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Relativistic calculation of CCV and CVV Auger-electron spectra:
Applications to Tio 5Alo &N and Pd
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By keeping the interaction "classical, " the nonrelativistic theory of CCV and CVV Auger-electron
spectra (AES) is extended to a relativistic description, i.e., to a formulation in which the four participat-
ing states are described fully relativistically. It is shown that in the nonrelativistic limit the present ap-
proach yields exactly the previous nonrelativistic formulation. This is illustrated explicitly for the case
of the Ti spectra of Tio 5A10 5N for which nonrelativistic AES calculations were published recently. As a
further example the M4 5 VV AES is shown for pure metallic Pd and compared to existing experimental
data as well as to a calculation using the intermediate-coupling scheme.

I. INTRODUCTION

Auger-electron spectroscopy (AES) is a relatively sim-

ple and efficient technique for analyzing chemical proper-
ties of solid matter. In the case of alloys the position of
AES lines can help to identify the actual chemical com-
position, whereas the line shapes serve as indications for
the nature of the local environment (chemical bonding).
Concomitantly, being a many-electron process, it is an at-
tractive tool for the study of electron-electron (hole-hole)
correlations (for a comprehensive review on the AES pro-
cesses the reader is referred to the book by Chattarji').

The concept of theoretical valence-band spectroscopy
is based on the interpretation of excitation spectra in
terms of the ground-state electronic structure. This im-
plies that the inhuence of electron correlation, which may
be important particularly for Auger transitions, is
neglected beyond the level of the local-density approxi-
mation (LDA). However, the straightforward inclusion
of valence-band effects within this approach facilitates
the understanding of the phenomena under considera-
tion. The nonrelativistic formulation for valence-band
CCV and CVV AES has been developed by
Hormandinger et al. ' and was applied with success to
early 3d transition-metal compounds. An apparent lack
of this theory is that even for "light" elements the effect
of spin-orbit splitting for the core states can be included
merely by an ad hoc approximation, namely by weighting
the nonrelativistic transition probabilities with the occu-
pation for the core states. As will be shown in Sec. II E,
this procedure turns out to be inconsistent for CCV AES,
but it is consistent for CVV AES. In a relativistic formal-
ism, however, even if relativistic effects in the valence
band are negligible, the core states can be treated always
properly leading to a more accurate description of the
"cross sections. " Quite clearly, for heavy elements,
where relativistic effects are important also in the
valence-band regime, the use of a relativistic theory is re-
quired in order to obtain a proper mapping of the valence
band.

In Sec. II a relativistic theory for the CCV and CVV
AES transition probabilities is derived, and their nonrela-

tivistic limit is discussed. In Sec. III the results from a
nonrelativistic and a relativistic formulation are com-
pared for the 1.3Mz3V and the 1.3VV AES of Ti in
Tio 5A10 5N. In Sec. IV a calculation for M4& VV AES for
pure Pd metal is presented. Since Pd metal exhibits a
nearly filled 4d band, and subsequently the hole-hole
repulsion should be considerably large, this case seems to
provide an estimate about the range of applicability of
the present method.

II. THEORY

A. General theory of the Auger process

The transition probability amplitude for two interact-
ing electrons is given by Mdller's relativistic formula, '

U)z 34 J fdr, drzf, (r, )+gz(rz)+8'(r„rz)$3(r, )$4(rz),

where the initial and the final states for the two electrons
are described by four-component Dirac wave functions
$3(r, ), $4(rz) and g, (r, ), Pz(rz), resPectively, whereas
8'(r, , rz) denotes the relativistic two-electron interaction
operator.

The transition probability per unit time, as derived
from time-dependent perturbation theory, includes both
the direct (D = U, z. 34) and the exchange (E = U, z 43)
process and has to be summed over all the inobservables
with respect to the given transition process (i.e., experi-
mental technique),

I'= [~D~ + ~E~
—2Re(D*E}]5(e, e3+ez —e4) . —

In Eq. (2} the Dirac 5 function represents the energy con-
servation and e; (i = 1, . . . , 4) are the energy eigenvalues
of the corresponding states.

