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Diffuse-magnetic-scattering calculations for frustrated antiferromagnets
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A method based on the Gaussian approximation is presented for calculating the magnetic neutron

scattering from short-range-ordered magnetic systems. Scattering profiles are calculated for three highly

frustrated systems: the rhombohedral-, kagome-, and pyrochlore-lattice antiferromagnets. The results

are compared with those obtained from conventional Monte Carlo techniques and with recent experi-
mental results for FeF3 and Tb2Mo~07. For the rhombohedral lattice, the calculations predict two-

dimensional peaks even in the presence of strong interplanar interactions and provide an explanation for
the lack of observed wide-angle magnetic neutron scattering in LiNi02. Scattering consistent with

short-range order is predicted for the pyrochlore- and kagome-lattice antiferromagnets down to very low

temperatures. The Monte Carlo method is most successful for treating truly short-range-ordered sys-
tems and low-dimensional systems. The Gaussian approximation method gave similar results for these
systems and was also found to be useful for three-dimensional systems with quasi-low-dimensional order
where the Monte Carlo method was impractica1.

I. INTRODUCTION

Geometrically frustrated antiferromagnets exhibit
unusual and interesting properties such as large ground-
state degeneracies, ' incommensurate and noncoplanar
long-range order, novel critical properties, and spin-
glass behavior. A firm understanding of periodic frus-
trated antiferromagnets is also believed to be a prere-
quisite for understanding the spin-glass problem.

The two-dimensional triangular lattice antiferromagnet
is the best known geometrically frustrated system. The
Ising case was solved by Wannier. ' It exhibits no long-
range order at any temperature and has a macroscopic
ground-state degeneracy, and therefore a large zero-point
entropy S( T=O) ~ N, where N is the number of spins.
For vector spins a noncollinear three sublattice 120' spin
arrangement forms. The simplest three-dimensional
stacking of the triangular sheets ( A A A ) with a
corresponding interplanar ferromagnetic or antiferro-
magnetic interaction, does not have a profound effect on
the nature of the in-plane magnetic order. However, the
rhombohedral stacking [ ABCABC -, see Fig.
1(a)] in which successive planes are offset so as to form a
cubic close-packed array, leads to much more complex
behavior. In the rhombohedral stacking, interplanar in-
teractions of either sign will result in additional magnetic
frustration over and above the in-plane frustration. The
interplane interactions prefer collinear spin arrange-
ments, while the in-plane interactions are best satisfied by
the noncollinear 120' structure.

To proceed with calculations concerning the
rhombohedral-lattice antiferromagnet, we use a Heisen-
berg Hamiltonian written in terms of Fourier modes

1&=——QJS S

where Jq and S are, respectively, Fourier transforms of

the exchange interaction and spin density

Jq =N ' g J, , exp[iq (r—r'],

Sq=N ' g S,exp(iq r) . . (3)

qo=+(-, —, e. » ———e, ——
2 ' 2

' (4)

This is a trivial example of what Rastelli has called a de-
generation line. Since there are N' possible values for
q, in (4}, the ground-state degeneracy is proportional to
X' . The system is effectively two dimensional and, due
to the famous theorem of Mermin and Wagner, one ex-
pects no long-range order at finite temperatures. The
presence of a degeneration line here is intuitively obvious,
since J is independent of q, when J'=0. Rastelli has
shown that if J is nonzero (either positive or negative,
but ~J'~ (3~J~ } the degeneration line persists but now
maps out a nontrivial curved line in q space. For small

j=J'/~ J
~

the degeneration line is a spiral centered about
the line defined in (4), which in real space translates into a

Here we use the convention that J, & 0 and J,)0 corre-
spond to antiferromagnetic and ferromagnetic interac-
tions, respectively. The minimum of & occurs for the q
vector that maximizes Jq. For general q, a helical struc-
ture is stabilized.

As a prelude to understanding the rhombohedral lat-
tice, we consider a model with an antiferromagnetic in-
plane interaction J and interplanar interaction J'=0. In
this case (1) is minimized for in-plane wave vectors
+(—,', —,

'
) (in the hexagonal metric), which corresponds to

the 120' spin arrangement mentioned above. The wave
vector along the z direction q, does not affect the
minimum in %, since there is no interaction along this
direction. Thus, one may express the ordering wave vec-
tors as
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jected, the spin was then randomly pivoted around its lo-
cal exchange field. Such pivoting has no effect on the
internal energy but increases the rate of phase-space sam-
pling.

