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Self-consistent calculation of hole mobilities in narrow-gap Hgo scdo zTe
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The Kadanoff-Baym Green-function formalism is used to calculate the heavy- and light-hole mobili-
ties in p-type Hg& „Cd,Te (x =0.2). The polar-optical-phonon and charged-impurity scatterings are in-
cluded in the self-consistent Born approximation. A comparison with a Boltzmann-equation calculation
is made. Significant corrections are found.

I. INTRODUCTION

Calculations of the heavy- and light-hole mobilities are
frequently given in papers on A' 8 and A 8 ' semi-
conductors. Nevertheless, there are two serious causes of
concern that stimulate continued research in this prob-
lem. First, although most of the calculational methods
used are based essentially on the Boltzmann equation
(BE), the Peierls-Landau conditions of the validity of the
BE are not fulfilled in most of these materials and appli-
cation of the BE is thus not justified. Second, the relative
light-hole mobility (with respect to the heavy-hole one) in
narrow-gap semiconductors is too high on the basis of the
BE results, and, moreover, the calculated magnetic-field
dependence of the Hall constant does not provide satis-
factory agreement with experiment. '

This paper is devoted to a calculation of the drift hole

mobilities of narrow-gap polar semiconductors by a
method of solving the Kadanoff-Baym kinetic equation
(KBE). There are two necessary steps to obtain satisfac-
tory results. The first one is a determination of the equi-
librium Green function as well as the density of states
(DOS) and the occupation rate. The second one is the
substitution of the equilibrium Green function into the
kinetic equation and its solution. This treatment yields
the Wigner distribution function and the hole mobilities.
An ensuing comparison of the obtained results with those
of the Boltzmann-equation treatment is found to be very
instructive.

II. HAMILTONIAN

All the following calculations will start from the Ham-
iltonian given in the form

&=&,+&vl, +%, ;+&, vs

j,k, a. q k, q i,j o., o'
(kWq)

+gg g ~(k, i, tr, qj, tr')ajq a;|,.[bk, +b ~j .
k, q i j a, cr'

&„%b, %, ;, and &, z are nonperturbed electron and

phon on Hamiltonians and charged-impurity and
electron-phonon interactions, respectively. k, q are wave
vectors, cr, o are spin indices, i,j are band indices (equal
to l for the heavy-hole band and 2 for the light-hole one),
and aj«, bq, aj«, bq are the hole and phonon creation
and annihilation operators, respectively. The phonon fre-
quency coq is taken to be constant co =coo. (We set Q= 1

throughout this paper. ) The hole energy EI& is taken
from the Kane model

k
Eik

2m'

E
Ezk=

2
2k

mqEg

' 1/2

Here E,m &, m z are the energy gap and the heavy-hole
and light-hole effective masses, respectively. V is the
charged-impurity screened Coulomb potential

V(k, i, o, q,j,cr') =g.
e, e, /k —q/'+

Ds

. e " u ~(r)u „;(r)dr,
—i(k —q)R

where
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and M is the potential of the screened electron-phonon interaction
1/2

u .~(r)u z;(r)dr,

(5)

(6)

Cps'~
dD ~

pe p'
(7)

N
p*=p'+N& 1—

N~
(9)

where 2)(1,E}and $(2,E) are the heavy- and light-hole
DOS and N„and Nz are the total and ionized acceptor
concentrations. f0 is the Fermi-Dirac function

fo
= 1/[ 1+exp[P(E EF ) ]], — (10)

EF is the Fermi energy. The integrals in (4) and (6) mea-
sure the overlap between the periodic parts u &;(r) of the

I

Z, ( =+e ),R,, eo, e„e„are the charge and the position of
the gth scattering center and vacuum, static and high-
frequency dielectric constants, respectively. dD, and dD

are the Debye screening lengths and P=1/k~T. The
concentrations p' and p* are as usual given by

p'= 1E+ 2E 01—
0 E,

where 8 is the angle between k and k'. For p-like wave
functions it is taken according to Ref. 5 as

Q»(8) = Qz2(8}=
—,'(1+3 cos 8),

Q)z(8) = 92)(8)= —,'sin 8 .