B. The interaction operator

In a nonrelativistic (classical} treatment the relativistic
two-electron interaction operator can be replaced by the
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static Coulomb interaction,

for which the Neumann expansion with respect to spheri-
cal coordinates can be used,

4~8 (r(, r2)=e g ~ y~(r), r2)YA(Q))*YA(Q~) .
(2A, + I)

1
n, (e)= — R„(—e) g Imp&&(e), (9a)

R
R (e)=I r dr[G (e;r) +F (e;r) ] . (9b)

considered in Eq. (8). Furthermore, neglecting the off-
diagonal matrix elements with respect to the angular-
momentum indices, we can express the left-hand side of
Eq. (8) in terms of the partial local densities of states
(PDOS),

Here A=(A, ,v) and Y~(Q) denote spherical harmonics.
The angle-independent functions y&(r ~, r2) are given by

r (
) g( rl&r2 )

r 0

where r& =min[r„r2} and r& =max[r, ,r~].

C. The participating states

1. Core states

The core wave functions are chosen to be atomiclike,
i.e., they are eigenfunctions of J and J„

g„(e;r)y&(Q)

if, (e;r)g&(Q)

where y&(Q) is a spin spherical harmonics, labeled by the
relativistic quantum numbers, Q =(a,p) or Q=( —~,p).
In the following the quantum numbers j, /, l, and S, are
also used (see, e.g. , Ref. 4). The radial functions, g„(e;r)
and f„(e;r) are solutions of the coupled radial Dirac
equations for a given core-energy eigenvalue e.

2. Valence states

The sum of the tensorial product of the valence wave
functions can be related to the one-particle Green's func-
tion in spin and configurational space as follows:

g 11;(e;;r,)P;(e;;r2)+5(e e; )—

Consequently, Eq. (8) yields

g g, (e, ;r)P, (e;;r')+Ale e, )—

where for the sake of simplicity we omitted the site index.
In Eq. (10) the scattering solutions Z&(e;r) are normal-
ized to unity within the muon-tin radius R, .

3. Continuum states

p(s)

, P(s)
W+mc

where 0, (i =1,2, 3) are the Pauli matrices, P(s) denotes
a spin-eigenvector with the eigenvalue s, and
W=(m c +p c )' . In the weak relativistic limit the
constant factor in Eq. (11) can be approximated by 1.
The transformation from the plane-wave representation
to the angular-momentum representation is given by

4, (p;r) =4~ g i'C (l ,'j;p s, s) Y, „—,(p—)*g&(p;r),
Q

For a given positive energy the "free-space" plane
waves corresponding to an eigenvalue p of the momen-
tum operator span a two-dimensional subspace in the
space of the four-component vectors, the basis set of
which can be classified by spin-eigenvalues (s =+—,

' ),

1/2
2W+mc ip r

S P&

1 [G(e+iO;r„r2) —G(e —iO;r„rz)], (7)
27Tl

whereby the side limits are indicated by e iO. Using
multiple-scattering theory, Eq. (7) can be written as (in

atomic Rydberg units: e =2, A'= m = 1 )

1l g(p;r) = A (pr) X~(r)

(12a)

(12b)

g g; ( re)g;( re')+6( ee, )

where r and r„' are the relative positions with respect to
the mth and nth scattering centers, being located closest
to r and r'. The Z&(e;r) functions are the corresponding
regular scattering solutions, and v)&.(e) denotes the
scattering path operator. Since AES is a site-specific
spectroscopy, as an approximation, only site-diagonal
(m =n) subblocks of the scattering path operator will be

where the C (l—,
' j;p —s, s) denote Clebsch-Gordan

coefficients. In the single-site-approximation a free-space
solution described by Eqs. (12a) and (12b) is scattered by
a single-scattering potential only,

'P, (p;r) =4m. g i 'e " C(l—,'j;p —s, s) YI„,(p)*Z&(e", ),
Q

where e=p /2m, 5,(e) is the x-like phase shift and

Z&(e;r) is a regular scattering solution with the following
normalization at the muffin-tin radius:
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[cos5,(E)ji(pr) —sin5, (E)ni(pr)]yg(r)
Zg(E;r)=, S