The simulations used a simple isotropic Heisenberg
Hamiltonian

sin(QR;, )

d„=-,'(-,'Vrro)'If(Q)]'g (S, S, )
l,J Ei

(6)

where (do/dQ) is the scattering cross section of neu-
trons per unit solid angle, —,'yro=0. 27X10 ' cm, is the
neutron-scattering length per Bohr magneton, p is the
magnitude of the local spin moments, f(Q) is the mag-
netic form factor, Q is the magnitude of the neutron-
scattering vector, (S,. SJ ) is the thermal expectation of
the correlation between the spins at sites i and j, and

R;J = IR; —R~ I is the distance between sites i and j. The
factor of —,

' arises because the neutrons only "see" the
component of S perpendicular to the scattering vector Q.
Thus for a system with isotropic interactions and no sym-
metry breaking long-range order, we have

(s', s,')=-'(s s ) .

For an L XL XL lattice with periodic boundary condi-
tions, the maximum distance R," is &3(L /2) and for 2D
lattices it is &2(L/2). This is a shortcoming of the MC
method for calculating the neutron-scattering profile.
However, for the kagome and pyrochlore systems the
correlations die out rather quickly, and even at very low
temperatures, lattice sizes that are manageable with MC
are quite sufficient. For all but the smallest lattice sizes
the double summation in (6) is the rate limiting step in
the calculations. Therefore, we used an efficient histo-

&=—
—,'JNN g S;.S, ——,

'J' g S, S
(lJ )NN (lJ )

where S; =(S;",Sf,S ) is a classical unit spin at lattice site
i. JNN is the interaction between nearest neighbors and is
negative or antiferromagnetic for all systems considered
here. J' is the interplane interaction for the
rhombohedral-lattice system and is not included in the
pyrochlore- and kagome- lattice models.

Here we calculate the powder-averaged neutron-
scattering cross section, since the existing data for these
materials was measured on polycrystalline samples. We
find following Ref. 24 that

gram method that reduces the number of sin(QR ) terms
(by orders of magnitude) that must be evaluated.

III. THE GAUSSIAN APPRGXIMATION (GA)

We start with a Landau expansion for the free energy
in terms of Fourier modes

V(T)= —,
' gg(nT5' —Jq )(Sz) (S )+O((S) ),

q a, b

(8)

+a y yaa( sa ) (10)

are linear combinations of Fourier modes that diagonal-
ize Jq . 4, is the ath component of the ath eigenvectorqtXCf

of J'"
q

'

In this language a phase transition to long-range order
occur's at the mean-field critical temperature

T, "=—max[Aqj,MF

lf q, a

where max[ j is a global maximum over all q and a.
When T) T, one can apply the GA (neglect of y and
higher terms in the Landau expansion) and through func-
tional integration (see Appendix A for details) obtain an
estimate of the two-point correlation function

(y qP ) =35 ~5(q+q')(3 —I, /T) (12)

Back transforming to obtain the correlations in real space
we have

where we have introduced sublattice indexes a and b, 5'
is a Kronecker delta and n =3 is the number of spin com-
ponents. The n arises from a mean-field theory deriva-
tion of (8).' The sublattice indices are necessary because
the kagome and pyrochlore lattices are not Bravais lat-
tices, thus having more than one spin per unit cell and

Jq is now a p Xp matrix, p being the number of sublat-
tices. As a result, Fourier transforming is insufficient to
diagonalize the second-order term in the Landau expan-
sion. In diagonal form we have

P(T)= —,
' g (nT A, )p qr

—+O(q) ),
q, a

where the A, 's are eigenvalues of Jz and

(S Si~) =—g g exp[ —iq (R;+r, )] exp[ —iq' (R.+rb)]% '4i' (pbye. )
1

q, q' a,P

1=—+exp[ —iq. (R, —R +r, —rb)]+ '4 b [1—g /(3T)]
q, a

(13)

where r, is the fractional coordinate of sublattice a. This
can now be substituted into the neutron-scattering cross
section similar to (6) that has not yet been powder aver-
aged

