„,„lkp)&jvl,

& ~pl G(z) I ~p ) =
Z Q 0

b2

b2
Z Q 1

b
Z g

ja„J and jb„J, respectively, are the diagonal and off-
diagonal matrix elements of the linear-chain Hamiltoni-
an.

III. NUMERICAL DETAILS

Our model was used to obtain the electronic DOS for
ZnSe& „Te„,which will be presented in the next section.
In this section we discuss some of the general numerical
details which were necessary to perform the calculations.

Owing to the computational efficiency of the Keating
and sp s' models, large clusters can be used within the
present approach. In the calculations for ZnSe, Te, we
used about 55000 atoms. It should be noted that some-
what smaller clusters are sufficient to obtain a good rep-
resentation of the overall band structure. However, for

850—
I I I I

I
I I
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and z axis, respectively.
This procedure associates with the cluster a TB Hamil-

tonian matrix of high dimension in terms of the basis
functions

I lp ). The LDOS for a certain orbital
I Ip) is

given by

n (E, lp)= ——lim Im&lplG(Z)lip) .1

7T 5~0+

Here Z =E+i5 and 6 is the resolvent operator for the
system characterized by the Harniltonian H. The diago-
nal element of the Green's function is found by a basis
transformation which renders the matrix H in tridiagonal
form, whereby the orbital

I
lp ) is selected as the first nor-

malized basis state. This procedure is known as the re-
cursion method or Lanczos method and has been exten-
sively discussed in the literature. '

The resulting matrix formally represents a semi-infinite
linear chain with nearest-neighbor coupling in terms of
which the desired matrix element of the resolvent opera-
tor can be expressed in the form of a continued fraction

ss sso.

Vs+ =lVs, ~

V =1V +(I—l)V„,
=lmV —lmV

V„,=lnV —lnV „,

where l =cosO, m =cosO, and n =cose, explicitly ac-
count for the direction of the bond relative to the x, y,
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FIG. 1. Keating potential energy for ZnSe06Te04 vs number
of iterations during the lattice relaxation.
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TABLE I. Matrix elements of the tight-binding Hamiltonian in eV and bond length d in A. a denotes the anion; and c, the cation.

E„ E d (A)

ZnSe
Zn Te

—13.131
—11.017

2.151
0.912

0.114
0.935

7.216
5.665

7.588
7.179

8.924
8.368

2.454'
2.643'

ZnSe
ZnTe

'Reference 2(b).

V„

—0.817
—1.476

Vspo

0.514
1.373

Vps o

2.750
2.608

Vpp m.

—0.908
—0.610

Vpp

2.497
2.947

V»
s pa

1.255
1.269

V
ps o.

2.830
2.179

an accurate representation of the density of states near
the band edges, cluster sizes as used have been found
necessary. Moreover, surface effects become negligible.
In particular, we confirmed that whether the cluster is

simply truncated or periodic boundary conditions are
used does not influence the numerical results. In our cal-
culations, we resorted to periodic boundary conditions.
Every atom in the cluster is given a number and the la-
bels and relative positions of next-nearest neighbors are
recorded. In the present calculations, we started with a
fcc lattice with the bond length determined by Vegard's
law. Other initial configurations were used during the
testing phase of the relaxation routine and convergence
was achieved for any reasonable initial guess. Every
atom of the cluster is repeatedly considered and relaxed
into a position which minimizes the Keating energy of its

vicinity, including up to next-nearest neighbors. Values
for the force constants a and P which enter the Keating
expression were taken from Ref. 20. We used

+znTe 3l'35 PTeznTe=4. 45 and aznse=35. 24,
Pseznse=4. 23 (all in units of N/m). For the Te-Zn-Se
bond angle, the value ~seznTe=(PseznsPTeznTe) =4 34
N/m has been used. We found that typically 40 complete
iteration cycles are required to achieve convergence
within 0.1% for our cluster size. The relaxation code is
largely sequential and takes about one hour of CPU time
on Urbana's Cray Y-MP supercomputer. A typical run is
plotted in Fig. 1.

