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Electronic structure of graphene tubules based on Cqo
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The electronic structures of some possible carbon fibers nucleated from the hemisphere of a C60
molecule are presented. A one-dimensional electronic band-structure model of such carbon fibers,
having not only rotational symmetry but also screw axes, is derived by folding the two-dimensional
energy bands of graphite. A simple tight-binding model shows that some fibers are metallic and are
stable against perturbations of the one-dimensional energy bands and the mixing of a and m bands
due to the curvature of the circumference of the fiber.

I. INTRODUCTION

Recent models of carbon fibers have focused attention
on highly ordered fiber structures based on fullerenes. i

Carbon fibers are a low-dimensional carbon system that
has been widely used in applications as a conductive,
lightweight, and strong material. s Because of several pos-
sible hybridizations of the carbon 2s and 2p orbitals,
materials of different dimensionalities can be formed
such as diamond [three dimensional (3D)], graphite (2D),
graphene tubules (1D) and fullerenes (OD)s s. For
graphite, carbon fibers, and fullerenes, the spz hybridiza-
tion of hexagonal (or pentagonal) carbon networks is es-
sential to model their electronic structures.

Graphite is a semimetal due to the weak coupling be-
tween two graphite layers. Graphite is further known to
have a zero energy gap as the interlayer interaction goes
to zero. ia In the case of a Csa, the Kekule structure ap-
pears because of the lower symmetry of the pentagon
which results in semiconducting behavior with an energy
gap of 1.9 eV. i2 Carbon fibers with a nanometer radius,
which are considered in this paper, have one-dimensional
energy bands. One-dimensional energy bands are gen-
erally unstable under certain symmetry-lowering distor-
tions even if the fiber has a finite density of states at the
Fermi energy. However, when we increase the radius of
the fiber, the electronic structure of the fiber becomes
close to that of graphite which is known to be stable
under such distortions, since a graphene (i.e., a single
layer of 3D graphite) sheet is a zero-energy-gap semicon-
ductor. Thus some changes in the phase diagram would
be expected upon increasing the fiber diameter. Further-
more, for a very small diameter fiber the curvature of the
fiber causes a hybridization of sp3 orbitals which sensi-
tively affects the electronic structure and depends on the
geometry of the fiber and on the fiber diameter. In ad-
dition to the effects of fiber diameter, the chirality of the
fiber represents a possible structural modification which
in turn modifies the electronic structure.

In this paper first we discuss the electronic structure
of two typical examples of nonchiral carbon fibers. Then

we show that the electronic structure for the x band of a
carbon fiber is metallic within a simple tight-binding ap-
proximation, and that the electronic structure of a chiral
fiber can also be explained within this scheme. Further,
in order to examine the mixing effect of the hybridiza-
tion of the sps orbitals due to the fiber curvature, we
diagonalize the tight-binding Hamiltonian in which we
consider both o and z' bands. Finally, we discuss the in-
stability of carbon fibers for some possible perturbations
as a function of the fiber radius.

In this work a carbon fiber is considered to be a roll of
graphene layers. transmission electron-microscope ob-
servations show that in a nanometer carbon tubule, sev-
eral (two or more) graphene planes are rolled into inde-
pendent cylinders within a diameter of 2—6 nm. Though
a few graphite layers are stacked layer by layer in a fiber,
we can neglect the weak interlayer interaction between
adjacent layers in a fiber since the layer stacking is not
commensurate.

Once the innermost tube is formed, it might be easy
to stack other graphene cylindrical layers, based on our
knowledge of the thickening process for a vapor-grown
carbon fiber. s Thus the formation of the innermost tube
of a fiber is a key to the growth of a carbon fiber, which
should be nucleated at one end, from a small diameter
carbon cluster in the vapor phase. At this end some
pentagons are necessary to nucleate a ball-like structure
with a large curvature. It is reasonable to consider that
the hemisphere of Cso can be one nucleating end of such a
fiber. Basically there are two simple possibilities (among
others) for nucleating a fiber, as shown in Fig. 1. In this
figure we show the molecular structure of (a) Cso, and of
(b) armchair and (c) zigzag dissection cuts of Ceo (Ref.
1) in which their boundary atoms are arranged in a cis
or trans form of a carbon chain by analogy to the case
of polyacetylene. In a physical nucleation cluster for a
graphene tubule, some defect could be present, which
would make the cylindrical (fiber) growth mode lower in

energy than the spherical (fullerene) growth mode.
There are 10 and 9 carbon atoms at the surface of

the caps in Figs. 1(a) and 1(b), respectively and, cor-
respondingly, a pentagon and a hexagon at the center
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(c

FIG. 2. Atomic arrangements of carbon atoms in the (a)
armchair fiber and (b) zigzag fiber.

FIG. 1. (a) Ceo, (b) armchair cut, and (c) zigzag cut of
C60 to form caps for armchair and zigzag fibers.

of the armchair and zigzag cuts. From Fig. I the two
cuts have fivefold and threefold rotational symmetry for
the armchair and zigzag fibers, respectively. From these
cuts we can connect up the carbon fiber which consists
of a cylinder of only hexagons in the two ways shown in
Fig. 2. The fibers growing from the armchair and zigzag
cuts will be called hereafter armchair and zigzag fibers,
respectively.