[cos5„(E)ji (pr )
—sin5„( E)nl (pr ) ]yg (r }

C

(14}

Equations (13}and (14) represent the relativistic analog of

the single sc-atterer ftnal state approximation .'
Let us now denote a one-particle operator (both in

configurational and spin space) by II(r, r'). Making use
of the orthogonality relations for the spherical harmonics
and the Clebsch-Gordan coefficients, the matrix element
of this operator, with respect to the continuum states
summed over the unobservables s and p, can be consider-
ably reduced by the following identity:

s =+1/2
f dp f fdrdr'iII, (p;r)+II(r, r')+, (p;r')=(4m. ) g f fdrdr'Zg(E;r)+II(r, r')Zg(E;r'),

which wi11 be used in the next sections.

D. Core-core-valence Auger-electron spectra

According to Eqs. (1) and (2) and keeping in mind that we deal with a classical (scalar} interaction operator, the ~Dt
contribution to P(P &), for example, is given by

P 2= g g g f d»5(»E4)5'(E, +E2 E3 E)
p I p3 states 4 states 2

X f f f f dr&dr2dr3dr4W(r„r2)W(r3, r4)

x [1,(r, )+$3(r, ) )[$2(r2)+$4(r2) ) [113(r3)+11i(r3) ][$4(r4)+$2(r4) ],
where [g;(r)+f.(r) ] denotes a scalar product of wave functions in spin space and the following identity is used:

5(E)+E2 E3 E4)= f d»5(E E4)5(E)+E2»3E)'

(16)

The degeneracy of the core states with respect to the quantum numbers of J, is also taken into account.
From Eqs. (2), (10), and (16) one can immediately see that the contributions P to the transition probability for the

CCV AES can be set up in terms of PDOS's weighted by partial cross sections tr„(E),

P =fd»5(», +E2 E3 E)—gn—,(E)o~(E) (a=D,E,DE) . (17)

Using Eqs. (6) and (15) for the partial cross sections related to the direct term one gets a rather complicated expression,
namely,

(4n ) rid(r r2 )l ii, '(r3
(E)= . , y y f f f f dr, dr2dr3dr4, Y~(0))' YA(02) Y~ (03)"YA, (Q4)

1

X[g„(E,;r, )g„(E3;r,)yg (0, )+yg (0, )

+f. (Ei;ri }f.(E3'ri)Xg «t)+Xg (Qi))

X [g„(E3&r3)g~ (E]& r3 )gg (03) pg (03)

+f„(E3 r3)f (E„.r3)Jg (03) gg (Q3)]

X[G„(E2 r2)G„(» r2)Xg (02) Xg(02)

+F„(E2;r2)F (E;r2)gg (02)+gg(02))

X [G (E;r4)G, (E , 4)erg(04)+'Zg (04)

+F„(E;r4)F (E2, r4)yg(04)+yg (04)), (18}

where a universal constant factor of 2vre /fi has been omitted. Equation (18) clearly shows that the radial and angle-
dependent parts are fairly well separated. The angular integrations can be carried out using Eq. (Al). Since the sum-
mation over the quantum numbers p, p2 as well as over p&, p3 can be performed separately, the orthogonality relation
for the Wigner 3j coefficients, Eq. (A3a) can be used. In accordance with Ref. 2 we introduce radial integrals,
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I [f) f2lf3f4]—= f f r(dr)r2drq f, (r) )f2(r) )y~(r), r2)f3(r2)f4(r2) .

Employing also Eq. (A2), the partial cross sections for the direct term can be written as

(2j, +1)(2jz+1)(2j3+1)
o „(E)= (4~)

(2A, + 1)

(19)

X(I [g, g„ iG„G„](v)kz3)(vl, x2)+I"[g„g» iF»F„](v) A, x3)( —vA, —v2)

+I [f, f iG„G, ]( —a, 1, —x3)(x A, x2)+I [f„f„ iF F, ]( —s, A, —a3)( —sA, —~2)) . (20)

In a similar way the partial cross sections corresponding to the exchange term in the transition probability are easily
obtained by interchanging the initial states in the direct term

(2j, +1)(2jz+1)(2j3+1)
o.„(e)=(4n )

(2A. + 1)

