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Suppression of shot noise in metallic diffusive conductors
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The shot-noise power in a disordered phase-coherent conductor, much longer than the mean free
path but much shorter than an inelastic scattering length, is one-third of the classical value of a
Poisson process. The reduction below the classical value is a consequence of noiseless open quantum
channels. In conductors much longer than an inelastic length, shot noise is further suppressed due
to counterbalancing voltage fluctuations which enforce charge neutrality.

Shot noise is the time-dependent fluctuation of the
electrical current due to the discreteness of the charge
of the carriers. In the zero-temperature limit, shot noise
remains as the only source of electrical noise. For small
applied voltages V, the shot-noise power P is propor
tional to V, or equivalently to the time-averaged current
I = GV (where G is the conductance). In the absence
of correlations among the carriers, the process of electri-
cal conduction can be modeled by a Poisson process, for
which

h. -- = 2elII = 2elVIG.

Correlations reduce the shot noise below the Poisson
value (1). The noise power is therefore in general a new
transport property, i.e., it contains information which is
not present in the conductance.

The suppression of shot noise has been the subject of a
large number of publications. We refer to the proceedings
of a recent conference for references. i The main interest
thus far has been in the ballistic, resonant-tunneling and
quantized Hall efFect transport regimes. The case of a dis-
ordered phase-coherent conductor has received much less
attention in this context. It is the purpose of the present
paper to investigate the suppression of shot noise in the
regime of difFusive quantum transport, and to study how
loss of phase coherence by inelastic processes modifies the
noise properties. One can distinguish two mechanisms
which reduce the shot noise below Eq. (1). The first is
the presence of open quantum channels, i.e., of eigenval-
ues of the transmission matrix product ttt which are of
order unity in spite of the disorder. The second is the
appearance of voltage fluctuations between regions sep-
arated by an inelastic length, which counterbalance the
intrinsic current fluctuations of a phase-coherent region.

First, we consider the shot noise of a disordered con-
ductor in the case of full phase coherence. We start from
the general relation~

eP = 2elVl —Tr ttt(1 —ttt)
h

N
= 2elVl —) T„(1—T„), (2)

n=l

between the current-noise spectral density P and the
eigenvalues T„(n= 1,2, . . . , N) of the transmission ma-
trix product ttt. The spectral density P = 612/Av is
defined as the statistical average (or time average) b,lz
of the square of the time-dependent current fluctuations
EI(t)—:I(t)—I, divided by the frequency band width hv
of the fluctuations. Equation (2) holds to first order in
the applied voltage V, and in the zero-temperature, zero-
frequency limit. It holds for arbitrary N x N transmission
matrix t, generalizing results in Refs. 3—5 for the single-
channel case (N = 1). We consider the case of a conduc-
tor of length L much greater than the mean free path l
for elastic impurity scattering, but much smaller than the
localization length Nt. Equation (2) has not previously
been evaluated in this regime of diffusive transport.

Our calculation applies a result from the random-
matrix theory of quantum transport (see Ref. 6 for
a recent review of this theory). We use the concept
of a channel-dependent localization length („,which
is related to the transmission eigenvalue T„byT„=
cosh (L/(„) The r.esult we need is that the inverse lo-
calization length is uniformly distributed between 0 and
1/(m;„1/t for t « L « Nt. s One can therefore write

L /(min

X COS X
A=1 0

N I /(min

) T„ dz cosh x
A=1

d2: f(cosh x),
0

(3)

(4)

where ( ) indicates an average over an ensemble of im-
purity configurations. The function f(T) is an arbitrary
function of the transmission eigenvalue which vanishes
for T « 1. In the second equality in Eq. (3) we have
used that L/(m;„L/l » 1 to replace the upper in-
tegration limit by oo. With the help of Eq. (3) we can
evaluate the ratio
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Substitution of f(T) = T" into Eq. (3) gives the result

r(-,')I'(p)
dx cosh "x=

2r(

Ratios of the form (4) have been studied previously by
Pendry and co-workers. As far as we know, the result

(5) is new. s

Since C2 = 3, Eq. (2) implies that

into probe o. for carriers incident in probe P. For given
(nonfluctuating) chemical potentials p~ of the contact
reservoirs, the currents I in the probes have a time-
dependent fluctuating part 6I . In the zero-temperature
limit these fluctuating currents have spectral weight2

Q
2

bI~bIp = 2»— dE ) f~(1 —fs)
~,~(~A~)

Q2

(P) = 2eIvI —(Trtti)(1 —3) = 23eIvI(G),
h

(6)

xTr(s~~s~sspssp~),

The first term proportional to Tqq = Tr tqqt~~ represents
coherent transmission from probe 1 to 2. The second
term represents incoherent transmission: Carriers which
reach probe 3 (the voltage probe) are replaced by carriers
kom contact reservoir 3 with a phase which is uncorre-
lated to that of the incident carriers.

The current and voltage fluctuations in a three-probe
conductor can be understood with the help of the
equations~

I = — (N —R )p —) T ppp +bI .

