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Resistivity anomaly during the process of separation of phases of a binary alloy

Ney Jose Luiggi and Oscar Febres

{Received 20 September 1991;revised manuscript received 9 March 1992)

It is well known that when one follows, isothermally, the process of separation of phases of certain
binary alloys using electrical-resistivity measurements, an anomalous behavior is observed. The theoreti-
cal explanation of this anomaly has been controversial. In this work, we discuss two aspects of that
theory that have not received enough attention in the literature. The first is the real effect that an ex-

ponential damping term produces on the resistivity anomaly when the mean free path is not a free pa-
rameter but rather depends on the wave vector. This leads to an integral equation of the Volterra-type,
the solution of which, by the iterative method of Newmann, exhibits rapid convergence when the time

constant of the damping factor is associated with the internal mean free path of a Guinier-Preston zone.
The second aspect concerns a possible reconciliation of the ideas of Rossiter and Hillel concerning a

semiphenomenological model that reproduces well the clustering process. This model takes into account
the effect of scattering by zones, separately, through the microstructure and through the boundaries,
with a weight function that determines the centers by which the electron is scattered. The results ob-

tained when this model is applied to the binary Al-Zn alloy are completely satisfactory.

I. INTRODUCTION

Consider a binary alloy A-B with atomic concentra-
tion Co of solute atoms B. We assume that, after homo-
genization at a temperature above the solubility limit, the
sample is quenched so as to permit phase separation. Ini-
tially all solute atoms will be—in unstable or metastable
states —in solid solution, and a clustering process shall
occur as the system stabilizes. At any time t )0, the
sample will contain a system of scatterers associated with
the solute atoms, as well as the usual scattering centers
associated with phonons and lattice defects. Measure-
ments of the residua1 electrical resistivity during this pro-
cess will permit observation of a growth, a maximum, a
decrease and a plateau of the resistivity as the alloy ages.
This behavior, called the resistivity anomaly, attracted
some attention in the specialized literature at the begin-
ning of the last decade. ' Although at the present time
the experimental electrical resistivity, because of the ease
of measurement, continues to be a technique very useful
for the characterization of binary alloys, the theoreti-
cal aspects remain anchored to the ideas of Rossister '

and Hillel. '

The increasing use of the thermoelectric power as a
technique to characterize alloys during phase separation
and the close relation of this physical property with the
electrical resistivity' ' have prompted us to reconsider
the resistivity theory, since models that satisfactorily ex-

plain the resistivity anomaly' do not do well in the
analysis of the thermoelectric power' during clustering.

We approach this theory of resistivity again, on the
basis of the following two facts:

First, as pointed out in Sec. II, the true meaning of the
damping factor exp( —r, /A) in the isotropic model has

not yet been fully considered. In previous calculations
that have followed this scheme, the electronic mean free

II. RESISTIVITY THEORY:
INCLUSION OF THE EXPONENTIAL FACTOR

A. Formulation

The electrical resistivity, as derived from the
Boltzmann equation and expressed within the free-
electron model, may be written as

P (l)
ne r(k)

where the relaxation time r(k) takes into account all of
the dispersive centers that are present in the alloy. We
are interested in the contribution of the solute atoms,
which are either fully isolated or else in the form of
Guinier-Preston zones. We will assume that this contri-
bution and that of the phonons obey Mathiessen's rule.

In the Born approximation, the relaxation time associ-
ated with scattering by the solute atoms is written as

r, (k)= Sk—k' k'8' —W, k
4~ h

X ( l —cos81, z )d Ql,

path that occurs in the damping factor has been taken to
be independent of

~ q ~

=
~
k —k'

~, although in reality it has
a ~q~ dependence. This would transform the relaxation-
time equation into an integral equation solvable only by
iterative techniques.