X(I"[g„G„ig„G„](s., A a ) (s3A s2) +I"[g„G„if„F„](a,As ) ( —a3 A,
—s2)

+I [f, F„ig„G, ]( —~, X —a)(~3k, x~)+I [f„F„if„F„](—K, A. K)( K3A. Kp)) (21)

%hen computing the partial cross sections of the cross term, the signer-Eckhart theorem can be used again for the an-
gular integrations, but the sum over the quantum numbers of J, can no longer be carried out separately. The contrac-
tion of four Wigner 3j symbols into one Wigner 6j symbol, Eq. (A4), however, formally simplifies the partial cross sec-
tions for the cross term to

J3 ~ Jz
o „(e)=(4m. ) g ( —1) + +'(2j, +1)(2jz+ 1)(2j3+1) '

Kp, A, , A,

X(I [g» g» iG»G» ](K) A K3) (K A K2) +I [g„g, iF„F» ](K) A K3) ( K A, K2)

+I [f„ f» iG»G» ]( —~)k —~ )3(~k~, )+I [f, f„ iF,F„]( K)A, &3)( Kk Kp))

X(I [g„G„ig, G„](~,A.
' )s(~ A3.

'a )2+I [g, G„if„F,](s., A, 'a)( —~3 k,
' —~~)

+I [f„F„ig,G, ]( —~, A,
' —a)(a A,3'~ )2+I [f„F,if F„](—K, A, K)( K3A, Kp)) .

(22)

E. The nonrelativistic limit

In this section it is shown that the expressions for the CCV AES obtained by a fully relativistic formalism are con-
sistent in the nonrelativistic (NR) limit with the nonrelativistic derivation in Ref. 2.

In the nonrelativistic limit (i) the PDOS s are degenerate with respect to the total angular-momentum quantum num-

ber,

(E)= &le(E)
(2j+1)

2 2l+1
(23)

(ii) the small components of the radial wave functions vanish, while the large components become identical to the solu-

tions of the corresponding radial Schrodinger equation, and (iii) since the core states are also degenerate with respect to

j, an additional sum over these (degenerate) quantum numbers for both the initial and the final core states can be car-
ried out.

Consequently, for the transition probability in the NR limit one can write

p~a= f de6(e', +a~ e3 e) g n, (e—)cr((—e), (24a)
I

o, (e)= g g o„(e),(2j+1)
2(21+ 1)

(24b)

where a can again be any of the symbols D, F. , or DE. In the NR limit the cross sections for the direct term, Eq. (20),
reduce therefore to
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'2 ' '2
(21,+ 1)(212+1)(213+1)

oP (e}=2(4n.)' g I [R, RI, IZ,Z, )'
0 0 0 0 0 0

2%

1
&

A 13 1 A 12
X —' g (2j+1)(2ji+1}(2j2+1)(2j3+1)' .

J3 2 J& J2 2 J
Jl~J2 J3~J

(25)

where the radial part for the core states is denoted by R&(e; r}and similarly, the radial part of the scattering solutions by
ZI(e;r}. Because of the orthogonality relation for the Wigner 6j symbols, Eq. (A3c), Eq. (25) is reduced to the expres-
sion given in Ref. 2, if multiplied by a factor of 2 to account correctly for the inobservable spin states. Nevertheless, it
should be noted that if one wants to approximate the transition probability corresponding to an initial core state (13,j3 )

and to a final core state (1„ji) from a nonrelativistic calculation, the multiplication of the NR cross section by the oc-
cupational fractions

(2j, +1) (2j3+1)
2(21i+1) 2(213+1)

does not work correctly, since after carrying out the sum over j,j2 on the right-hand side (rhs) of Eq. (25), in each term a
j&,j3 dependent factor of

1 ) A. 13
(2ji+1)(2j3+1) ' .

J3 2 J&

remains, which is still coupled to the summation variable A, .
The NR limit of the partial cross sections for the exchange term is given by

tr, (e)=2(4n)
12,A.