)
(9)

Here N~ is the number of quantum channels in probe
n, R~ is the total probability for reflection back into
probe o, , and T /3 is the total probability for transmission

where we have used the Landauer formula
Q2

G = —Trtt~.
h

The shot noise (6) is only one-third the value (Pp„„,„)=
2e]VI(G) which would follow if the noise were a Pois-
son process ("full" shot noise). s The reduction of shot
noise in the diffusive transport regime which we have
found is a quantum interference effect. It originates
from the bimodal distribution of the transmission eigen-
values T„:A fraction l/L of the eigenvalues is of or-
der unity (open channels), the remainder being expo-
nentially small (closed channels). ~ 0 In a semiclassical
treatment, ii one would have instead T„ l/L (( 1
for all n, , so that [according to Eq. (2)] the shot noise

(P) = 2eIVI(e /h)(Q„T„)= (Pp„„,„)takes on its full

value.
Equations (1)—(7) are valid if the inelastic scattering

length l, is much larger than the sample dimensions.
Next we address the effect of phase and momentum ran-
domizing events on shot noise in wires much longer than
an inelastic scattering length. To accomplish this we ex-
tend earlier treatments which investigate the effect of in-

elastic events by attaching (one or more) voltage probes
to the conductor. i2 Consider a three-probe conductor.
Contacts 1 and 2 are the current source and drain, and
contact 3 is a voltage probe. The presence of a sin-

gle voltage probe changes the two-terminal conductance
G—:Giz, iz from Eq. (7) to

T23Tsi l
Tzi +

Tsi + T32)

where f~ = e(p~ E) is—the zero-temperature Fermi func-

tion, and s p are the scattering matrices which connect
the outgoing current amplitudes at probe n with the in-

coming current amplitudes at probe P. The scattering
matrices determine the total reflection and transmission
probabilities: R = Trs st, T p = Trs pst p. We
also denote s =r, s~p = t p.

Here we investigate Eqs. (9) and (10) in the limit where
transmission through the sample is completely incoher-
ent. In this limit coherent transmission from probe 1 to
probe 2 is absent, i.e. , we have szi = si2 ——0 and conse-
quently Tzi = Tiz = 0. We then find from Eq. (10) for
the mean square currents (to first order in the chemical
potential difFerences)

bIi = 2»—Ipl P3ITr»»iit13ti32 t

Ips p2ITrr22r22t23t232 t t

bI32 ——bIi2 + bI22,

(12)

(13)

and for the correlations of the fluctuations

bIibI2 ——0, bIibI3 —— SI, , bI26I3—= b'I2. (14)—

For given ps, i.e. , in the absence of voltage fluctuations,
the correlation of the current fluctuations at probes 1 and

2 vanishes as a consequence of the inelastic scattering.
The average value of the chemical potential p3 at the

voltage probe is determined from the condition that an

ideal voltmeter has an infinite internal impedance, and

that consequently the average current Is at the volt-

age probe must vanish. The time-dependent fluctuations
in p3 can be determined from the condition AI3 = 0,
i.e., by requiring that at the voltage probe it is not just
the average current which vanishes but the total cur-
rent. In principle, one can consider a voltmeter with a
finite impedance, for which AI3 j0. Note that the low-

frequency theory given here conserves the total current.
Indeed, the sum of all mean square currents and all cor-
relations [i.e. , Eqs. (11)—(13) plus twice Eqs. (14)] is zero,
as required by bI~ + bIq + bI3 = 0. Similarly, the sum of
the fluctuations of the total currents of Eq. (9) vanishes,

4Iy +4'+ AI3 ——0. A nonzero LI3 therefore leads to a
temporary loss or temporary accumulation of charge. At
small frequencies a metal will maintain charge neutral-

ity, and hence the model of an ideal voltmeter (infinite
impedance, AI3 = 0) considered here is appropriate.

We therefore seek a solution of Eq. (9) for given pi
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and p2 under the condition that Is = 0. Without loss of
generality we can take p,2 = 0, and find

T3$ 1
ps —

T T P1 —
T +T Is=—ps+~p»

13 + 23 13 + 23

where we have used Ns —Rss = T13+T23. The first term

ps is the average value of the voltage at probe 3 needed to
keep the average current Is zero. The second term bps is
the voltage fluctuation in response to the intrinsic current
fluctuations. According to Eq. (9) the current at probe
1 now fluctuates with amplitude b,I1 = bI1 —T136ps.
Using Eq. (15), and substituting bI3 = —6I1 —bI2, we
obtain

V
e T23Tr (r11r11t1st13)+ T13Tr (r22r22tzst23)2 3 3

(T1s + Tzs)'

(19)

with p1 —p2
—= eV. Here we have used that T12 = T21 = 0

implies T32 ——T23 and T31 = T13~ because of unitarity of
the scattering matrix.