=-,'(-,'err, )'[f(Q)]'g (S, .S, ) exp(iQ. R„.),
l7 J

l

where (7) has again been used. On substituting (13) and
(14) one obtains the desired result

(Q)= —3N( —,'prro)'[f(Q)]'

x g Ir (Q)I'[1—X;/(3T)]-',
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F (Q)= g 4 'exp(ir, .Q) . (16) the number of unit cells and p is the number of sublat-
tices)

Where Q=K+q, K is a reciprocal lattice vector and q
must lie within the first Brillouin zone. Due to the q
dependence of A. and %q', the powder average of (14)
will, in general, be very complicated. An eScient numer-
ical procedure for doing the powder average is outlined in
Appendix B.

For large T, (14) reduces to the standard paramagnetic
scattering cross section for a system with Np spins (N is

= ,'Np( ,'V-yro)'[f(Q)]'.
para

(17)

Another limiting form arises when T is very close to but
not less than T, ". Here the scattering is dominated at q
vectors near the q that maximizes k . If we expand
Aq=k, „—e(q,„—q), we obtain

(Q)"-',N(-,'vyro)'[f(Q)]'g I+ (Q)I'[0'+(q .,+K—Q)'] ',
a

(18)

TMF 1/2
—

E
1/2

TMF
C

(19)

which gives the standard Lorentzian form for peaks cen-
tered at satellites about reciprocal lattice vectors. Final-
ly, in many neutron-scattering experiments a high-
temperature data set is subtracted from a low-
temperature one to remove nuclear Bragg peaks and iso-
late the diffuse magnetic scattering. Of course this also
subtracts away the paramagnetic scattering. The
difFerence profile is easily shown to be a minor
modification of (15)

=
—,'N( —,'pyro)'[f(Q)]'Q IF (Q)l'

(20)

IV. RESULTS AND DISCUSSION

A. Reduced units

For most materials the isotropy assumption (7) is only
approximately valid and a more general version of the
cross section (15) for anisotropic systems is discussed in

Appendix C.

I

a given reduced temperature, t=(T T, ")—/T, " are
compared with the same absolute temperature T /I J

I

from the MC simulations. However, as we shall see this
did not prove to be very successful.

All results are plotted as a function of Q in both re-
ciprocal lattice units (r.l.u. ) and, where possible in terms
of Q in A, using a cell constant for the relevant materi-
al. This is convenient for comparison with previously ob-
tained experimental data. Thus

Q(r. l. u. )

a cell
(22)

0
and the cell constants used were a„ll =6.0 and 10 A for
SrCrs „Ga4+„0» (kagome lattice) and FeF„YzMn207,
Tb2Mo207 (pyrochlore lattice), respectively. For the
rhombohedral lattice the interplanar spacing affects the
calculated scattering when J' is nonzero. For simplicity
we have plotted the results for two cases; one in which
the inter and intraplanar atomic distances are equal (ideal
cubic close packed lattice) and secondly, for the interpla-
nar spacing in LiNi02.

Scattering intensities are plotted in reduced units per
spin so that the results are independent of the details of
the magnetic form factor f(Q), the size of the local mo-
ments and the system size

We will attempt to compare the results from the two
methods (MC and GA), and point out the advantages and
disadvantages of each. To do this we assume that results
for the same reduced temperature

t =(T T, )/T, — (21)

are comparable. This is necessary as the transition tem-
perature from mean-field theory, T, ", is generally vastly
different in highly frustrated systems, from the real T, .
For the 2D-triangular Heisenberg antiferrornagnet,
Kawamura and Miyashita have shown that
T, =0.33

I
J I and not zero as expected for a 2D system

with vector spins. They propose that the transition is
most likely a Kosterlitz- Thoules transition associated
with the pairing of chiral vortex pairs. For the kagome-
and pyrochlore-lattice systems the T, 's are believed to be
very low if not zero and here they are assumed to be zero.
In this case scattering profiles calculated from the GA for

(Np) '[f(Q)] ( —,'pyro)
red

(23)