'2 2

(21, +1)(212+1)(213+1) 1& k 1 13 X 12
I [RI ZI~R/ ZI ] 0 0 0 0 0

'll A, 1
2

13 A, 12
2

X —' g (2j+1)(2ji+1)(2j2+1)(2j3+1)' J 2 Ji J2 2 J3
(26)

which upon using the orthogonality relation for the Wigner 6j coefficients, Eq. (A3c), also trivially reduces to the ex-
pression derived from the NR theory.

Including the extra factor 2 occurring in Eq. (2), the cross sections of the cross term in the NR limit are given by

cr) (e)=2(4m) g ( —1) + (21, +1)(212+1)(213+1)I[Ri RI ~ZIZI ]I [RI ZI~RI Z( ]
12,A, , A,

'

13 A, 1, 12 1, 1 1 A,
' 1,

000 000 00 0

12 A,
'

13

0 0 0

X —
( —,

'
) g (2j, + 1)(2j2+1)(2j3+1)(2j + 1)
J) ~J2~J3~J

J3 A,

X '

J
J2 13 k 1) 12

J& J& 2 J3 J J2 J&

1, 12 A,
'

13

J J3 — J2
(27)

After eliminating the j-dependent contributions on the rhs of Eq. (27) in terms of Eq. (A5), one again obtains the result
of the NR formulation.

F. Core-valence-valence Auger-electron spectra

Since in a CVV Auger transition both initial states (types 3 and 4) are valence states, one has to use the following
identity for the Dirac 5 function in Eq. (2):

5( E, + E2 e3 e4) =—f d e—d e'5( e e3)5( e' —e4)5(e, +—e2 e e' } . ——

It is straightforward to show that the various contributions to the CVV AES transition probability can be set up in
terms of a convolution of the partial local densities of states multiplied by partial cross sections,

P =f dEd& 5(&i+F2 E E ) g n„(e)n„(e')o, (e;e') (a=.D,E,DE) . (28)
K~K
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The angular integrations and the subsequent summations over the quantum numbers of J, can be performed analo-
gous to Sec. II D leading to the following partial cross sections of the direct term, which is now identical to the ex-
change term

(2j
&
+ 1 )(2&2+ 1)

CT„~(E&E ) =(4m ) g (I fg„G ~G .G„](K&A, K) (K A, K2) +I [g„G„~F&F„](K&A, K) ( —K' A,
—K2)

Kp, A,

+I"[f„F„~G„,G ]( —
K~ A, K)(K A, K2)

+I [f„F„~F,,F„]( K~A, —K)( K A Kp)) (29)

and of the cross term

gz
0' „(E;E )=(4m) g ( —1)"+ +'(2j, + 1)(2j2+1) '

Kp~ A, , A.

X(I [g„G„~G„.G„](K,k K)( KA, K)2+I [g„G„~F„F„](K)A,K)( —K'A, —K2)

+I"[f„F„~G„.G„](—K, A, —K)(K'A, Kq)+I [f„F„~F„.F„](—K~ k K)( K A, Kp) )

X(I [g„G, G„G„](K)A K )(KA, K2)+I [g„G„~F„F„](K)A, K )( Kk K2)

+I [f„F„~G„G„](—K) A, —K )(KA, K2)

+I [f F~FF„]( K)A, K )( KA, K2)) . (30)

Using the procedure of Sec. II E it is easy to show that
the NR limit for the CVV AES transition probabilities is
also consistent with the previous NR formulation. '" It
is worthwhile to mention that in this case the splitting of
the NR transition probabilities corresponding to the final
core states (l, ,j, ) is correct for both the direct and cross
terms when the occupational fraction, (2j, +1)l
[2(2l, + 1)] is taken into account.

G. Restrictions of the theory

The relativistic theory of AES presented in the previ-
ous sections is based on a time-dependent perturbation
theory for an operator deduced from the quantum elec-
trodynamics and on transition probabilities as evaluated
by using the fully relativistic description for the partici-
pating electron states. In order to account for core-hole
lifetime effects the spectra are convoluted by a Lorentzi-
an of constant half width. For valence-band lifetime
effects we use a Lorentzian with energy-dependent half
width decreasing quadratically from the band bottom to
zero at the Fermi energy. The spectrometer resolution is
simulated by a convolution with a Gaussian of constant
half width.

The main restrictions of the present theory are as fol-
lows.