(12)

(13)

III. EQUILIBRIUM GREEN FUNCTIONS

A critical point of the Green-function calculation is the
choice of the self-energy approximation. Here the self-
consistent Born approximation is used. The self-energies
X,X are then given in the form

Bloch functions. For the purpose of the next calcula-
tions, it is necessary to determine the overlap function

9; (8)—:9; (k, k')
2f u t.z'( r }u „,(r }dr

X (i, k, co)= —,
' gg g [~V(k, i, cr, q j,o''}~ G (j,q, co)

q j cr, cr'

+~M(k, i, c,rqj, cT'}~ [(N +1)G (j,q, co+coo)+N~G (j,q, co coo)]]—, (14)

X (i, k, co)= —,
' gg g [~ V(k, i, o,qj, c7')~ G (j,q, co)

q j cr, a'

+~ M(k, i, cTq,j,o')~ [(N +1)G (j,q, co coo)+N G —(j,q, co+coo)]] .

N is the mean phonon occupation number N = 1/[exp(pcoo) —1].
Applying the standard Green-function formalism, one obtains

A (j,k, co)= 2I
(co Ek —ReX—") +I

6 =,f~A, 6 = —,'(1 f ) A, X =2,'f I, —X = —2 '(1 f)I—
ReX"(j,k, co ) =—I dz

1 " I(jkz)
7T CO Z

(15)

(16)

(17)

(17')

which, together with (14) and (15), forms the complete set of equations to be solved. Here A is the spectral density
function and I = —ImX") 0.

After integration of (14}and (15) and substituting (17) the numerically solvable system reads as
4

I (i, E,co)= g I &(i, c,co), (1&)
1=1

C,' „d~ c.+c'+C,-'
I &(i, e, co)= f —f& A(i, e', co),

0 Vg 2 EE
(19)
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I 2(i, E, co)=
2+y, sE'

y;c.+ c.'+ C.
~—,fz A (j,c', co),

E 0 Ve' (20)

C; „E+E a+E'+C,
I 3(i, E,co)= — de.'f3

0 2 ss' 2 EE'

X [[N +f0(co+co0)]A (i, E', co+co0)+[N +1—f0(co —co0)]A (i, E', co —co0)],

C; „y;c+c.
' y;c+ c.'+ C.

I 4(i, e, co) = — de'f4
2+y, es' 2+y, se'

X I [N +f0(co+co0)]A (j, 8', co+ co0) +[N +1—f0(co —co0)]A (j,e', co —co0)],

(21)

(22)

6a2 —2 a+1 a+1f, (a)= —3a ln fz(a) =a ln
a —1 a —1

' a —1
2

f 3(a, b) = 8 + (9b 6ab —+ 1)ln
a —b 2 b+1
b2

—18b + 12a,

f4(a, b) =(1+2ab 3b )ln- b+1 +6b —4a,
b —1

m*
lX;=, , C=
J

e 4
s

22 ' l — l' l 2128v 2m e0 z Qm. Qy, . 2dD, m,
'

C =
l COP Q Pal128v'2m e0

1 3 1C;= C;, C;=, i'4 3 6

X; 2dD m;
00

n; is the charged-impurity concentration. Here I „ I 2,
I 3 and I 4 represent the intraband impurity, the inter-
band impurity, the intraband optical phonon, and the in-
terband optical phonon contributions, respectively.

For numerical purposes it has been useful to transform
the wave-vector dependence into energy variable c. so that

k
E)k~E(q =E, E=

2m )

for the heavy-hole band and

C;= 1

V'2

3
m*

l

and occupation rate (probability)

2)(i,co)f0
P(i, co) = f 2)(i,x)f0dx

The DOS is calculated from

X)(i,co)=C; J dEV'eA (i, E, co),
0 (23)

(24)

E k
E2k ~E2, = [( I+4c/Eg )'~ —1],2' 2 2m2*

'

for the light-hole one.