B. The rhombohedral antiferromagnet

This Bravais lattice has one spin per rhombohedral
unit cell (in the hexagonal system there would be three
spins per unit cell) so we use Eq. (15) without eigenvalues
and eigenvectors. Thus

(Q) =—', N( —,'pyro)'[ f(Q ) ]'[1—Jq/(3T ) ] (24)

and using (2)

Any experimental neutron-scattering data can be corn-

pared with our results by simply scaling the data with the
appropriate form-factor squared and an arbitrary multi-
plicative constant.
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J =2J[ cos(2q„—2q )+ cos(2q —2q, )+ cos(2q, —2q„)]

+2J'[ cos(2q„)+ cos(2q~ )+ cos(2q, )] . (25)

The GA and MC results for case J'=0 are shown in Fig.
2. The expected two-dimensional peak shapes arising
from rods of scattering along the q, direction are ob-
served. The three peaks correspond to rods at

q=(-,' —,
'

q, )H ( ', ,
'

q-, )—H ( ,
' ', q-, )-H

where the subscript H refers to the hexagonal metric that
experimentalists use. For ideal long-range order in the
basal planes, the peaks should have no tail on the low-Q
side. A tail is observed, since T & T, and any correlations
are finite in extent. Spurious oscillations in the MC data
are due to the sharp cutoff of (6) due to the finite size of
the simulations. The MC scattering is also always weak-
er than that obtained from the GA, since the neglected
fourth-order term [which is positive definite in (8)] is
neglected in the GA (but not in MC) and tends to concen-
trate the weights in the partition function more towards
small spin expectation values.

Figure 3 shows scattering profiles for seven different
values of j=J'/~J~ as calculated from (24) for three tem-
peratures with an ideal close-packed interplanar spacing.
The MC methods were not effective here; extremely large
lattices with N=50000 spins would be required to see
reasonably sharp peaks. One effect of the interplanar in-
teraction is the shift in the low angle peak position as a
function of J'. The peaks are seen to remain quasi-two-
dimensional in shape for

~ j~ l. At high temperature the
peaks become more symmetric about the center, which
could be a possible explanation for the experimental re-
sults in P-oxygen. ' The small-angle neutron scattering
(SANS) increases rapidly at low Q, as J' becomes large
and positive. The model with J'= —1 corresponds to the
fcc antiferromagnet. Figure 4 shows the scattering for
the same interactions used in Fig. 3 but using the inter-
planar spacing of LiNi02. In order to interpret these re-
sults we will present below a discussion of scattering from
helical degeneration lines.

As stated previously, Rastelli and Tassi" have calcu-

lated an expansion for the degeneration line of rhom-
bohedral antiferromagnets with interplanar interactions.
To first order in j=J'/~ J

~
the line is a helix centered at

qp=( —,', —,', q, ) with radius 5=2j/(&3a). In an orthogo-
nal coordinate system we parameterize the helix in terms
of ~ giving

and

Q„=qo —5 cos(r),

Q» =5 sin(r),

Q, =3r/c,

Q= [5 —25qp cos(r)+qp+9r /c ]'

(26a)

(26b)

(26c)

(27)
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The pitch of the helix is determined by the interplanar
spacing, i.e., by the ratio a/c. Scattering will only occur
if Q makes contact with the degeneration helix. The scat-
tered intensity is proportional to the density of states
p(Q) at the point of contact. For a helix there will often
be numerous points of contact for a given ~Q~ due to the
periodicity of the cos(t) term in (27). Figure 5(a) shows
schematically the degeneration helix intersecting spheres
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FIG. 2. Top: MC results of the rhombohedral antiferromag-
net near T, with no interplanar interaction. Bottom: Compar-
ison of the MC (L =48 X48) and GA profiles.

FIG. 3. GA profiles for various temperatures and values of
the interplanar interaction j=J'/~ J~. The interplanar spacing
corresponds to that of an ideal cubic close-packed structure.
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in q space. The sphere of radius Q, corresponds to the
first 2D peak at Q =qo —5. As J' becomes larger so does
6 and the peak moves to lower Q as observed in Figs. 3(a)
and 4(a) for j &0. Further peaks at higher Q will also
arise from other nodes in the helix as exemplified by Qz
and Q3 in Fig. 5(a).

