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Direct determination of self-consistent total energies and charge densities of solids:
A study of the cohesive properties of the alkali halides
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A recently proposed method for directly determining the self-consistent total energies and charge den-
sities of solids is used to study the cohesive properties of all the alkali halides. The calculated lattice pa-
rameter, bulk modulus, and dissociation energy of each compound are reported and compared with the
corresponding experimental data. The results have a good accuracy and their analysis gives some in-

sights on possible improvements of the approximations that we have used. The relativistic contributions
to the various properties have been evaluated by performing fully relativistic calculations for the heavi-
est compounds: The most relevant effect is an increase of the dissociation energies of the cesium halides
which, for CsI, amounts to 7% of the experimental value.

I. INTRODUCTION

[ ——,'V + V, (r}]g,(r)=c.;g,.(r), (3)

with the effective potential

5E„,
V,s.(r}=V„„,(r)+ +

5p 5p

and then summing the square of the N lowest orbitals

N

p(r)= g ~@,(r)~ (5)

In a recent paper' we have proposed a method of deter-
mining the self-consistent charge densities and total ener-
gies of molecules or solids without the prior need to
derive the wave functions of these systems. This method
is based on the second theorem of Hohenberg and Kohn,
which states that the ground-state density of an electron-
ic system can be found by minimizing the following den-
sity functional:

E, [p]=T„;[p]+J [p]+E„,[p)+ J V„„,(r)p(r)d r, (I)

where T„;[p]is the kinetic energy of a fictitious system of
noninteracting electrons having the same ground-state
charge density as the real system, J [p] is the electro-
static energy, V„„,(r) is the external potential (in most
cases the Coulombic potential of a static distribution of
nuclear charges), and E„,[p] is the exchange-correlation
energy functional. The latter is defined as follows:

E..[pl = T; [p] T.;[p]+~„—[p] ~[pl,
where T; [p] and V„[p] are, respectively, the kinetic en-

ergy of the real system and the total interaction energy of
the electrons. The existence of the two functionals T;[p]
and V„[p] is guaranteed by the first Hohenberg and
Kohn theorem, while the particular definition of T„;[p]
allows one to find the charge density minimizing E„[p]
by solving the following one-electron equation:

N being the number of electrons of the system.
This is the standard Kohn and Sham method for solv-

ing the electronic-structure problem of a system. Just
one approximation is required: as the explicit form of
E„,[p] is unknown, one has to replace it by some approx-
imate functional E'„, ""[p].Thus, in practice, one looks
for the minimum of a given E„' ""[p].

This method requires a complete solution of the one-
electron problem for the system: the computational effort
to do this increases roughly as N„, the third power of the
number of atoms in the molecule or in the unitary cell of
the crysta1.

In Ref. 1, we have shown that a simpler method can be
obtained by proceeding in the following way. (i) Instead
of solving Eq. (3), one directly looks for the charge densi-

ty minimizing E„' "";(ii) in order to do this, one rewrites
the total charge density as the superposition of the charge
densities of localized subsystems and (iii) one splits the to-
tal kinetic energy in the sum of two contributions: the
sum of the kinetic energies of the subsystems and the
change of total kinetic energy due to their interaction.
Finally (iv) one treats the first of these contributions ex-
actly and uses an approximation for the second one. The
resulting method is less accurate than the Kohn and
Sham one, but it has the advantage of linearly scaling
with N„.

In the earlier paper' we have reported some prelimi-
nary result obtained by such a method; here, we present
the results of a systematic application of it: a study of the
cohesive properties of all the alkali halide crystals.

The paper is organized as follows: in Sec. II, the
features of the method will be described; in Sec. III, the
analogies and the differences with other similar methods
will be analyzed; in Sec. IV, the approximations we have
used in the actual calculations will be discussed as well as
our choice of experimental data; the detailed comparison
between experimental and theoretical results will be done
in Sec. V; finally, some conclusions will be drawn in Sec.
VI. Note that the formalism will be described for the
case of a crystal, a molecule being an obvious particular
case.
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II. DESCRIPTION OF THE METHOD

Let us consider a nonmagnetic crystal and indicate
with Rk the points of its Bravais lattice. Let ~ indicate
some points within the primitive cell. Suppose we parti-
tion the crystal in subsystems localized around the points
Rk+r W. e will indicate with p.(r —Rk r —)th.e elec-
tronic density of the kj subsystem and with
VJ""'(r—Rk —

r~ ) its contribution to the nuclear electro-
static potential:

p„,(r) =gp, (r —R„—r, ),
j,k

V„„,( r ) =g V""'(r —Rk r~
—) .

j,k

Note that zero, one or several nuclear charges can be as-
sociated to each point, the choice of the partition depend-
ing upon the nature of the crystal to be studied.