IV. KADANOFF-BAYM KINETIC EQUATION
IN AN EXTERNAL FIELD

The KBE in the electric field is taken in the form

0
eA 8 [(VkEk+VkReX")I +(co Ek —ReX")V—kl ]=—c'(X A —2I G ) . (25)

(Corrections reported in Ref. 8 disappear in our Born approximation. )

Passing from k to c. the KBE is rewritten as

= —'(X A —2I G ),c)f0 g E;,+ReX" co—
cosP A I (26)
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Next the Green function of 6 and the self-energy X
are divided into two parts

G =G (8=0)+5G, X =X (8=0)+5X, (27)

where the first parts are the equilibrium functions and the
second ones are small changes due to the nonequilibrium.
Substituting (27) into (26) the equilibrium functions
disappear and the KBE takes the form

e/8/ ufo , 5X A—i'5G = — (cosP }V—i'
8 2I

where

e/8/ c)fo

+2m,* cosg[V+ A5f(i, E,co)] .

E;,+ReX'—e
P(i, E, co ) = A I V s

Bc r
Now one more transformation is useful to define

(29)

(30)

(28)

The new function 5f has good properties for the numeri-
cal treatment. Applying the self-energy form (14), the
self-consistent equation for 5f is obtained,

5f(i, s, co)=
4

g 5f&(i, e, co),
&fo(co)

(31)

c,'
5f (i, s, co)=

Q2
5f,(i, s, ~)=

c)fo(co) „1 s+E'+C;f ds', /& [P(i, s', co)+ A (i, s', co)5f (i, s', co)],
c)co 0 v e' 2

ufo(~) „1 q,'+'+ C,
'

f ds' —,/z
'

[V(j,e', co)+ A (j,c', co)5f (j, , s', co)),
c)co 0

(32)

(33)

C; ~+~' c+c'+C;
5f (l sco)= ~ f ds'/

Vg 0 2 ss 2 EE,

c)fo(co+coo)
X [Nq+1] — [V(i,s', co+coo)+ A (i, s', co+coo}5f(i,s', co+coo}]

c)fo(co —coo)
+Nq — [P(i,s', co coo)+ A (i—, s', co coo)5f (—i, s', co coo)]-

Bco
(34)

C; —„g;E+ e' g;e+ s'+ Ci
5f4(i, e, co) = — y, d E'/4

2+y, se'
'

2+y, ss'

X [Nq+ 1]
c)fo(co+coo)

[V(j,s', co+coo)+ A (j,E', co+coo)5f(j, E', co+coo)]

(35)
c)fo(co —coo)

+Nq — [V(j,s', co —coo)+ A (j,s', co coo)5f(j, s', co coo)]—
a 9 —5/(a)= —(4.5a +0.5)ln s

/z(a) =(1.5a —0.5)ln
a+1
a —1

3Q

/&(a, b) =b (a b) z
—[a—(9b + 1)—b (12b +2)]ln

6b +2 b+1
b —1 b —1

—18b +12ab —4

/z(a, b) = [a (3b —1) b(4b —2) ]ln — +8b 6ab —4, i Wj-
b —1 3 7

Constants C; and g; are the same as those given in Sec. III. Interpretation of 5f&, 5f&, 5f3, and 5f& is analogous to
that of I „I z, I 3, and I 4 above. Having 5f, the drift mobility p(i) is calculated from
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TABLE I. Input parameters.

T
(K)

10
15
20
30
40
60
80

Eg
(meV)

61.6
63.7
64.8
67.9
71.1
77.5
83.9

m2 /m0

4.47 x10-'
4.63 X 10
4.70 X 10
4.92 x 10-'
5.15x 10-'
5.59x10-'
6.04 x10-'

p'(I)
( 10"/cm')

0.0108
0.943
9.35

68.7
129.0
178.0
191.0

p'(II)
(10' /cm )

0.0108
0.949

10.0
117.0
376.0
974.0

1370.0

p *(I)
(10"/cm')

1.20
1.21
1.27
1.66
1.90
1.99
2.00

p (II)
(10' /cm )

1.20
1.20
1.21
1.29
1.47
1.79
1.92

elm, "
GN

3v'2mp( i.)