The TB parameters of the sp s* model for the constitu-
tent materials were obtained by a fit to the lastest experi-
mental data and, for some symmetry points, theoretical
predictions. The main emphasis was put on an accurate
description of the band structure in the vicinity of the
main energy gap. The TB parameters used for ZnTe and
ZnSe are listed in Table I. The energies at special sym-
metry points and a comparison to experimental and
theoretical data are given in Table II. It can be seen that
generally rather good agreement with experimental data

TABLE II. Comparison between theoretical band-structure calculations [nonlocal pseudopotential

method (NLPM), linear combination of Gaussian orbitals (LCGO), modified orthogonalized plane wave

(MOPW), and orthogonalized linear combination of atomic orbitals (OLCAO)] and experiment. Ener-

gies are in eV and relative to the I » valence-band edge.

ZnSe ZnTe

Present
work NLPM' LCGO Expt.

Present
work MOP W' OLCAO Expt.

pc

r;
I is
X'

1

X"'
3

X'
5

Xl
X'

3

L'
Ll

L3
L'

1

2.82
—13.8

7.33
—13.2
—6.99

—2.10

4.54
4.82

—13.37
—6.59

—0.81
3.92

2.76
—12.25

7.33
—10.72
—4.96

—1.96

4.54
5.71

—11.08
—5.08

—1.04
3.96

—11.55
—4.69

—2.16

—11.83
—5.15

—0.85

—12.5g

5 3h

5.25'

5.6g
—2. 1g

—2.5'

4.3'

5.1'
—13.1g

—5.6g
—5.7'
—1.3g

3.7"

1.83 2.82'
—12.67 —15.2'

2.394
—12.5

6.6
—11.62
—6.04

—2.0

3.8
4.5

—11.86
—5.65

—0.94
3.44

2.6
—10.8

6.6
—10.7
—3.5

—1 ' 3

3.8
4.5

—12.0

—0.5
34

2.39
—11.2

6.02
—9.81
—4.29

—1.92

3.01
5.07

—10.16
—4.7

—0.69
3.39

2.394'
—13.0~

—11.6~
—5.5g

—2.4g

—10.0g
—5.5g

'Reference 29.
Reference 30.

'Reference 36.
"Reference 37.
'Reference 31.

"Reference 38.
Reference 32.

"Reference 33.
'Reference 34.
'Reference 35.
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ZnSe
5=10 eV is ideal for a representation of the overall
density of states. The precise location of the band edges
is best determined with 5=10 eV. Here, we define the
band gap as the energy separation between the uppermost
valence-band level and the lowest conduction-band level
of the cluster.

The recursion method actually gives the LDOS for a
given basis state

~ Ip ), so we have to average over a large
number of basis states to obtain the DOS. Here, we ran-
domly pick approximately 20 pairs of atoms and average
over the LDOS associated with all orbitals.

IV. RESULTS FOR ZnSe& „Te„

r X UK

WAVE VECTOR

FIG. 2. The band structure for ZnSe as obtained from the
sp's * model.

can be achieved. It is well known that if a11 TB parame-
ters are obtained by rigorously fitting experimental data
for the valence bands, the lower conduction bands exhibit
too little dispersion. Some compromise had to be made
for ZnSe, where accuracy at X", and X3 was somewhat
scarified in favor of a better fit for the lowest conduction
bands. Nevertheless, our fit to experimental data com-
pares favorably with various other band-structure calcu-
lations. The band structures of ZnSe and ZnTe as used in
this study are given in Figs. 2 and 3, for completeness.

If there are N atoms in the cluster with five basis states
per atom, the Hamiltonian operator is represented in the
form of a 5N X 5N matrix which is then subjected to the
recursion method. We found that, for an accurate repre-
sentation of the LDOS, typically 800 new basis states are
sufficient. Thus we approximate a chain of N=55000
sites by merely the first 800 sites. The continued fraction
expression for the Green's function is simply truncated
and evaluated numerically as a function of energy. Due
to the cluster size, no terminator needs to be constructed.
The value of 5 in Eqs. (5) and (6) was chosen by compar-
ison between the results for a virtual-crystal cluster and
the corresponding VCA band structure. We found that

We applied this model to ZnSe& „Te because of its
technological importance, as well as its interesting physi-
cal properties. The latter mainly concern the strong -bow-

ing of the main energy gap. Obviously, here we are deal-
ing with a system which cannot be described within the
VCA and subjects our approach to a critical test. One of
our incentives here is to identify the origins of the
discrepancies between experiment and VCA results. By a
comparison with experimental data, we will verify that
the approach outlined in Secs. II and III is capable of giv-
ing a realistic description of the DOS of semiconductor
alloys, in particular, concerning the main band gap and
its dependence on alloy composition.