With these ideas in mind we can calculate a zero-
temperature cross section. Assuming the density of states
is constant in z

der Q(r)
d +g l

9&/c +5q sin(r) l

(30)

do g
(Q2 2 )1i2 (31)

Setting the helix radius to 5=0 we then recover the stan-
dard cross section originally derived by Warren for
scattering from a rod in reciprocal space.

p(r) =const

dN dN dg dg
dr dQ dr dr

Thus

GO

dn ""g'"
dgQ

and using (27) we obtain the desired result

(28)

Sharp 2D-diffraction peaks will occur at singularities in
(30) with the peak positions depending on j and a/c in a
nontransparent manner. Figure 5(b) shows the cross sec-
tion calculated from (30) using the same parameters
(5,qo) as in Fig. 5(a). The peak at Q3 is seen to have its
tail on the low-Q side instead of the high-Q side. These
inverted 2D peaks will occur whenever Q makes contact
with a node on the back side of the helix. As far as we
know such inverse Warren peaks are unique to systems
with helical degeneration lines.

Now we are in a position to understand the existence
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FIG. 4. As in Fig. 3, except with the interplanar spacing of
LiNi02.

FIG. 5. (a) Schematic view of the various ways the scattering
vector Q can make contact with a degeneration helix. When Q
contacts the front of the helix as in the case of Q, and Qz a nor-
mal 20 Warren peak shape occurs in the scattering pattern and
for Q3, which contacts the back of the helix an inverted Warren
peak shape occurs. (b) The diffraction pattern calculated from
(30) using the same qo and 5 used in (a).
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and shape of the second peak in Fig. 4(a) for j=0.5. It
arises from higher order nodes (one at the front and one
at the back) of the degeneration helix centered at
( —,', —,', q, )H. The peak is symmetric because there are ac-

tually two peaks back to back, one normal and one in-
verted. A similar situation arises in Fig. 4(b) for

j= —0.5. An understanding of the patterns for
Ij I

~ 1 is
not so transparent, since the helical approximation (26) is
no longer valid. '"

C. Kagome and pyrochlore antiferromagnets

For these systems one must keep in mind that there are
three and 16 spins per unit cell for the kagome and pyro-
chlore lattices, respectively. Thus we have N=3L for
the kagome lattice and N=16L for the pyrochlore lat-
tice. The MC results for three kagome- lattice sizes
(N=300, 1200, and 4800) at a low temperature are
shown in Fig. 6(a) with no noticeable finite-size effects.
The lack of sharp features points clearly towards short-
range order. Recent theoretical work on the kagome an-
tiferromagnet has shown that nematic order is possible in
this system. Long-range nematic order is however not
observable with neutrons. Other work based on a high-
temperature series expansion for classical spins proves
that the q-space degeneracy, present at the mean-field
level of approxiamtion, is broken by thermal Auctua-

tions. ' At eighth order in J/T the system selects a
&3 X &3 structure for XY and Heisenberg spins. It is not
clear how strong the thermal selection is and for a two-
dimensional system, as studied here, the ordered phase
will only be stable at T=0.

The MC results IFig. 6(b)] for three pyrochlore-lattice
sizes (N= 128, 1024, and 3456, corresponding to L =2, 4,
and 6, respectively) also exhibit virtually no size depen-
dence between the two largest lattice sizes. This clearly
shows that correlations do not extend beyond two unit
cell lengths at this low temperature. We have shown that
neither of these systems exhibits conventional long-range
order down to rather low temperatures on the order of
Tll JI =0.01. In fact, the ground states of both systems
are infinitely degenerate making thermal selection of a
long-range-ordered state at low temperatures difficult.

In Fig. 7, a comparison of the MC and GA results are
shown for various temperatures. At low temperatures
the agreement is reasonable and as usual the GA results
overestimate the intensity of the scattering. However at
the higher temperatures the opposite is true. Assuming
T, =O for these systems and recalling that T, %0, a
direct comparison of either absolute or reduced tempera-
tures between the MC and GA is not possible. This is
not a serious problem, since one must rescale all results
by an arbitrary multiplicative constant in order to com-
pare with experiment.