Second, in Sec. III, we treat phenomenologically a
model based on the evolution of the scattering power of
different dispersive centers, particularly the Guinier-
Preston (GP) clusters. This model was suggested in a
previous work, ' in which the ideas of Hillel, Edwards,
and Wilkes' and those of Rossiter tended to converge.
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In the above formula, the notation of relation (4) of
Luiggi and Gomez' is used, but with the substitution of

s (q)=N gy;y. exp iq (r, —. r. )—
l,J

(3)

for the structure factor. It is necessary to include the
factor exp( —~r —r~ ~/A) in order to produce the drop in
the resistivity ' 's and this factor could appear in (3)
only by redefining the scattering power within the zone.
Clearly, if we are in a region of limited boundaries, these
boundaries will change the electronic can free path be-
cause of the change suffered by the electronic distribution
function in such restricted media. The works of
Chambers' ' in this respect may be used as a guide, but
the redefinition of the distribution function causes
changes in Boltzmann's differential equation, which may
prevent it from being linearized, and thus greatly compli-
cate the search for solutions to the transport problem.

If the effect of finite physical limits is introduced into
the solution of the linearized Boltzrnann differential equa-
tion at the level of boundary conditions which regulate
the possible dispersion, ' the change in the distribution
function is written as'

where v is the electronic velocity, E is the applied electric
field, r& is a point of the boundary, and G (v, rb ) is a func-
tion associated with the geometry of the boundary. For a
displacement from equilibrium of the distribution func-
tion (4), and by the use of the free-electron model, the
resistivity becomes

p(v, r}=
z ~(1+G(v, r)}exp

ne

I
r —rb I

7U
(5)

B. Evaluation

Under the assumption of isotropy, relations (1)—(3) are
written as

p~= 6 J q S (qr)dq
C & W(q)

g(q)
(6)

It should be noted that in (5) the distribution function G
can be chosen so that its functional form is similar to (3).
Moreover, it is to be expected that the second term of (5)
should tend toward zero for isolated solute atoms. This
surely constitutes a convincing explanation for the ap-
pearance of an exponential term, but at no point is any
supposition made concerning isotropy or anisotropy of
the relaxation time.

g(v, r)=rv E 1+G(v, r„)exp (4)
where

sin(qr&)S (q, r)= —C, (1—C, )+riC, (1—C, )+C, g n~ Xexp( r&I~U)—

This expression is in agreement with expression (6) of
Luiggi and Gomez' and has been derived under the same
assumptions. The first term gives the contribution of the
solute atoms in solid solution, and the second, within
brackets, the contribution of the spherical GP zones of
atomc concentration C, with n& atoms in the lth shell dis-
tant r& of this center. Until now the action of the damp-
ing factor has been considered as abruptly cutting off the
participation of the zones' ' for a certain correlation be-
tween the zone radius and the electronic mean free path
A=~U, but only in the works of Hillel and Rossiter' and
Luiggi and Gomez' is the necessity of a true evaluation
of this expression mentioned, inasmuch as (6) is an in-
tegral equation rather than simply an integral. The in-
tegral equation (6) is considered to be Volterra type and
we have solved it through the iterative scheme of
Newmann.

III. SEMIPHENOMENOLOGICAL MODEL
OF THE RESISTIVITY

In this section we attempt to incorporate semi-
phenomenologically various scattering processes that
inhuence the electrical resistivity of a binary alloy during
phase decomposition. This model includes concepts that
are in accord with the model of Hillel et al. ' ' and also
with that of Rossiter. '

As in all our previous works, the solute atoms wi11 be

considered in two groups: those that are in solid solu-
tion, with atomic concentration C„and those contained
in Guinier-Preston zones, of atomic concentration C, and
internal concentration C, .

For a random distribution of dispersive centers, the in-
verse of the relaxation time is

C, C,=—+ +
r(k) ro v; r(k)

where 7 p 7 and ~, represent the relaxation times associ-
ated with phonons, a solute atom in solid solution and a
GP zone, respectively.

We distinguish between two different types of disper-
sive centers associated with the clusters: the microstruc-
ture of the cluster, as considered in previous works, and
an extra dispersive center, which manifests itself through
a potential associated with the boundary of the GP zones
and evolves with the development of these zones.