(i) Since it is a one-particle theory, only noninteracting
excited hole states can be considered. According to the
Cini-Sawatzky theory, ' ' for solids with completely
filled bands the two-hole propagator is renormalized via
the repulsion energy between the two holes (U). This
theory has been extended to systems with open bands and
to include spin-orbit interaction (see Ref. 14 and also
references therein). However, only constant (energy in-
dependent) cross sections enter this theory.

(ii) In some cases the hole on a lower core subshell will
be filled from the higher subshell by a rapid Coster-
Kronig transition, which has to be viewed as a competing
process to AES. This can considerably reduce the
theoretical AES intensity arising from the lower subshell.

(iii) Because of the usual short mean free path of the
"free" electrons in solids, the escape depth for the Auger
electrons is typically about 10 A, which corresponds to
no more than 4—5 atomic layers at the surface. There-
fore, surface effects can play an important role in AES.
However, with some modifications, such as a proper sum-
mation over layers, the present theory can also be used
for semi-infinite systems.

III. AKS FOR Ti IN Tio qAlo 5N

In a recent paper' we presented nonrelativistic calcu-
lations for the L3Mz3 V and the L3 VV AES of Ti in

Ti05A10~N. Since the relativistic effects in the valence
band are fairly negligible for this system, it seems to be a
suitable system to confirm the relativistic formulation de-
scribed in the previous section. For the relativistic calcu-
lations, according to Eq. (23), the K-like PDOS's were ap-
proximated by their NR counterparts. In analogy to the
previous calculation, a half width of 0.5 eV at the band
bottom for lifetime broadening was used. The spectrome-
ter resolution function was taken to be the same as in
Ref. 15.

The results for the L3M23 V AES are shown in Fig. 1.
In the NR calculation, the ratio of the magnitudes for the
L 3M/ V and L3M3 V component spectra is 1:2. This ratio
is reduced to about 1:5 in the relativistic calculation,
which, as stressed in Sec. II E, clearly illustrates a possi-
ble inadequacy of the NR formulation. Nevertheless,
since the spin-orbit splitting for the M2 and M3 core lev-
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changes for both the cross sections and PDOS's are im-
portant, i.e., when considering alloys and non-
stoichiometric systems.
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FIG. 3. M45VV spectra for pure Pd metal. The triangles
refer to the experiment (Ref. 16), the crosses to the result of the
intermediate-coupling theory (Ref. 14), and the thick solid line
to the present approach. For the latter case the M4 VV (dashed
line) and M, VV (dotted line) components are also presented.
Thin solid lines serve as a guide for eye.

From the latter two we subtracted the background inten-
sity as given in Ref. 14. Our calculated total spectrum
was normalized to the maximum of the main peak in the
experimental curve. Also included in Fig. 3 are the
M4 VV and M5 VV contributions to the present theoretical
spectrum. Since, as mentioned already in Sec. II G, our
theory does not include corrections due to a possible
Coster-Kronig transition, we did not modify the intensity
ratio for these two contributions, which was essentially a
fitting parameter for the calculation by Cini and Verdoz-
zi. '4

Considering our calculation, the half width of the spec-
trum and the relative position between the large peak and
the shoulder agree within less than 1 eV with the experi-
ment. Beyond the fact that our calculated spectrum de-
picts the overall shape of the measured spectrum quite
well, there are some features less well reproduced, namely
the width of the main peak is overestimated and therefore
the shoulder is less pronounced. Unfortunately, the au-
thors of Ref. 14 did not present their component spectra,
thus a detailed discussion concerning the two theoretical
results is hardly possible.