Bfa(co} „BE,,
l, c,N +A l, c,N l, G,N,

Bco 0 Bs
(36)

p(i) being the particle density.
Analogically to the occupation rate (24) we define the conduction rate

Bfo(co) „BE,,f ds a[9'(i, e, co)+ A (i, s, co)5f(i, s, co)]
Bco 0 Be

:-(i,co}=
Bf (x) . BE,,f de a[9(i'e,x),+ A (i, s,x)5f (i, e,x)]

Bx 0

(37)

V. THE LIMIT TO THE BOLTZMANN EQUATION

A (i, s, co)~2m5(E, , co), —A I ~2~5(E,, co) . —(38)

Application of (38) to the DOS form (23}gives the classi-
cal Kane DOS

2 «3/2 gEmi

2)(2,E)= m2 i QE(1+EIE )(1+2EIEs),

2)(1,E)=
(39)

If the scattering processes can be taken as sufficiently
weak, so that PI «1, the following limits in A are al-
lowed:

where p-type-like experimental transport data are avail-
able. ' Temperature-dependent input parameters are
given in Table I. (The concentrations p', p' correspond
to the case of parabolic band and acceptor activation en-

ergy 10 meV. ) The Fermi level has been fixed so that the
values of p' are the same as those in Table I. The
charged-impurity concentration has been calculated for
fully ionized donors from electric neutrality condition
n; =ND +N„=2ND+p(1)+p(2).

VII. RESULTS AND DISCUSSION

The calculated heavy- and light-hole DOS for case I
are shown in Figs. l and 2, respectively. The detailed

and the KBE is, in this limit, equivalent to the
Boltzmann equation.

VI. KBE COMPUTATION FOR p-type Hg& Cd Te

Our calculations have been performed for p-type
Hg, „Cd„Te (x =0.2) by the iteration method on a
half-plane (e)0,co), where I, ReX", and 5f have been
tabulated. The input parameters have been taken mostly
from Ref. 9. The optical-phonon energy has been taken
as the energy of the dominant HgTe mode boa= 17.1 mev
and the heavy-hole effective mass has been taken as
mh*=0. 6m0. The concrete calculations have been per-
formed at two model impurity concentrations
Nz =5X10' cm, ND=3X10' cm (hereafter desig-
nated as I) and Nz =5X10' cm, ND=3X10' cm
(designated II) and in the temperature range 10—80 K

5—
E

I

E 4.

O

3C3

~a i~a~ re ~ i Zl
300 —20 —10 C) 10 20

~(meV)

FIG. 1. The DOS of the heavy-hole band in case I
(N~ =5X10"cm ', ND=3X10" cm ). Temperatures 10, 20,
40, and 80 K correspond to line types———,respectively. The dotted line shows the standard Kane
DOS.
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FIG. 2. The DOS of the light-hole band in case I. The mean-

ing of the lines is identical to that in Fig. 1. Because of tempera-
ture dependence of the standard Kane light-hole DOS two lim-

iting dotted lines for 10 and 80 K are given.

FIG. 4. Heavy-hole occupation rate at temperature 40 K.
The solid and dashed lines correspond to cases I and II
(N„=SX10' cm, ND =3X10' cm ), respectively. The
dotted line shows the standard occupation rate of the Kane
shape of the band.

view of the heavy-hole band edge is plotted in Fig. 3. The
results for case II do not contain qualitative changes
against case I. Examples of heavy- and light-hole occu-
pation rates (24) are given in Figs. 4 and 5. The dotted
lines show the standard DOS and occupation rate func-
tions based on the Kane shape of the bands.

Because of the renormalizing effects of the scattering
processes, especially optical-phonon scattering, the band
edge shifts to the gap and the polaron effect is seen. The
influence of only impurity scattering on the DOS can be
checked in Ref. 11 and is found here to be of minor im-
portance in case I as well as II. Due to the interband
scattering, the light-hole band is significantly changed
and the polaron effect creates a bulge on the light-hole
DOS. The phonon echoes of the band edge appear at dis-
tance

irido

(i =1,2, 3, . . .} from the regular band edge (the
steps on Fig. 3) and in spite of the small values of the
DOS in tails a large part of the particles, especially the
light holes, is, because of a strong increase of fo, located
on them (Figs. 4 and 5). Physically the echoes are due to
a virtual phonon emission and absorption. They current-

ly appear in self-consistent theories like the dynamical
CPA (coherent potential approximation). ' ' The DOS
depends on the Fermi level position. At low tempera-
tures the DOS has a local minimum in the vicinity of EF.