The scattering of an electron by the boundary or by the
microstructure of a zone constitutes, in the approxima-
tion of simple scattering, two nonsimultaneously existing
events, i.e., an electron scattered by the zone boundaries
cannot participate in the scattering process of the micros-
tructure of zones. Thus we have introduced a phenome-
nological parameter F that considers this effect. Accord-
ing to this reasoning, ~, mill be
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where y is the boundary fraction, defined as the volume
occupied by the boundary of the GP zone divided by the
volume of the cluster in question. If we assume that the
boundary encompasses p interatoimc distances "a," then
for spherical zones y will be

Vb
y —4 —~r 3

3 z

(10)

where r,'=r, —pa, which therefore implies that

pa
T

'2
pa + pa
7z Tz

3

In the case in which the boundary encompasses a layer
of one interatomic distance, the factor S&~(q) can be asso-
ciated with the structure factor of a cubic cell. Such
structure factors for fcc cells have been calculated by
Luiggi. Note the possibility of considering, within this
model, diffuse boundaries and their effect on the residua1
resistivity, which was impossible in all previous models.
It should be clear that we are proposing just one of the

1 F 1 —F+
r, (k) r, (k) r, (k)

where z and ~ are the relaxation times associated with
the rnicrostructure and boundaries of GP zones, respec-
tively.

At low temperatures, the phononic effect is "frozen"
and contributes a constant term to the resistivity. The re-
laxation time ~, associated with solute atoms in solid
solution is derived from (2), including the term 1 —C,
through the structure factor. Moreover, since Co«1,
the electronic mean free path is large compared with
r; —rj ~

in the exponential, so that G may be chosen such
that the contribution of the solid solution remains the
same as in our previous works. ' ' '

With regard to the time r, (k), its dependence on k
makes it anisotropic, and the rnicrostructure of the lattice
associated with the GP zone is defined through r, (k).
This term is well defined by expression (2) with a struc-
ture factor given by (3). It should be noted that in spite
of the control that Bragg scattering exerts upon the elec-
tronic participation in the resistivity, the damping factor
exp( —

~ r; —
r~ ~

/A ) is necessary, as was explained in Sec.
II, in order to regulate the effect of zone size one the re-
laxation time. We should reiterate that this type of
damping function was selected in order to keep the same
functional form used by other authors, ' ' ' although, as
is shown by (4), a difFerent function could be used.

The evaluation of ~, involves a knowledge of the distri-
bution of boundaries of the GP zones. If an element of
the boundary contains a solute atom, we consider its
effect to be similar to that of an isolated dispersive atom
contained in the lattice. Thus we may write the resistivi-
ty associated with the boundary as

2

yC 3 W(q)
(9)b ~6 x b

many empirical methods to estimate the effects of boun-
daries.

In order to evaluate completely our model, we need
only estimate the fractions F and 1 F—that occur in (8).
We suppose that 1 —F is a function that determines the
number of electrons that may be scattered by the boun-
daries and F the number able to undergo Bragg scatter-
ing; F tends toward unity in the limit of small cluster and
vanishes for large clusters. In the present work we shall
use a phenomenological function, with certain similar
characteristics, which were introduced by Hillel, Ed-
wards, and Wilkes

' 2 —1/3a

F= 1+ N

p
(12)

IV. RESULTS

A. Preliminary considerations

In this section we evaluate numerically the two
schemes proposed in relations (6) and (7) for a binary Al-
Zn alloy with parameters similar to those used in our pre-
vious works: initial concentrations of Zn, Co =6.8 at. %;
zone concentration, 1 X 10 & C, & 5 X 10; internal
concentration of zones, C, =1. The form factor is evalu-
ated according to the relation

e, (q)Q,
W(q) = W, (q) —W, (q)+AS(q) W, (q),

es q+s
(13)

where e (j =i, s) represent the dielectric constant, Q,
(j =i,s) the respective atomic volumes, WJ(j =l, s) the
pseudopotentials of impurities and solvents, and bS(q)
the structural change due to deformation upon introduc-
ing the impurity atoms into the solvent lattice; the latter
is evaluated according to the scheme of Harrison.

