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Quantum-degeneracy effects in the mobility of the electron fluid on the surface of helium
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The dc mobility of two-dimensional electrons on the surface of helium liquid is calculated with the
quantum degeneracy of the electron distribution and the effect of multisubband occupation taken into
account. The subband structure is obtained from a self-consistent Schrédinger equation with the in-
clusion of the Hartree and exchange-correlation potentials. It is shown that the effect of higher subband
population of electrons is small for low temperatures and the calculated mobility gives better agreement
with the experimental results than that one obtained with the Maxwellian electron distribution for
moderate electron concentrations. The effect of screening is briefly discussed.

The two-dimensional electron layer deposited over a
surface of liquid helium is very interesting for investigat-
ing the transport properties of systems of reduced dimen-
sionality. In contrast with low-dimensional systems
found in semiconductor microstructures, the electron
fluid on helium has been considered to a large extent as a
classical system described by a Maxwellian distribu-
tion."? The transport properties have been exhaustively
studied in the one-particle approximation by solving the
Boltzmann equation.’”~7 Effects of electron correlations
have been included in the high-frequency conductivity by
screening the electron scattering in the memory-function
approach.*®  Recently, the displaced-Maxwellian-
distribution approximations have been employed for the
case where the electron-electron collision frequency is
much greater than the electron momentum relaxation
frequency and the system is highly correlated.!® Most of
the work has been concerned with the transport problem
when only the ground electric subband is occupied by the
electrons. However, an instability of the electron layer
was reported recently and attributed to collisions between
ground-state and excited-state electrons.'!

There exists some work on the influence of quantum
effects on the properties of the two-dimensional electron
gas,'? and the degenerate regime was studied for the case
of electrons on helium films.!*> In the present work we in-
clude the effect of quantum degeneracy in the electron
distribution and the effect of multisubband occupation on
the surface mobility. This paper is concerned with the
calculation of the dc mobility based on the Boltzmann
equation by considering both of the above effects.

We extend the previous theory® based on the usual
Boltzmann transport equation to the case of more than
one occupied subband. In this case the surface mobility
is given by
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The collision time 7(E) is due to the scattering of elec-
trons with impurities, the oscillations of the surface (rip-
plons), and the vapor atoms. These weak interactions are
responsible for the dc resistivity. We assume
Matthiessen’s rule, i.e., 1/7=1/73 +1/7, since the two
scattering mechanisms occur in different regimes. The
electron distribution function f, is given by the Fermi-
Dirac distribution. At low temperatures, intersubband
scattering is expected to be sufficiently weak, and can be
neglected in such a way that electrons in different sub-
bands can be regarded as independent current carriers.
The explicit expressions of the collision times are written
as
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Frf’G(P)zfo |‘I’n(2)|2Vf’G(z)dz . (5)

In the above expressions VqR(z) is the electron-ripplon in-
teraction determined by the theory of Shikin and Monar-
kha,’ N, is the ripplon distribution function
g=2ksin(0/2), and VE(z)=Uge™”, where Ug is the
strength of the electron-atom contact pseudopotential re-
lated to the cross section of a He atom, and N is the
density of the He gas.

The subband structure, specified by energy levels E,
and wave functions ¥,(z), was obtained from a self-
consistent calculation of the Schrodinger equation, where
the total potential in the z direction includes the Hartree
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potential, the exchange-correlation in the local-density
approximation, the clamping electric field, and the image
potential smoothed by a continuously varying dielectric
constant between the media.'* In Fig. 1, we show the en-
ergy shifts of the first and second excited subbands rela-
tive to the ground state as a function of the electron den-
sity. We see that for densities above 10® cm ™2 the ener-
gies increase dramatically. For low densities our results
reproduce those obtained from calculations using the
one-electron approximation.'»?

The Fermi energy Ep, which appears in the Fermi-
Dirac distribution of Eq. (1), is determined as a function
of the electron density through the equation

N=—1T£:—2(kBT)zln{l+exp[E,,(k =0)—Ep]/kT] .

(6)

For simplicity, we consider the slightly simpler case in
which only the two lowest subbands are occupied by the
electrons due to thermal excitations. In this case, Eq. (6)
converts into a second-order algebraic equation for
exp(Er/kgT). Figure 2 shows the calculated surface mo-
bility limited by ripplon and gas scattering as a function
of the temperature for two different values of the density.
We see the effect of the occupation of the two subbands
as one increases the temperature for fixed densities. For
N=10° cm~?, the contribution coming from the second
subband is negligible for temperatures below 4.5 K, while
for N=10% cm ™2, the effect is sizeable for T above 2.8 K.
Then, in the temperature range where the electron-
ripplon interaction is dominant (7"=0.5-1 K), the effect
of subband occupation can be completely neglected. In
Fig. 3, we present a typical plot of the mobility against
the density for two different values of temperature. In
some sense, the effects of the electron-electron interaction
in our calculation are included by the Hartree and
exchange-correlation potentials used for determining the
subband structure. The Hartree potential forces the elec-
tron against the surface, and, by decreasing the mean dis-
tance of the electron from the surface, the electron
scattering increases. As one expects, the mobility de-
creases with increasing density. The effect of quantum
degeneracy is important, as we can see from Fig. 4, where
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FIG. 1. Energy shifts of the first excited subbands as a func-
tion of the surface electron density, calculated from a self-
consistent potential that includes the Hartree potential and the
exchange-correlation potential.
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FIG. 2. Calculated inverse mobility as a function of tempera-
ture for two densities: N=10° cm~? (solid line) and N=10°
cm~? (dashed line). Curves a and c are obtained with the two
subbands E, and E, included. Curves b and d are the case in
which only the lowest subband is assumed to be occupied.
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FIG. 3. Inverse mobility as a function of the electron density
for two values of temperature: 7=0.8 K (solid line) and 0.6 K
(dashed line).
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FIG. 4. Inverse mobility as a function of the temperature for
a density N=1.05X 10® cm 2. The solid line represents the re-
sults from our calculation, and the dashed line represents the
theoretical estimates of the approach of Saitoh and Monarkha.
The experimental points are taken from Ref. 15.
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our results are compared with experimental results!>!®

and those coming from the calculation using the classical
Maxwell distribution for the electrons. We see clearly
the decrease of the mobility when this effect is incor-
porated, and one gets very good agreement with the ex-
perimental result for N =~10% cm 2. At higher densities,
the differences between the one-electron theories and ex-
periments become appreciable due to the electron-
electron interaction in the plane. The usual procedure is
to take into account the screening effect, which can be in-
cluded in terms of a dielectric function e(q). The
electron-ripplon and the electron-atom potentials that ap-
pear in Eq. (5) will be screened out by dividing FX¢ by
the dielectric function. We have performed a calculation
along this direction by using the random-phase approxi-

mation for the dielectric function. Unfortunately, our re-
sult does not agree with the experimental one at high
densities. This feature seems to be the same as in the
classical case in which the conductivity of the screened
electrons is almost identical to the one given by the one-
particle approximation in the Boltzmann-equation ap-
proach.’ The role of electron correlations in the trans-
port properties is still an open problem in the electrons-
on-helium system.
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