The band tail must be influenced by the acceptor level
(near the arrow to the solid line in Fig. 3) by a hybridiza-
tion with the impurity states. Owing to the Born approx-
imation used here, this effect is not included in this paper.
The impurity concentrations in the calculations used are
not so high as to change the transport results
significantly. As is shown in Ref. 14, the impurity-band
conduction has a substantial meaning above the impurity
concentration N„;,=5 X 10' cm

Comparing to the Kane model the ratio p(2)/p(1)
significantly increases. The ratio p(2)/p(1), the relative
echos occupation r given by

r(i)= f P(i, x)dx (4O}

(where Eb is band-edge energy taken at an inflection
point of P}, and Eb are given in Table II. Figures 6—9
show examples of the self-energy functions I and ReX'.

., 17

I)
t t r',

I

L.
'. , 1(': '

l(i "'

('(

/
f

0.12-

) 0.10
E

0.08—

0.06

0.04

I I I

60 —50 —40 —30 —20 —10 0
(d {meV)

10

0.02

0.00 —30 —20 —10 10 20
cu(meV)

FIG. 3. The DOS in a detailed view of the heavy-hole band
edge in case I. The meaning of the lines is identical to that in
Fig. 1. The arrows point to the Fermi level position.

FIG. 5. Light-hole occupation rate at temperature 40 K.
The meaning of the lines is identical to that in Fig. 4.
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TABLE II ~ Ratio p (2)/p (1) from the Green function and Kane model calculation, relative echoes
occupation and band-edge position [p(2) ip ( I) is independent of the impurity concentration in the
Kane model; the signs I,II, are defined in Sec. VI]. The Boltzmann regime corresponds to r (( l.

(K)

10
15
20
30
40
60
80

p(2, I)
p(1, I)

37.8 x 10
34.5 x 10-'
30.3 x 10-'
27.7 x 10-'
27.3 x 10-'
29.3x10 '
32.3 x 10-'

p (2, II)
p (1,II)

39.2 x 10
38.6x 10
35.9 x 10-'
32.0x 10-'
30.9 x10-'
31.7 x 10-'
33.8 x10-'

Green functions Kane
model
p(2)
p(1)

6.82 x 10
7.37 X 10
7.72 x 10-'
8.63 x 10
9.61x 10-'

11~ 52x 10
13.14x 10-'

2,I 1,II 2,II

0.16 0.69 0.16 0.61
0.17 0.70 0.16 0.58
0.17 0.68 0.15 0.58
0.18 0.65 0.16 0.51
0.19 0.62 0.16 0.48
0.20 0.57 0.15 0.46
0.21 0.56 0.13 0.42

Eb(I)

(meV)

—9.1
—9.8

—10.2
—10.7
—11.3
—13.5
—15.0

Eb(II)

(meV)

—9.6
—10.8
—11.6
—12.7
—13.5
—16.0
—18.0

These functions illustrate that the light-hole band is
strongly influenced by the interband scattering into the
heavy-hole band while the intraband scattering has no
importance in the light-hole band.

Results of the hole mobility calculations are given in
Table III. Here the BE results are included, too. Com-
paring the KBE to the BE results, hole mobilities are
seen to differ substantially. The minimal differences are
in heavy-hole band at higher temperatures. This effect
has a direct connection with the degree of perturbing the
Peierls-Landau condition mentioned above.

Figures 10 and 11 show examples of the conduction
rate. Similarly to the case of the DOS a large part of the
transport processes is found to take place in the phonon
echoes of the band edge. The relative echoes conductivi-
ty r given by

(41)

where Eb is the same as in (40), is given in Table IV.
A very instructive view of the light-hole transport is

given by the topographical projection of the light-hole
conduction density in the (E,co) plane, plotted in Figs. 12
and 13. We can see two considerably different areas
there. Because of the backscattering from the heavy-hole
band extensive areas of a relatively low conduction densi-

ty appear in the large-c. region. In particular, at low tem-
peratures they play a dominant role in the light-hole
transport. On the contrary a small-c. region is dis-

tinguished by a sharp increase of the conduction density
similar to the Boltzmann 5-function shape of this func-
tion. A contribution of these two areas to the transport
can be found also in Figs. 10 and 11. Additional details
may be found in Ref. 7.