Although in previous works we have used the point-ion
scheme of Harrison in the evaluation of the form factors,
here we have used two different schemes. The first is the
single-parameter Ashcroft model:

4m.Z e
2j

The second is the modified Cohen-Heine (MCH) model:

cos(qR "), j =i,s . (14)

4m.Z,.e @icos(qRJ )

q qR. J =l~S

Note that there is an implicit dependence on the zone size
through the number N of atoms in the zone, while the
value of p is introduced to determine the value of N
above which F decreases. This could perhaps be seen as
the limit that separates the unquestionably anisotropic
effects from those that are isotropic. Nonetheless, F
should not depend exclusively upon the size of the clus-
ter, but should also depend on the energy of the incident
electrons, and for electrons of high enough energy, F will
be independent of the size.
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The values of the parameter associated with these poten-
tials have been chosen near to those suggested by other
authors for Al-Zn alloys so as to reproduce the initial
electrical resistivity. The values of R. are different in the
two models, thus the superscripts A and M. We have
chosen, in atomic units, R z„=1.4177, R A&

= 1.1305,
Rz„=2.4, R~, =2.2, P~, =17.5, and Pz„=13.0. These
values give initial resistivities of 24.94 and 24.27 JMQ cm
(at Zn) ' for the Ashcroft model and the MCH model,
respectively.
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B. Evaluation of relation (6)

Following the iterative scheme of Newmann, ' we have
evaluated relation (6) under two different calculational as-
sumptions: (i) that the iterative process is established
through the total relaxation time, and (ii) that the itera-
tive process is established internally in a GP zone with a
relaxation time associated with that zone. These criteria
have been hotly debated, but in any case their participa-
tion in the determination of the resistivity has not yet
been considered.

Let us first study the iterative process in each case.
With this purpose, and using a zone concentration of

10 ", we plot for each of the two potentials the total
resistivity as a function of zone diameter as the process of
clustering progresses. Figure 1(a) corresponds to assump-
tion (i), i.e., that r in the exponential found in relation (6)
corresponds to the total relaxation time. Step one of the
iteration is not shown in the figure because of the magni-
tude of the time involved. Step two decreases the total
resistivity abruptly, step three increases it significantly,
and step four reduces it slightly. This trend probably in-
dicates an oscillatory tendency toward convergence;
confirmation of this fact through further iterative steps,
however, surpasses our current computational capacity.
In any case, the values of total resistivity involved lead to
unrealistic calculations of the percentage variation of the
residual resistivity, since it is found experimentally to be
under 30%, while here we obtain as much as 500%. For
this reason, in the remainder of this work we will only use
assumption (ii).

In Figure 1(b) this assumption is used to check the
iterative process by means of the zone resistivity. Itera-
tive steps two, there, and four show good convergence
through step three. The resistivities for steps three and
four differ only in the limit of very small zones. The
effect of the potentials is also indicated in this figure,
showing no qualitative in6uence on the dependence of the
resistivity on the zone diameter, although the values asso-
ciated with the Ashcroft potential are slightly larger than
those obtained with the MCH model. On the basis of this
calculation, we have chosen four as the number of itera-
tive steps to perform in the remainder of this work.

Figure 2 shows the effect of a divisor in the exponen-
tial, in the form of exp( —P, lm A), as suggested by Luig-
gi. ' Here C, is fixed, the Ashcroft potential is used, and
m takes on values of 1 and 0.1. For both values, the total
resistivity, that of the zones and that of the solid solution,
is plotted as a function of the diameter of the GP zones.
The total resistivity shows an anomaly in the region of
24.8 A, being more pronounced for m =0.1. For both
values of m, the contribution of the zones grows to a
maximum and then decreases monotonically until the su-
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FIG. 1. (a) Total resistivity p as a function of zone diameter
Iterative process through the total relaxation time:

two iterative steps; ——,three iterative steps; —.—.—-, four
iterative steps. (b) Total resistivity p as a function of zone diam-
eter P. Iterative process through the zone relation time: upper
curves, Ashcroft potential; lower curves, MCH potential. Same
notation in (a).
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FIG. 2. Diferent contributions to the absolute resistivity as a
function of P for different values of m in the damping factor. t,
total absolute resistivity; s, resistivity of the solid solution; z,
resistivity of GP zones. , m =1;——,m =0.1.
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FIG. 3. Relative variation of the residual resistivity with

respect to the resistivity po of the homogeneous solid solution as
a function of zone diameter P for different values of m. Same
notation as in Fig. 2.