The electronic densities p (r —Rk rj ) c—an be written
in terms of one-electron wave functions as follows:

p .( r —Rk rj ) =+—2n,
~ l Q,J ( r Rk rj—)l—

where the g; are assumed to be normalized and to de-

crease exponentially as r tends to infinite. The
coefficients n;. are electronic occupation numbers. They
must satisfy the condition 0 & n,"~ 1, but, otherwise, they
are not restricted in any other way. In particular, they
can be fractionary and the integral of p does not need to
be an integer number.

Using the f;, , we can associate to each subsystem a ki-
I

netic energy T defined by

T [n;, g;~ ]=. +2n;J. ( g;. l ( —
—,
' V ) l g; ) . (9)

We can also write the functional T„;[p] as the sum of two
terms:

T„;[p]=g T [n,",g; ]+ T„;[p]—g T [n,"g,"] (10)
j,k j,k

where we have used pjk as an abbreviation of

p (r—Rk r ). We—wil. l look for the minimum of this
functional with respect to n;1 and to P;J.

By varying E„'pp""[n,j,p;~] with respect to g;J, under

the normalization condition, and for a fixed choice of n,",
one obtains the following equation:

The first of these terms is the sum of the kinetic energies
of the subsystems, while the second one is the contribu-
tion of the interaction between the subsystems to the ki-
netic energy of the crystal.

If T'pp""[p] is an approximate expression of the func-
tional T„;[p],we replace the exact functional E„[p]with
the following:

E„'PP""[n;,, P;, ]=QT[n,, g;, ]
j,k

TaPProx[p] QTaPProx[p ]
j,k

+~[p]+E:."""
I p]

+ J V„„,(r)p(r)d r,

gTapprox gTapprox
~ + V„„,+

&
+

&
+ —

1(,J(r —R„rj)=s,"p,, (—r —R„r) . — (12)

Furthermore, we have proved' that the eigenvalues c;J.

are related to the derivative of E„'pp"" with respect to n;.
in the following manner:

g/approx

2N, Bn;

where N, is the number of primitive cells in the crystal.
Thus, in order to minimize the total energy, one has to
solve Eq. (12) for all the subsystems belonging to a given
primitive cell of the crystal and to fill up the levels follow-
ing the Fermi statistics. Of course, one has to proceed
iteratively until the self-consistent total charge density is
found. In doing this, the problem arises of calculating
the effective potential entering in Eq. (12). In particular,

I

one has to perform two kinds of lattice sum. The first
one, which enters in the kinetic and the exchange-
correlation contributions to the potential, is the sum of
the densities of the subsystems: as these charge densities
decrease exponentially, one can limit the sum to a finite
number of terms and the consequent error on the poten-
tial will be not negligible only in a region where the P;J.
are exceedingly small. The second one is the sum of the
electrostatic potentials generated by the subsystems,
which are typically long-range contributions. Let us dis-
cuss these lattice sums for the particular case which is of
interest in this paper: the case of subsystems spherically
symmetric around the points Rk+7j The electrostatic
potential can then be written as the sum of a long-range
point-ion potential and a short-range contribution:

pj(r' —Rk r,)—.

V„„,(r)+ =$ V"."'(r—Rk r)+—,
' d r'

&p

=g VJ'.P(r —Rk r )+g V,"(r——Rk . r), —
j,k j,k
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where the I- are the ionic charges of the subsystems. Now, the lattice sums can be easily performed: the point-ion con-
tributions can be summed using standard techniques, while the short-range terms need only to be taken into account up
to finite order of neighbors.