Direct comparison of the results with experimental
data is difficult at this stage of the calculations. Prevail-
ing impurities in the material present are natural point
defects Hg vacancies as acceptors and Hg interstitials as
donors. However, there is no reliable method to find the
natural-defect concentration. In addition, the two
scattering mechanisms used in the calculations are not
sufficient to describe completely the transport in p-type
Hg& Cd„Te. At least a disorder scattering should be in-

cluded, too.
Taking that into account, we have only the indirect

possibility to compare the KBE and BE results with ex-
periment now. This is based on the estimate of the light-
hole contribution to the Hall constant RH. The effective
light-hole part in RH is given at low magnetic fields by a
relative factor h (Ref. 1)

r (2)p (2)[p(2)]
rH(1)p(I)[p(I)]'

' (42)

where rH(1), rH(2) are heavy- and light-hole Hall scatter-
ing factors, respectively. This factor can be established
experimentally from the magnetic-field dependence of
RH. Experimental data produce 5 in an interval

KBE

TABLE III. Hole mobilities.

BE
T p(1,I) p(2, I) p(1,II) p(2, II) p(1,I) p(2, I) p(1,II) p(2, II)

(K) (10' cm'/Vs) (10' cm'/Vs) (10' cm'/Vs) (10' cm /Vs) (10' cm /Vs) (10' cm'/Vs) (10' cm /Vs) (10' cm /Vs)

10
15
20
30
40
60
80

7.4
8.8

10.4
10.9
7.4
2.65
1.29

43.3
45.4
51.0
60.0
47.1

19.7
9.9

2.42
2.45
2.55
2.66
2.40
1.54
1.00

20.9
16.6
14.9
13.3
11.7
8.0
5.5

2.12
2.98
3.86
4.88
4.18
2.00
1.04

141.0
179.0
207.0
220.0
180.0
85.0
42.5

0.68
0.77
0.88
1.07
1.12
0.86
0.60

33.8
39.7
48.9
59.0
56.0
37.0
22.9
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TABLE IV. Relative echoes conductivity; the Boltzmann re-
gime corresponds to '8 « 1.

T
(K)

10
15
20
30
40
60
80

0.14
0.14
0.15
0.16
0.16
0.16
0.13

2,I

0.63
0.56
0.44
0.30
0.25
0.21
0.17

0.13
0.13
0.13
0.13
0.13
0.12
0.10

2,II

0.36
0.36
0.34
0.28
0.24
0.20
0.16

FIG. 13. The topographical projection of the light-hole con-
duction density. The detailed view of the outlined part of Fig.
12.

6 =0.3—0.7." ' Taking into account the simplification
rH=1, we can easily compare experimental 5 with the
calculated results. Putting the data from Tables II and
III into (42), we get theoretical 6 in the interval 1.7 —3 in
the case of the BE and in the interval 0.07—0.3 in the
case of the KBE. However, the comparison proposed
here can be taken only as a preliminary result. Including
the disorder scattering as well as other isotropic scatter-
ing mechanisms reduces p(1) in (42) appreciably in com-
parison with p(2). Also rH(1) results from the BE at low
temperatures lower than rH(2) and one can expect the
same relation also in the case of the KBE. Both these
corrections should increase 6 significantly. Consequently,
the difference between the theory and experiment in-
creases with including other (e.g. , disorder) scatterings in
the case of the BE and decreases in the case of the KBE.
That is why we regard any such Kadanoff-Baym (-like)
theory of the carrier mobility in narrow-gap materials in-
dispensable.

VIII. CONCLUSIONS

A more general formalism superseding the Boltzmann
approach has been used to calculate the transport proper-
ties of p-type Hg& Cd Te semiconductors. Comparing
with the Boltzmann theory, significant differences have
been found in the density-of-states functions as in the
mobilities calculated. A nonstandard effect of the trans-
port in tails of the DOS owing to the renormalization
effect of the scattering has been found which is especially
strong in the light-hole band. Charged-impurity and
optical-phonon scattering have been used. Inclusion of
other scattering mechanisms is argued to amend (distort)
agreement with experiment in the case of the KBE (BE)
theory.

The results presented should be further extended to
calculation of the transport properties at low magnetic
fields in order to obtain the Hall constant and make a de-
tailed comparison with experiment possible. Such calcu-
lations are in progress.
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