FIG. 4. Relative variation of the resistivity hp/po for
different zone concentrations. ——.—,C, =5X10
C, =1X10-', ———,C, =SX10-'.

persaturated concentration reaches equilibrium, 0.020
at. %%uoa t 20'C.

Figure 3 shows the percentage variation of the resis-
tivity under the same conditions. A maximum of about
10% is obtained for m =0. 1, while for m =1 there is a
noticeable increase in the resistivity but no decrease is ob-
served.

Figure 4 shows the effect of zone concentration upon
the resistivity, in particular upon the percentage varia-
tion calculated immediately after a hypothetical quench-
ing. The value of m is fixed at 1, while C, takes on values
of 5X10, 1X10,and 5X10 . Only for the first of
these is there a noticeable anomaly; for the other values
of C, there is an increase in the resistivity but no decrease
at any time. It is notable also that when the anomaly
does appear, the resistivity decreases to a saturation value
that is the same for all concentrations and is positive.
This behavior, which is also seen in the previous figures,

I

disagrees with the experimental results of various au-
thors, ' who find that the saturation value generally
tends to be negative.

C. Evaluation of relation (7)

In the following evaluation of our model we assume
isotropy for the relaxation time. The results under the
assumption of anisotropy will be published in the near fu-

ture.
If in relations (2) and (3) we consider that the probabili-

ty of transition is the same for any incident k, then the
resistivity will depend only on ~q

= ~k —k'~, so that we

may use (7) and (8) to write

p=po+C, (1—C, )p, +C, [F(p, (k))+(I —F)(p,"(k)],
(16)

where

( m(k)) C I 3 8 (q)
K' e(q)

2 —r)( I —C, ) +C, g n I

sinqrl
exp( —

r& lru ) dq (17)

and (r,"(k)) is defined directly through (9) as

(18)

In the evaluation of relation (16) we have considered
both the Ashcroft potential and that of the MCH model,
as well as the effect of the concentration of the GP zones
and the effect of a variation of F through a change of p in
relation (12). The value of a in the latter relation is fixed
at 0.5. In the evaluation of y [relation (11)],the value of
p is fixed at 1 for the entire calculation except of the first
layers, where p itself is fixed at 1. As for the exponential
in relation (17), we introduce no recursivity into the re-
laxation time in this first stage.

Figure 5 shows the effect of the potential upon the total
resistivity and upon the different isotropic contributions

thereto: the resistivity of the solid solution, that due to
the boundaries, and that due to the microstructure. The
concentration of zones is fixed at 3.5X10, while the
parameter p of F is set at 300. In all cases the Ashcroft
potential gives values slightly greater than does the MCH
model. The total resistivity shows the expected behavior,
that is, an anomalous increase with a maximum of
1.92698 pQcm for the Ashcroft potential and 1.8640
pQ cm for the MCH model, which is reached for a zone
diameter between 15 and 16 A. The solid solution shows
a decay as the clustering advances and becomes constant
when its concentration reaches that of equilibrium, taken
as 0.02% at 20 C. ' With respect to the contribution of
the zones, the effect associated with the microstructure is
not only dominant during the first stages of aging, but
also defines, for the values of the parameters used here, a
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TABLE I. Effect of the concentration of zones on the max-
imum resistivity for the two potentials used.

1.6

C, I/) (nm)
p„„& (JMQcm)

Ashcroft MHC
1.2

(3

0.8

0.4

5.0x10-'
3.5X10
1.ox 10-4
5.0x10-'
1.0x 10

1.278
1.512
1.850
1.894
1.950

2.0066
1.9227
1.7891
1.7459
1.7064

1.9374
1.8641
1.7355
1.6964
1.6604

0

maximum of the resistivity. This local maximum falls
thereafter so as to form a nice peak in the resistivity. For
larger zones this effect decays to zero, while the contribu-
tion of the boundaries becomes important as soon as the
maximum is reached, the maximum being broad and

E
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FIG. 5. Different contributions to the absolute resistivity as a
function of ((I, for different potentials. , Ashcroft potential;——,MCH potential.
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I I I

/
I

~o 0

falling smoothly. The qualitative form of these results is
clearly a better fit to the experimental results of Luiggi,
Simon, and Guyot.