Finally, the potential entering in Eq. (12) can be split in an "internal" contribution

gE approx

V,'"'(r —Rk r,—) = V'P(r —R„r—, )+ V"(r—R& r—)+

p (r' —Rk r, )
— 5E„,= V""'(r—Rk —r )+J, ' d r'+

&pk
'

and a "crystalline" potential:

j', k'j', k'
V,"""(r R—

& r )=—g.' V''"(r Rk —r')+—g' V~". (r Rk. —rj )+—
gE approx

xc

5p

5E„"P g T pprox g Tapprox
+

&pjk
(16)

where the prime means that the term corresponding to j k'= jk is not included in the sums.

III. COMPARISON WITH OTHER
RELATED METHODS

The first attempt of describing the interaction of two
systems starting from the superposition of their charge
densities was made by Gordon and Kim. These authors
proposed the following interaction potential V for two
closed shells atoms or ions having charge densities p, and

p2:

V V + Z aPProx[p +p ] Z aPProx[ ] Z aPProx[ ]

+g appfox [ + ] g appfox
[ ] g appfox

[ ]

where V,~, is the electrostatic interaction of the two
atoms. The densities p& and p2 were obtained from free-
atom (ion) calculations and T'pp"'" and Eapp"" were taken
from the homogeneous gas theory.

This approach was soon applied to solids and then
refined in several different ways. In particular, modified
electron gas expressions for T'pp"x and E'„pp"' were
used; the so-called Watson sphere was introduced in or-
der to approximately take into account the effects of the
crystalline field; many-body effects were also included.
Successively, other authors further refined the model by
coupling the radius of the Watson sphere with the
Madelung potential.

Our method is similar to the most accurate versions of
this theory: if one partitions the crystal into atomic sub-
systems, the interactions of the latter are described in the
same way as in the Gordon-Kim theory with, of course,
the many-body and the crystalline-field effects taken into
account. However, our method has the advantage of be-
ing completely self-consistent: no assumption for the
charge densities of the subsystems, for the crystalline field
or for the charge transfer between the subsystems is re-
quired.

The crystalline potential given in Eq. (16) was used by
Johnson, Subbaswamy, and Senatore in a study of the hy-
perpolarizabilities of the alkali halides. ' These authors
were mainly concerned in taking into account the solid-
state effects on the hyperpolarizabilities and they did not
derive variational1y the potential. Furthermore, they as-
sumed unitary ionic charges, while, in our theory, the
charge transfer is a result of the calculation.

In order to simplify the problem of calculating the in-
teraction energy of two weakly interacting fragments,
Harris proposed" to solve the Kohn and Sham equation
for the overall system with a one-electron potential ob-
tained by superposing the unperturbed densities of the
two fragments. Furthermore, he was able to show that
the total energy could be calculated from the one-electron
energies and from the unperturbed densities, with errors
of the second order in the changes of total density and of
total effective potential produced by the interaction of the
two fragments. The Harris method has the main advan-
tage of treating the interaction contribution to the kinetic
energy exactly; on the other hand, it has the drawback of
neglecting the effects of self-consistency.

Very recently, Yang has proposed' a method which is
very close to ours under several aspects: in order to
derive the charge density and the total energy of a com-
plex system, Yang partitions it into subsystems and solves
a Kohn-Sham equation for each subsystem. The effective
potential which enters in these equations is derived from
the total charge density and the latter is obtained by su-

perposing the charge densities of the subsystems. The
charge transfer between the subsystems is determined by
assuming that there is a common Fermi level for the sub-
systems.

There are several minor difFerences between Yang's
and our method (for example, the way of partitioning the
electronic density of the system) and their applications
have been made by using quite different techniques.
There is also a basic difference, because Yang has con-
ceived his method as an approximate way of solving the
Kohn and Sham equation, while our method is based on
the Hohenberg-Kohn variational principle. A conse-
quence of this is that in our theory the existence of a
common Fermi level for the subsystems follows from Eq.
(13), while in Yang's theory that is an assumption of the
method. In practice, however, the main difference is in
the treatment of the subsystem interactions: we have a
kinetic contribution to these interactions [the term in
parentheses in Eq. (10)],a contribution that is not present
in Yang's theory.