Equation (19) can be written in a more transpar-
ent way by defining the resistances R1 = h/2e2T13,
R2 = h/2e T23, R = R1+ R2, and the noise pow-

ers P1 = 2e~V~(R1/R)(e /h)Tr t]st]3(1 —t13t13), P2 =
2elVI(R2/R)(e /&)Tr tsst23(1 —tzst23). Equation (19)
is then equivalent to the equation

T23~I1 T13~I2

Ty3 + T23
R P = R1P1+R2P2. (2o)

A similar calculation for the fluctuation amplitude of the
current at probe 2 shows that AI2 ———LU1, as required
by current conservation (since Is = 0). Therefore, we
find

AI12 = EI22 = —b,I1b I2,

T236I1 + TrsbI2 —2T13T23bI1bI2

(T1s + Tzs)
(18)

The fluctuations at probes 1 and 2 of the total current
are now completely correlated. This correlation is a con-
sequence not of phase coherence but of current conser-
vation in a conductor which maintains charge neutral-
ity. Equation (18) can be evaluated with the help of the
fluctuation spectra (10). The Fermi functions which ap-
pear in Eq. (10) refer to the average chemical potential:
f& = e(p& —&).

Let us now consider the limiting case of completely
incoherent transmission. Then, according to Eq. (14),
the correlation bI1bI2 of the intrinsic current fluctuations
vanishes, while the mean squared current fluctuations are
given by Eqs. (11) and (12). Inserting these expressions
into Eq. (18), and taking into account that p, 1 —ps =
(Pl P2)T32/(Tls+T23) and Ps P2 (P'1 P2)T31/(T13+
T23), we find for the noise spectral density P:—b,I12/b, v
the expression

This addition rule has a simple interpretation. The left-

hand side R2P = b,V122/bv equals the spectral density
of voltage fluctuations of the conductor, which one would
measure by connecting a voltmeter to contacts 1 and 2.
The right-hand side R1P1+R2P2 ——AV13/hv+b, V23/hv
is the sum of the spectral densities of the voltage fluctu-
ations measured between contacts 1 and 3 and between
contacts 2 and 3. The addition rule (20) thus states that
the voltage fluctuations b,V13 and b V23 are statistically
independent, so that the variances add. This is a known
result for classical resistors in series, in which the shot
noise is Poissonian. 14 The present analysis extends this
addition rule to the quantum transport regime, where
open channels lead to sub-Poissonian shot noise.

We can similarly model a wire of length I much longer
than the inelastic scattering length l; by a series of phase-
coherent segments of length l;, separated by phase and
momentum randomizing voltage probes. If each segment
3 individually has resistance R, and noise power P„then
the noise power P of the whole wire (with resistance R =
Q, R, ) satisfies the addition rule R P = Q, R2P, . In
the case that the phase-coherent segments have roughly
equal transport properties one has R, = R(l;/L), so that
P has become smaller than the noise power P, of an
individual segment by a factor of order l;/L. 11

We write the ensemble average of Eq. (19) in the form

2

(P) = 2eiVI —F ) T (13),) T„(23),) T„(13),) T„(23)i

h

+2(» —y1) + ~1(» —y2)F(*1,~2, y1, y2) =
(1 + +2)

(21)

(22)

where T„(13)and T„(23)(n = 1,2, . . . , N) are the eigen-

values of t13t13 and tsst23, respectively. A complication
arises because F is a nonlinear function of its arguments,
so that in general we cannot replace the ensemble average
of F by the function of the ensemble-averaged arguments.
This is only justified if the fluctuations of the arguments
around their average are small. Now we note that, as
a result of the bimodal distribution of the transmission
eigenvalues, both the sums Q„T„ndaP„T2are of or-
der Nl/L, being the number of open channels of the con-

I

ductor. It is a general result of random-matrix theorys 10

that fluctuations over the ensemble in the number of open
channels are of order unity, and hence that the fluctua-
tions in the quantities Q„T„ad+n„T2 are a factor
of order L/Nl smaller than the average. 13 In the limit
L && Nl of a conductor small compared to the local-
ization length, we can, therefore, replace the ensemble
average of F by the function of the ensemble averaged
arguments. Using the result (Q„T2)= 32(Q„T„)we
find
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(T»)'+ (T»)'
(+) s (+Poj880ll)

((T
(23)

Equation (23) describes two effects which act to reduce
shot noise below the Poisson value: inelastic scattering
and the absence of noise in open quantum channels. If
(T») = (Tis), then Eq. (23) predicts that the shot-noise
power is only one-sixth of the Poisson value, as a result
of a factor of 3 reduction from open channels and a factor
of 2 reduction from inelastic scattering.

We conclude by noting that, apart from being of in-

trinsic interest, the suppression of shot noise considered

here has important applications: The fluctuations of the
(electric) source used to pump a laser also determine the
noise properties of the emitted light. Large resistors in
series with the source are used to suppress shot noise and
to achieve a nonchaotic light source. The suppression
of shot noise is possibly also at the root of observations
of Coulomb-blockade effects in single normal junctions.
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