Figure 6(a} shows the effect of zone concentration on
the total resistivity and on the solid solution resistivity.
The Ashcroft potential is used with p=300, and the con-
centration takes on values of 5 X 10, 1 X 10, 5 X 10
and 1 X 10 . The results are in complete agreement with
previous calculations, that is, as the number of GP zones
per unit volume is decreased, the depletion of the solid
solution is slowed while the position of the maximum is
displaced toward the limit of large zones and its magni-
tude decreases. In Table I we show the correlation be-
tween the position of the maximum and its magnitude for
both models of potential. Note that the initial values of
the total resistivity obtained for the Ashcroft and MCH
models are 1.6959 and 1.6507 pQ cm, respectively.

Figure 6(b} shows the effect of zone concentration on
the contributions of the microstructure and the zone
boundaries as the clustering advances. Here the potential
used is that of Ashcroft and p= 300. The microstructure
generates a resistivity anomaly that is greater when C, is
larger and occurs for short aging times. As C, is re-
duced, the maximum decreases in magnitude and shifts
toward larger zone sizes. The resistivity tails for different
concentrations tend to coincide because of the effect of
the value of I'. The contribution of the boundaries also
tends to be anomalous, but the fall is very smooth be-
cause of the combined effects of the function y and the
value of 1 —I'. As in the case of the microstructure, when

0
0.5 1.5 2.5

P( nm)

4.5

FIG. 6. (a) Effect of zone concentration on the total resistivi-
ty (curve t) and on the resistivity of the solid solution (curve s)
as a function of Ii). ——,C, =SX10;———,C, =1X10

, C, =SX10 '; —.——-, C, =1X10 '. (b) Effect of zone
concentration on the resistivity due to the microstructure (curve
m) and due to the boundary (curve b) as a function of I/'I. Same
notation as in (a).

-30
0.5

I

1.5

+(nm)

3.5

FIG. 7. Relative variation of the resistivity bp/po as a func-
tion of P for different zone concentrations.
C, =3.5 X 10 . Other curves as in Fig. 6(a).
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TABLE II. Effect of p upon the maximum resistivity of the
two potentials used.

IO

P (nm)
p,.„, (poem)

Ashcroft MHC

50
100
300
500

1.278
1.32
1.85
2.06

1.7362
1.7520
1.7891
1.8287

1.6885
1.7030
1.7355
1.7740

-IO

-20—

0.6—
E
O

0.4—
Q

/

/ //

(b)

0,2-

0
05 I.5 2.5

y (nm)

3, 5 4.5

the zone concentration is reduced, the contribution of the
boundaries tends to be slower, so that for C, )5X10
and for the range of diameters shown, no decrease is ob-
served at all. It is notable also that for these values of C„
the contribution of the boundaries is greater than that of
the microstructure. In general, the microstructure is
dominant of zones of diameter less than 24 A, while the
boundaries dominate for larger zones.

Figure 7 shows how C, affects the percentage variation
of the resistivity under the same conditions as in the pre-
vious figure. The expected behavior is seen with a larger
anomaly for larger values of C, .

Now we go on to consider the effects of varying F upon

0.5
I

I.5
I

2.5

(nmj

I

35 45

FIG. 9. Relative variation of the resistivity Ap/po as a func-

tion of P for different values of p, . Same notation as in Fig. 8(a).

the different contributions to the resistivity. The zone
concentration is fixed at 1X 10 and the Ashcroft poten-
tial is used. Figure 8(a) shows the total resistivity and
that of the solid solution for p values of 50, 100, 300, and
500. The anomaly is seen, and as )M increases (making F
more level), the maximum increases in size, whereas it
shifts toward the limit of small zones as p decreases. The
solid solution contribution remains constant, since it does
not depend of F.