Finally, we would like to mention that a quite different
method of calculating the properties of solids which
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scales linearly with N„has also been proposed by Baroni
and Giannozzi. ' We refer to the original paper for de-
tails.

IV. THEORETICAL RESULTS
AND EXPERIMENTAL DATA

All the results reported in this paper have been ob-
tained using the general theory of Sec. II with the follow-
ing particular choices: (i) The local approximation has
been used for the kinetic, exchange and correlation ener-

gy functionals. For the latter, we have used the Perdew
and Zunger' parametrization of the Ceperley and Ald-
er's Monte Carlo data for the homogeneous gas; (ii) the
crystals have been partitioned in atorniclike subsystems;
(iii) the short-range contributions to the potential have
been taken into account up to fourth order of neighbors.
Beyond this order ions have been considered as point
charges; (iv) the potential has been spherically averaged
around each site as explained in Ref. 1.

For all the alkali-halide crystals and for both the B1
(NaC1) and 82 (CsC1) lattice structures, we have calculat-
ed the total energy per primitive cell corresponding to
several lattice parameters (12—16) disposed in an approxi-
matively symmetric way around the supposed equilibri-
um position. A spacement of 0.05 A between two con-
tiguous lattice parameters has been taken, with the excep-
tion of the two last values on each side, for which 0.1 A
has been chosen. The results have been fitted by second,
third, and fourth degree polynomials and the best fits
have been repeated reducing progressively (and symme-
trically) the number of calculated values. By proceeding
in this way, we have noted no appreciable variation of the
equilibriu~ lattice parameters and of the minimal total
energies. This is not the case for the bulk moduli, which

are more sensitive quantities. In general, however, the re-
sults obtained by using a fourth degree polynomial are re-
markably stable and those obtained by a third degree po-
lynomial converge very quickly to the preceding ones.
On the contrary, a second degree polynomial is rarely
adequate. The bulk moduli reported in Table III are the
most reliable values obtained from this analysis and all
the results of meaningful best fits' are covered by consid-
ering a possible error of +0.5 GPa on the calculated
values.

The experimental lattice parameters reported in Table
I are taken from the Landolt-Bornstein tables. ' Only
one remark about them is in order: the room-
temperature values are not taken, in general, from the
same paper where the temperature dependence has been
studied. In some rare cases this gives rise to slight incon-
sistencies.

We have found some inconsistency also in the experi-
mental dissociation energies (referred to free atoms) re-

ported in the literature: we think, in particular, of the
case of NaC1, for which we have found 6.39 eV, ' 6.8
eV, and 6.6 eV. ' The "experimental" dissociation en-
ergies reported in this paper (see Table II) have been eval-
uated by using the heat of formation data at 0 K for the
compounds and for the free-atom gas compiled by Wag-
man et al. When 0-K data were not available (LiBr
and RbF), we have used the corresponding quantities at
room temperature: this yields a negligible di6'erence in
the results.

The experimental bulk moduli are deduced from the
measured elastic constants. In Table III, we have report-
ed two kinds of data. First, the values calculated from
the tables of room-temperature elastic constants reported
in Landolt-Bornstein. These are average values of the
most reliable experimental data. Second, we have report-

TABLE I. Calculated and experimental (Ref. 17) lattice parameters in A. The values in parentheses
are the results of relativistic calculations.

Br

Li T =298 K
T=O K
Calculated

4.03
4.01
4.05

5.14
5.11
5.08

5.50
5.46
5.44

6.01
5.95
5.93 (5.91)

Na T =298 K
T=O K
Calculated

4.62
4.61
4.76

5.64
5.60
5.75

5.97
5.93
6.10

6.47
6.41
6.60 (6.58)

T =298 K
T=O K
Calculated

5.34
5.31
5.40

6.29
6.25
6.26

6.60
6.54
6.57

7.07
6.99
7.03 (7.01)

Rb T =298 K
T=O K
Calculated

5.65
5.59
5.73

6.59'
6.53
6.57

6.89
6.82
6.88 (6.87)

7.34
7.26
7.33 (7.31)

Cs T =298 K
T=O K
Calculated

6.02'

6.12 (6.10)

4.12

4.11 (4. 10)

4.30
4.23
4.27 (4.26)

4.57
4.51b

4.52 (4.50)