APPENDIX

J k J
X &a. )I, ~')

p v p
(A 1)

where

()~ A~') = [(2l +1)(21'+1)j'~

l A. l ' l k l '

X
Q Q P

+/ ] ~

J 2 J
(A2)

and the symbols
r

J& J2 J3

m& m2 m3

J& J2 J3
and l l l

denote Wigner 3j and 6j coefficients, respectively, for
which the following orthogonality relations hold':

J2 J3 J2 J3 , 5
J3J3 m3m3

The angle integration required in the evaluation of the
AES partial cross sections can be carried out in terms of
the Wigner-Eckhart theorem as follows:

f d Ayg(Q)+ &A(Q)yg (&)
1/2

(2j + 1)(2j'+ 1)(2A, + 1)
4m

V. CONCLUSIONS
m3

m))m2 m2 m3 2j3+1

In this paper we developed a fully relativistic treatment
for valence-band Auger-electron spectra. We would 1ike
to stress that, aside from broadening parameters for life-
time effects and finite spectrometer resolution, our theory
is essentially parameter free, whereas the model men-
tioned above uses parameters which are extracted in part
from other calculations or measurements or are adjusted
to fit the experimental spectrum (see also a similar type of
calculation in Ref. 18). Our theory can be applied im-
mediately to a large variety of systems, once a realistic
electronic structure calculation is provided. We believe
that the present approach is especially suitable for a11

cases where (i) cross sections are important as, for exam-
ple, in a comparison of relative intensities for different
types of spectra, and (ii) concentration-dependent

(A3a)

J& J2 J3

m m m
3' 3

m& m2 m3

=5,5, , (A3b)

J& J2
g(2j+1) ' .

J3 J4

J&

J3

J2 J

J4 J
J J

2j'+ 1
(A3c}

with 6 being the Kronecker symbol. The fo11owing rela-
tion between the 3j and the 6j symbols should also be
noted':
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Jl J2 J3

J2 J3
Mi, M2, M3

m&, m&, m3

j|+j2+j3+M|+M2+M3

Jl J2 J3
r

Jl ~2 J3 J2 ~3 Jl ~3 Jl J2
X

Ml —M2 m3 M2 M3 ml M3 Ml 2 1 2 3
(A4)

Finally, a combined application of Eqs. (A3a), (A3b), (A3c), and (A4) leads to the identity

13 A,
'

l~
(2j&+ 1)(2jz+1)(2js+1)(2j + 1)

Ji ~J2~J3~J

J3
X '

J
J2

P

Jl

l3
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2 J3 J

A. I I

J2 Jl
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J J3
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Permanent address: Physical Institute, Technical University
Budapest, Budafoki ut 8, H-1111,Budapest, Hungary.

D. Chattarji, The Theory ofAuger Transitions (Academic, Lon-
don, 1976).

G. Hormandinger, P. Weinberger, P. Marksteiner, and J. Red-
inger, Phys. Rev. B 38, 1040 (1988).

G. Hormandinger, P. Weinberger, and J. Redinger, Phys. Rev.
B 40, 7989 (1989).

4P. Weinberger, Electron Scattering Theory for Ordered and
Disordered Matter (Clarendon, Oxford, 1990).

5J. Staunton, B. L. Gyorffy, and P. Weinberger, J. Phys. F 10,
2665 (1980).

J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21, 3222 (1980).
7B. L. Gyorffy, Phys. Rev. B 5, 2382 (1972).
M. E. Rose, Relativistic Electron Theory (Wiley, New York,

1961).
H. Winter, P. J. Durham, and G. M. Stocks, J. Phys. F 14,

1047 (1984).

' P. Marksteiner, P. Weinberger, R. C. Albers, A. M. Boring,
and G. Schadler, Phys. Rev. B 34, 6730 (1986).
G. Hormandinger, Ph.D. thesis, Technical University, Vienna,
1991.

' M. Cini, Solid State Commun. 20, 605 (1976);24, 681 (1977).
G. A. Sawatzky, Phys. Rev. Lett. 39, 504 (1977).
M. Cini and C. Verdozzi, J. Phys. Condens. Matter 1, 7457
(1989).
L. Szunyogh, J. Khma, D. Vogtenhuber-Pawelczak, P. Her-

zig, and P. Weinberger, Z. Phys. B 85, 281 (1991).
P. Weightman and P. T. Andrews, J. Phys. C 13, L815 (1980).
P. Weinberger, B.I. Bennett, and A. M. Boring (unpublished).
P. Weightman, H. Wright, S. D. Waddington, D. van der
Marel, G. A. Sawatzky, G. P. Diakun, and D. Norman, Phys.
Rev. B 36, 9098 (1987).

isA. Messiah, Quantum Mechanics (North-Holland, New York,
1961).