Figure 8(b) shows how )M affects the contribution of the
zones. The resistivity associated with the microstructure
shows an anomaly in agreement with the total resistivity
described before, while the contribution of the boundaries
exhibits this behavior for large values of p only. The con-
tribution of the boundaries is more important than that
of the microstructure for values of p less than 300. In
general, it continues to be true that the contribution of
the microstructure dominates that of the boundaries for
small zone sizes.

Figure 9 shows how the percentage residual resistivity
changes as the clustering proceeds for different values of

E
1.2—

CL

0.8

l.2

0.8-
E
(3

06-

O
0.4—

I I

/

/

0.4
0

FIG. 8. (a) Effect of the parameter p on the total resistivity
(curve t) and on the resistivity of the solid solution (curve s) as a
function of t)). —~ ——., p =50; p=100;
p=300; —"—,@=500. (b) Effect of the parameter p on the
resistivity due to the microstructure (curves m) and due to the
boundary (curves b) as a function of P. Same notation as in (a).

0.2-

2 25

y (nm)

FIG. 10. Effect of zone concentration on the resistivity due

to the microstructure (curves m) and due to the boundary
(curves b) as a function of P. The iterative process moves

through the relaxation time of zones in four steps.
C, =5X10-', , C, =5X10 '.
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FIG. 11. Relative variation of the resistivity hp/po as a func-

tion of P for different zone concentrations.

C, = 1 X 10 . Other curves as in Fig. 10.

p. The anomaly shows the expected behavior, in agree-
ment also with the results shown in Fig. 8(a). In Table II
we show the correlation between p, the zone diameter,
and the maximum value of the resistivity.

Finally, in Figs. 10 and 11, with p and m fixed at 300
and 1, respectively, we show how the iterative considera-
tion of the relaxation time, taken for four cycles, reduces
slightly the contribution of the microstructure to the
resistivity, resulting in a reduction of the resistivity max-
imum. This is particularly evident in Fig. 10, where the
contributions of the zones due to the microstructure and
due to boundaries are shown as a function of zone diame-
ter as the clustering process proceeds and for two
different zone concentrations, 5X10 and 5X10 . The
characteristics previously described for these contribu-
tions continue to hold here. Figure 11 shows the percen-
tage variation of the resistivity for values of C, of
5X10, 1X10 and 5X10 . Each curve shows the
proper behavior, that is, an anomaly that is more impor-
tant for greater zone concentrations and shifts toward
zones of greater diameter as the zone concentration de-
creases.

(a) When the total relaxation time includes the contri-
bution of the solid solution and GP zones in the exponen-
tial factor, the iterative process is slowly convergent and
oscillatory, but the magnitude of the resistivity is much
greater than that observed experimentally.

(b) When the relaxation time in the exponential factor
includes contributions from the zones only, the process
converges rapidly after at most four steps, and generates
resistivity results in quantitative agreement with experi-
ments.

Conclusions (a) and (b) permit us to resolve the contro-
versy as to which is the relaxation time that must appear
in the exponential factor in the resistivity theory. Like-
wise, we render evidence that the anomalies reported by
Luiggi' and by Aubauer' are a result of the sharp cutoff
introduced into the structure factor for zones of diameter
comparable to the electronic mean free path but that ade-
quate calculations must include a eave-vector-dependent
relaxation time in the structure factor. An interesting re-
sult not observed experimentally is the saturation value
or tail of the resistivity curve, which is relatively high.
This marks a genuine difference between the physical
meaning of the damping factor when it is allowed to act
throughout the entire range and when it is abruptly cut
off.

(2) With regard to the model introduced, we conclude
the following:

(a) This model harmonizes the ideas of Rossiter and
Wells and those of Hillel, Edwards, and Wilkes' and
leads to results in qualitative agreement with those of the
literature and within the same range of values.

(b) The resistivity anomaly is seen to result for a sum of
anomalous effects due both to the boundaries and to the
microstructure, the latter being dominant for zones of
small size and the former for larger-sized zones. There is,
moreover, an overall regulation through the depletion of
the solid solution.

We have created in this way a basis for future calcula-
tions of transport properties such as PTE, the evolution
of which during the clustering process does not easily
adapt itself to previous models.
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