We set the valence-band offset at the ZnTe-ZnSe type-
II interface equal to 1.08 eV, consistent with experimen-
tal and theoretical data. This is the only empirical pa-
rameter in the model which is not a bulk property. In
principle, one should use the band offset for the interface
of an unstrained ZnSe and an unstrained ZnSe interface.
However, strain effects can be estimated to modify the
valence-band offset by less than 10%, which is below the
experimental accuracy. Moreover, we found that a
change in the valence-band offset by 10%%uo does not
change our results noticeably.

We evaluated the DOS for x =0.2, 0.4, 0.6, and 0.8.
The DOS obtained from our method is given in Figs. 4—7
(solid lines) and compared to the results from the VCA
(dotted lines). The latter was obtained by application of
the recursion method to an ideal fcc lattice of virtual
atoms, with the lattice constant determined by Vegard's

10

ZnTe
I

)
I I I I

f

I I 1 I

x=0.8

I I I I
I

I I I I
I

I I

N0
A

—10—

r X UK

WAVE VECTOR

—10 —5 0
Energy (eV)

10

FIG. 3. The band structure for ZnTe as obtained from the
sp s model.

FIG. 4. The DOS for ZnSeo 8Teo 2. Dotted line, VCA; solid
line, cluster calculation.
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FIG. 9. The x dependence of the main energy gap of
ZnSe& „Te . Dotted line: VCA; triangle with error bar: clus-
ter calculation; solid line: experimental data (5 K) (Ref. 40).

ferred to as (purely) substitutional disorder. Second,
nearest-neighbor bond lengths and bond angles may be
different for every atom. We refer to this effect as bond-
structure disorder. As for Al Ga& „As, purely substitu-
tional disorder must be expected to contribute to the
widening of the bands. On the other hand, the large lat-
tice mismatch of about 7% between ZnTe and ZnSe
causes deviations from the perfect fcc lattice in the alloy.
The local environment, i.e., the type of neighbors, of an
atom determines the length and angles of its surrounding
bonds. To determine the relative importance of substitu-
tional disorder, bond-length and bond-angle fluctuations
we considered x =0.4, 0.6 and calculated the DOS within
four different versions of the model. The results near the
top valence-band edge and the bottom of the conduction
band are given in Figs. 10 and 11. The solid line refers to
the method outlined in Secs. II and III and the dashed
line gives the VCA result. The other two results were ob-
tained by considering the same cluster but using TB pa-
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I
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FIG. 10. The DOS in the vicinity of the gap for ZnSeo 6Te04,
(a) near the top of the valence band; (b) near the bottom of the
conduction band. Solid line, full cluster calculation; dashed
line, VCA; dotted line, no account for bond-length and bond-
angle variations in TB parameters; dot-dashed line, no account
for bond-angle variations in TB parameters.
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FIG. 11. Same as Fig. 10, for ZnSeo 4Teo 6.

rameters from the constituents without recalibration due
to bond-length and bond-angle fluctuations (dotted line)
and without recalibration due to bond-angle fluctuations,
only (dot-dashed line).

A comparison with the VCA result shows that about
three-quarters of the narrowing of the band gap is due to
purely substitutional disorder, i.e., the fact that either a
Te or Se atom occupies the anion site. This effect has
formerly been shown to be entirely responsible for the
discrepancy between the VCA band gap and experimen-
tal data for Al„Ga& „As. Furthermore, the comparison
reveals that bond-length fluctuations have a small effect
on the band gap in the present case. In fact, here a slight
widening is observed if the TB parameters are rescaled
according to the d law (dot-dashed line). Bond-angle
fluctuations are found to account for the remaining
~ 25% of the band narrowing. Fixing the zero of energy
at the valence-band edge of ZnTe and knowing the
valence-band offset provide an absolute energy scale.
Relative to the VCA result, the narrowing of the band
gap arises from a broadening of both the conduction
band and valence band as a function of x. Inspection of
Figs. 4—7 shows that, for x & 0.5, the upward shift of the
upper valence-band edge mainly contributes to the nar-
rowing of the main energy gap. For instance, at x =0.4,
Fig. 10, approximately 75% of the narrowing is due to a
broadening of the valence-band edge. For x )0.5, the
downward shift of the lower conduction-band edge gains
in importance. Figure 11 shows that at x =0.6
conduction- and valence-band broadening have approxi-
mately equal importance for the narrowing of the gap.
This trend can qualitatively be explained by considering
the type-II band offset at the ZnSe-ZnTe interface. The
valence-band edge of ZnSe lies about 1 eV below the
valence-band edge of ZnTe. Consequently, the conduc-
tion band of ZnSe lies about 0 6 eV below the
conduction-band edge of ZnTe. As the Te concentration
is increased from x =0, Zn-Te bonds start to contribute
to an increase in the density of states above the ZnSe
valence-band edge, as well as a decrease in the density of
states at the conduction-band edge of ZnSe due to a loss
in ZnSe bonds. Conversely, substituting Te in ZnTe by
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larger bond-angle stiffness in ZnTe, TeZnTe bond-angle
fluctuations are slightly weaker than for the SeZnSe bond
and peak at 2.3' and 2.5, respectively. Slight asym-
metries are due to next-nearest-neighbor effects. The
largest bond-angle fluctuations are obtained for the
SeZnTe bond angle, which reach a value of 3' around
x =0.5.