'Values that correspond to T =293 K.
Values taken from Ref. 31.
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F Cl Br

Li T=O K 88
Calculated 9.4

7.1

7.2
6.5'
6.4

5.6
5.4 (5.5)

Na T=O K 78
Calculated 8.0

6.6
6.3

6.0
5.6

5.2
4.7 (4.7)

T=O K 76
Calculated 8.0

6.7
6.6

6.2
6.0

5.4
5.1 (5.2)

Rb T=O K 7.4'
Calculated 7.6

6.6
6.3

6.1 5.4
5.7 (5.8) 4.9 (5. 1)

TABLE II. Calculated and experimental (Ref. 22) dissocia-
tion energies (referred to free atoms) in eV. The values in
parentheses are the results of relativistic calculations.

ed the bulk rnoduli at 4.2 K, when we have found experi-
mental data at this temperature. In this latter case, we
have also reported the values at 300 K taken from the
same paper, in order to give a consistent indication of the
change of the bulk moduli with the temperature. We re-
call that the elastic constants measured by different au-
thors can differ substantially even at room temperature.
For example, the bulk modulus of LiCl reported by
Marshall, Pederson, and Dorris is B =28.7 GPa, quite
different from the value of 31.8 GPa reported in Table III
and deduced from the elastic constants measured by
Lewis, Lehoczky, and Briscoe. More details on the
different sets of measured elastic constants can be ob-
tained by analyzing the figures on pages 109—215 of Ref.
23.

Cs T=0 K 7.3 6.6 5.5
Calculated 7.3 (7.7) 6.1 (6.4) 5.5 (5.8) 4.7 (5. 1)

'Values that correspond to T =298 K.

T=4.2 K T=300 K LB Calc.

LiF
LiC1
LiBr
LiI

NaF
NaC1
NaBr
NaI

69.9'
354
26.3'

51.4b

26.6b

22.6b

179

64.9'
31.8
25.7'

48.5
25 0"
199
16.1

68.0
31.0
25.7
18.8
48.5
24.9
20.4
16.1

70.5
35.2
28.5
22.0
42.3
22.8
18.6
14.9

KF
KC1
KBr
KI

342
19 7'

12.7'

318
17.8'

12.0'

31.7
18.1
15.2
12.0

31.3
18.9
16.3
13.8

RbF
RbC1
RbBr
RbI

30.1'
187
16.0
13.1

28.0'
16.5
13.8
10.8b

27.7
16.3
13.7
11.0

26. 1

16.6
14.1

12.2

CsF
CsCl
CsBr
CsI

18.4g

14.4g

15.6g

12.5g

25.0
18.2
15.8
12.6

23.1

18.8
16.5
13.6

'Reference 26.
Reference 25.

'Reference 27.
Reference 28.

'Reference 29.
Reference 30.
gReference 31.

TABLE III. Calculated and experimental bulk moduli in
GPa. Second and third columns: experimental values at 4.2
and 300 K, respectively. Fourth column: average room-
temperature values from the tables of Landolt-Bornstein (Ref.
23) ~ Last column: calculated values.

V. COMMENTS AND REMARKS

The theoretical and experimental lattice parameters of
all the alkali halides in their experimental crystalline
structure are compared in Table I. The theoretical values
correspond to a static crystal, thus they should be slightly
smaller than the T=O-K experimental values. This is
the case of three lithium halides, while, in the other cases,
they are larger. However, theoretical and experimental
values at T =0 K differ, in most cases, by 1% or less and
this seems to us a very satisfactory result. There are two
notable exceptions: the sodium halides and the alkali
Auorides. In the latter case the discrepancies are prob-
ably due to the use of the local-density approximation.
As it is well known, most negative free ions are not
stable in this approximation. Thus, when they are stabi-
lized by the crystal field, as it is the case here, they have a
charge density which is certainly too large and this effect
is enhanced for the lightest ions. This is coherent with
the results of Table I, and is a reason of the general trend
of the calculated lattice parameters of being greater than
the experimental ones. On the other hand, it is less clear
why the results for the sodium halides are not as accurate
as for the other alkali halides. In any case, the maximum
discrepancy between the calculated and the T=0-K ex-
perimental values is not great: 3.3% for NaF.