Figure 8 shows a comparison of the MC and GA
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FIG. 6. MC profiles of the kagome (a) and pyrochlore (b) an-
tiferromagnets for various lattice sizes at low temperature. Vir-
tually no lattice size dependence is evident, indicating that
correlations are truly short range.
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FIG. 7. Comparison of the MC and GA results for the ka-
gome (a) and pyrochlore (b) antiferromagnets.
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profiles with previously reported neutron-diffraction data
for FeF3 (Ref. 22) and Tb2Mo207 (Ref. 20). In both cases
a high-temperature data set has been subtracted in order
to isolate the magnetic scattering. Due to changes with
temperature of the Debye-Wailer factor, some sharp
features remain at nuclear Bragg angles. For FeF3 the
agreement is rather satisfactory except at low Q, where
the GA overestimates the intensity. The agreement for
Tb2Mo207 with the MC profile is also good, however the
GA was not as successful. The GA was indispensable as
a tool for rapidly finding approximate exchange con-
stants. This model is significantly more complicated as
both Tb (p, =9p,s ) and Mo +

(p, = lpga ) are magnetic.
Thus we must now choose three exchange constants
JMO-Mo JTb-Mo, and JTb Tb in order to model the data.
Reasonable results were obtained by a trial and error
choice of M, Mo=, Tb M, =1.0, and JTb Tb= —0.01.
The results were very sensitive to the value of JTb Tb due
to the large Tb + magnetic moment. Similarly, small
values for JM, M, had little effect because of the small
Mo moment. Better results may be obtained with a
considerably more complicated calculation (Appendix C)
that includes the anisotropy for Tb +.
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FIG. 8. Comparison of MC, GA, and experimental diffuse

magnetic scattering profiles for two pyrochlore compounds
FeF, (a) and Tb2Mo, 07 (b). High-temperature data sets have
been subtracted in order to isolate the magnetic scattering. Re-
sidual nuclear Bragg peaks are still evident in the subtraction at
Q=2.0 and 2.6A for FeF, and Q=2. 6A ' for Tb~Moz07.

V. CONCLUSIONS

A straightforward method for calculating diffuse mag-
netic scattering profiles directly from exchange constants
has been presented. Analytic expressions were derived
for a number of cases, isotropic exchange, anisotropic ex-
change, and difference scattering, all for general non-
Bravais lattices. The results agree well with MC calcula-
tions to within an overall scale factor. The MC and GA
methods are complimentary, since MC takes account of
thermal fluctuations exactly but is ineScient for systems
with long-range correlations. Conversely, the GA
method does not suffer from finite-size effects but only
takes thermal fluctuations into account in an approxi-
mate manner. As well the GA calculations were more
rapid allowing trial and error fitting of experimental data
by adjusting the interactions. In principle a least-squares
fitting approach is possible where temperature, scale fac-
tor, exchange constants, and possibly even anisotropies
are taken as refinable parameters.

The GA results for the rhombohedral-lattice antifer-
romagnet aid in the interpretation of experimental results
for LiNi02. Previous searches for magnetic scattering in

LiNi02 focused near the ( —,', —,', q, ) Bragg angles. ' Our re-

sults (Fig. 4) showed that a ferromagnetic interplanar in-

teraction shifts the ( —,', —,', q, ) peak to lower Q where it

may have been overlooked by the experiment. ' Recent
SANS experiments have shown that ferromagnetic corre-
lations are present in LiNi02 below 220 K.' The calcu-
lations also indicate that the pseudo-two-dimensional
peaks become more symmetric about their centers as
temperature is raised. This may explain the seemingly
symmetric diffuse scattering profile observed in P-
oxygen. ' An understanding of the complicated
diffraction profiles for rhombohedral antiferromagnets is
facilitated by direct calculations of the cross section from
a helical line of scattering in q space. The helical model
also predicts inverted 2D peaks with the tail on the low-Q
side, which are unique to such helical model systems.

For the kagome and pyrochlore lattices, the MC
method was more effective, since the correlations in these
systems are short ranged at all finite temperatures. Satis-
factory agreement with experiment was obtained for both
the GA and MC methods with MC giving noticeably
better results. The GA was used to find suitable ex-
change constants by trial and error, to model the
neutron-diffraction data for TbzMoz07. Modeling this
diffuse scattering with a standard Lorentzian line shape
centered at an assumed ordering wave vector is seen to be
incorrect, since there really is no ordering wave vector
for the kagome- and pyrochlore-lattice antiferromagnets.