V. SUMMARY AND CONCLUSIONS

We have presented an efficient method to calculate the
electronic DOS for ternary and quaternary semiconduc-
tor alloys. Our approach is based on a large-cluster cal-
culation which employs a Keating-type energy expression
in conjunction with a semiempirical tight-binding model.
The former is used to continuously relax the cluster from
an ideal fcc structure to one of minimum strain energy.
Based upon this relaxation, the TB parameters are deter-
mined using standard scaling laws. The TB matrix is
then evaluated numerically within the recursion method
to give the LDOS. An average over a large number of
LDOS's is used to calculate the DOS in the vicinity of the
main energy gap. This approach can be performed for
any combination of isovalent binary semiconductors for
which the Keating parameters and the TB binding pa-
rameters can be fitted to experiment and relativistic
effects on the band structure are of minor significance.
The (experimental) band offset(s) between the constituent
materials is needed to properly shift the diagonal TB ma-
trix elements.

Our calculations for ZnSe&, Te„, and an earlier study
of Al„Ga& „As, have shown that this approach leads to
an accurate representation of the (L)DOS in very close
agreement with experimental data. In particular, the
composition dependence of the main energy gap is well
reproduced. As compared to the virtual-crystal approxi-
mation, the energy bands get broadened at the expense of
the band gaps and DOS within the bands. Additional
structures which can be attributed to the signature of in-
dividual bonds are obtained. For ZnSe& „Te,our study
attributes approximately 75% of the disorder induced
narrowing of the main energy gap to a broadening of the
band edges due to pure substitutional disorder. The
remainder of the discrepancy is due to local strain effects
caused by lattice mismatch. Here, bond-angle fluctua-
tions are found to be clearly more important than bond-

length fluctuations. Our calculations show that
knowledge of the site which is substitutionally disordered
cannot be used to identify the band edge which is most
influenced by disorder. This is closely related to the
failure of the "common-anion" rule for the band offset.
Although the main contribution to the DOS at the top of
the valence band and bottom of the conduction band may
be attributed to anion p states and cation s states, respec-
tively, the band edges which suffer most from disorder
are determined by the band offset and the DOS associated
with anion-cation bonds. The failure of the VCA for
ZnSe, „Te„ is therefore due to both a neglect of substi-
tutional disorder and an incorrect account of local strain
effects, in particular, bond-angle fluctuations.

!n its present form, our model does not account for rel-
ativistic effects which are important for some semicon-
ductors. In particular, the split-off band is not properly
accounted for. Attempts to incorporate relativistic
effects in TB-based band-structure calculations have been
made and could be carried over to alloys. Moreover, d
levels are not explicitly accounted for in this model.
Despite the fact that these levels may be important in ab
initio band-structure calculations of certain semiconduc-
tors, the empirical TB model is able to account for the
main electronic properties of the alloys in the case of
AI, Ga, As and ZnSe&, Te„.

In summary, this work has demonstrated that quanti-
tative information concerning the (L)DOS of ternary and
quaternary semiconductor alloys can be made with use of
this semiempirical model with a reasonable computation-
al effort. It has been shown previously that this method
can be used to investigate the LDOS in semiconductor
quantum well structures with or without imperfections.
Application to defect complexes and amorphous semi-
conductor systems, their alloys, and heterostructures is
possible.
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