The calculated and experimental dissociation energies
are compared in Table II. The discrepancies are, in most
cases, of a few percent and never exceed 10% (the error
for CsI, 14.5%, can be reduced by performing relativistic
calculations, see below). The main trends of the experi-
mental data are correctly reproduced by the theoretical
results: the decrease of the dissociation energy as the
atomic number of the halide ion increases and the ten-

dency of the potassium halides to have a greater dissocia-
tion energy than that of the corresponding sodium or ru-

bidium halides.
The results for the bulk moduli are shown in Table III.

Their analysis closely follows the one we have just made
for the lattice parameters. A correct prediction should

give bulk moduli slightly greater than the experimental
values at 4.2 K (owing to zero-point effects). With a few

exceptions, this is not correctly produced by our method.
In most cases, the calculated values are between the
T =4.2 K and the room-temperature experimental data.
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TABLE IV. Differences between the equilibrium total ener-

gies per primitive cell of the B2 (CsCl) and B1 (NaCl) crystal-
line structures in millihartrees.

Li
Na
K
Rb
Cs

F

26.6
10.4
7.9
6.9
7.7

Cl

20.6
8.9
6.6
5.0
4.8

Br

21.4
8.6
6.6
4.5
4.1

18.5
6.7
5.5
3.6
3.3

They difFer from the former by roughly 10%, which is ap-
proximatively the accuracy of the standard band-
structure calculations. Once more the results for the
sodium halides are the worst: the discrepancies with
respect to the low-temperature results are of 14—18 %.

We have also studied the relative stability of the 81
and 82 lattice structures. The differences between the
equilibrium total energies per primitive cell of the two
phases are reported in Table IV. As one can see, our re-
sults follow the trend that one expects: the relative sta-
bility of the 81 phase decreases in passing from one alkali
halide to a contiguous and heavier one. This time, the
anomalies come from the cesium halides: the decrease of
the relative stability of the 81 phase becomes very small
and, in the case of CsF, we even find an inversion of the
general trend. As it appears from Table IV, all the alkali
halides are predicted to be stable in the 81 phase, while
experimentally CsC1, CsBr, and CsI are stable in the 82
phase.

We have checked the importance of the relativistic
effects by performing fully relativistic calculations for the
heaviest compounds. The results we have found for the
lattice parameters and for the dissociation energies are
reported in Tables I and II (the values in parentheses). In
general, they are only slightly different from the nonrela-
tivistic values and are in better agreement than the latter
with the experimental data. The most remarkable effects
we have found are on the dissociation energies of the cesi-
um halides: 0.3 or 0.4 eV, that, for CsI, is 7% of the ex-
perimental dissociation energy and that reduces by 50%
the error of our calculated value.

Finally, we have investigated the relativistic contribu-
tions to the bulk moduli and to the relative stability of
the B1 and B2 phases. For this latter property we have
not found any significant change in the case of CsI and so
we have not extended the analysis to lighter compounds.

On the other hand, the relativistic effects seem to increase
the bulk moduli. However, within the error which affects
the calculated values, it is difficult to distinguish
significantly the relativistic from the nonrelativistic
values. In the case of CsI, for which the relativistic
effects are enhanced, we have found a bulk modulus of
14.0 GPa.

VI. CONCLUSIONS

The results reported in this paper show that our
method for the direct calculation of the total energies and
the charge densities of solids enables one to predict, with
good accuracy, the cohesive properties of highly ionic
crystals such as the alkali halides. The analysis of the re-
sults for all the compounds of this class reveals that the
approximations we have used slightly overestimates the
repulsive interactions with respect to their attractive
counterpart. This is made clear by the fact that we get
lattice parameters that are too large and bulk moduli that
are too small. In the preceding section, we have argued
that this can be due, at least in part, to our use of the
local-density approximation and, in particular, to the
difficulties met by this approximation in treating the neg-
ative ions. One should be able to avoid this drawback by
implementing the self-interaction correction, which has
the main effect of reducing the extension of the negative-
ion charge densities.

Another possible modification of the approximations
we have used that should give rise to better results is to
use an expression of the intersubsystems kinetic energy
more accurate than the local-density one. We wi11 inves-
tigate these two modifications in a future work.
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