These ideas should be applicable to other nonspin sys-
tems such as short-range-ordered lattice gases and binary
alloy systems with frustrated interactions that inhibit
long-range order over wide temperature ranges.
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APPENDIX A: GAUSSIAN INTEGRATION

In order to prove (11) we start with the free energy to
second order in the field variables with the summation
over vector components y = (qP, g, g') made explicit

V= —,
' g (3T—

A, )~y '~ —T Q h 'yq'. (Al)
q, a, c q, a, c

Where s=(x,y, z) and a local-field or source term, h has
been added. Since (Al) is diagonal in the fields, the parti-
tion function factors

Z= [dyj exp( —9/T)= g Zq', (A2)
q, a, c

Partial financial assistance from the Natural Sciences and
Engineering Research Council of Canada is also acknowl-
edged.

(y .P) =35 ~5(q+q')(3 —
A, /T) (A9)

The restriction that A )0 in (A7) translates, in our con-
text, into T& TM".

APPENDIX B: PO%'DER AVERAGING

The powder average of (14) is most easily carried out
by first calculating all eigenvalues and eigenvectors over a
grid in the first zone. As these are used repeatedly, once
for each reciprocal lattice point considered, the results
are saved on disk along with A, ,„. If sharp features are
present a grid size on the order of 20X20X20 or larger is
necessary to minimize noise in the final profile. Next, a
list of reciprocal lattice points (hkl) that are within the
desired Q range is calculated. Thus, a general point in re-
ciprocal space can be expressed as

where Q=K+q=(h, k, l )+q,q, q, ), (B1)

and

[d~~= rI fd~
q, a, c

(A3)

From (A2) and (A4) one can see that

(A5)

dpq" exp[ —
—,'(3 —~;/~)

Iraq"

I'+~ mq" 1 .

(A4)

and q lies in the first zone. The program now loops
through Q space with the loops over q outside the loops
over K. If ~Q~ is in range, then (do /dQ)(Q) is calculat-
ed from (14) and (15). The results are binned in a cross-
section histogram. A second histogram containing the
number hits in each bin of the cross section histogram is
also maintained. This is used for normalizing the results
at the end of the calculation. For profiles shown in this
work at least 10 Q-space points were included in the cal-
culations.

8 Z
a~ aai" „ ,

Applying the standard identity

f dx exp( —
—,'Ax +Bx)

' 1/2

(A6)
APPENDIX C: ANISOTROPIC SYSTEMS

Dealing with anisotropic Hamiltonians such as

H= —& y g g J' '"'S'"S "
rr' a, b rs

(C 1)

exp, A )0, (A7)
2A

3/2

(AS)

to (A4) and substituting into (A3) we have

~i q'~' 2~Z= exp —Y

is straightforward and merely involves some extra bag-
gage in the notation. Here we have written the summa-
tion over spin components s, r = (x,y, z ) explicitly andJ' '"' now depends on the direction in spin space. As be-
fore we can obtain the correlations in terms of eigenval-
ues and eigenvectors of J' '", which is now a 3p X 3p ma-
trix. Thus

where the product over spin components (s) has been
carried out. Finally substituting (AS) into (A6) we have
the desired result and

(p ~y~,' ) =&' 5 ~5(q+q')(3 —
A,q' /&) (C2)

(S "SJ") =—g g exp[ —iq (R, —RJ.+r, —
r& ) ]%'q'~"4q ~'(3 —

A,
q

~/T )
b, 1

P

(C3)

where a and p label the normal modes. (C3) must now be substituted into the general expression for elastic magnetic
neutron scattering

exp(iQ R;J. ) (C4)
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giving

(Q)=&(—,'y'ro)'g ~F, ' (Q)~'(3 —
A, /T)

a, p

(C5)

F =F—(F Q)Q (C7)

where

F ~(Q)= gp, f, (Q)% '~exp(ir, .Q) (C6)

Here we have also generalized the expression to include
systems for which the moments and form factors on each
sublattice are different. This was necessary for the
TbzMo207 calculation.
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