There are many other possible fiber geometries based
on a hexagonal network. Of particular interest are chiral
fibers with a screw axis. i As discussed in Ref. I, a sin-
gle vector is sufficient for specifying fibers with a screw
axis. In Fig. 3(a), we show an example of the vector,

AA' in the 2D graphene layer in which we connect two
parallel, dotted lines that are perpendicular to the vec-
tor, and specify the fiber. When we roll the graphene

sheet, the line segment of the vector AA' becomes the
circumference of the fiber and thus the dotted lines are
in the direction parallel to the fiber axis. In Fig. 3(b)
we show the atomic arrangement and the spiral struc-
ture of the corresponding fiber. It is important to note
here that we can make such a chiral fiber, without any
special distortion of the fiber bonding angles arising from
the screw axis, other than the introduction of curvature
to the hexagons through the rolling process.

Referring to Fig. 3(a), if we change the tilt angle from

FIG. 3. (a) The vector AA' specifies a chiral fiber. We

connect two dotted lines, normal to AA' at A and A', to form
a chiral fiber. (b) Atomic arrangement of the corresponding
chiral fiber. The vector specifying an armchair has 8 = 0'
and a zigzag fiber has 0 = 30 .
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0' to 30', we can go from an armchair to a zigzag fiber, so
that the use of a single vector to uniquely specify the fiber
geometry relates the armchair and zigzag fibers as limit-
ing cases of a sequence of possible chiral fibers. This ap-
proach thus provides a generalized framework for describ-
ing a whole family of carbon fibers (graphene tubules),
one layer in thickness.

In Sec. II we first present the electronic structure of the
two typical carbon fibers followed by that for the chiral
fibers. Then we discuss the o-vr band-mixing effect due
to the curvature of the fibers. In Sec. III the possible
instability of the carbon fibers associated with a Peierls
distortion is discussed. Finally in Sec. IV some general
discussion and conclusions are given.

II. ELECTRONIC STRUCTURE

m 2~k~ = (rn = 1, . . . , Nz) with N~ = 5,N 3a
(4)

we get the 1D energy dispersion relations E (k) for the
armchair fiber:

crete values of the wave vector in the direction perpen-
dicular to the fiber axis. As a result, a set of 1D energy
dispersion relations is obtained by slicing up the 2D en-
ergy band structure of graphite in the circumferential
direction. In Fig. 4 we show the real space unit cells
and Brillouin zones for (a) the armchair fiber and (b) the
zigzag fiber, respectively, where a, and a', and b, and 6',

(i = 1,2) are unit vectors and reciprocal vectors of the
original 2D graphite and the fiber, respectively.

Writing the following relation for the periodic bound-
ary condition associated with the armchair fiber,

Let us now consider the electronic structure of these
fibers. If the fiber is sufficiently long, we can neglect the
effect of the ends. When we cut and unroll a graphite
cylinder parallel to the cylinder axis, we get a two-
dimensional graphene plane in which translational sym-
metry exists in the direction of the fiber and periodic
boundary conditions will be applied in the direction per-
pendicular to the axis. Thus we start by considering the
electronic structure of the unrolled graphene plane with
periodic boundary conditions in the transverse direction.
In the case of graphite, the valence orbital is a m (2p, ) or-
bital and there is no interaction between the vr and o (2s
and 2pz „)orbitals because of their different symmetries.
The mixing of n and o orbitals due to the curvature of
the fiber can be neglected as shown later, and thus we
first consider only z bands.

Since the carbon atoms in a graphene plane can be
divided into two sublattices A and B (bipartite lattice),
the z bands of 2D graphite are derived from the following
2 x 2 Hamiltonian matrix '8: P

&O h,;&
(hp Op

'

E (k) =+go 1 +4cos ( ) cos
~

—
~

mar (ka&
5

1/2
~ t'kal

+ 4cos
&2)

(—vr & ka &vr) (m =1, . . . , 5), (5)

in which k is a one-dimensional vector along the fiber
axis and the plus and minus sign appearing under the
square-root sign correspond to the unfolded and folded
energy bands, respectively.

The energy bands for the zigzag fiber E~(k) can be
obtained in a similar way by putting

k~ = — (m = 1, . . . , N„) with N„= 9,
2"

Ny C

(6)

as follows:

Here hp is the nearest-neighbor interaction between the
A. and B sublattices expressed as

e'" ~~+ 2e '"*~~ icos (k a&

02)
where a = 1.42 x +3 A, is the lattice constant and pp

is nearest-neighbor transfer integral. is Diagonalizing the
Hamiltonian of Eq. (1), we obtain the two-dimensional
energy dispersion relation of graphite, E2D(k~, k„) as fol-

lows:

(a)

'a,

b

&~Sk.al
E2~(k, k„) = hap 1+4cos

1/2
, (kyar'+ 4cos E2)

(k„
&2) ~Jz&

For the two typical carbon fibers shown in Fig. 2, we

just fold the Brillouin zone of graphite and introduce dis-

F&G. 4. Unit cell and Brillouin zone for (a) armchair and

(b) zigzag fibers (dotted lines). Those for 2D graphite (dashed

lines) are shown for comparison.
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vr ir )&ka& (rn = 1, . . . , 9). (7)

( &~3ka& m~
E*(k) = kpo 1+4cos

i
COS

i/a

+4cos~

(a) 3 aalu+ (o) 3el u+
e2Q+

el u-
alu-

alg-
elg-

alu+
el u+
e2Q+

e4u+
alu-
e1Q-
e4u-
e2Q-
e3u-, e3g-
e2g-
e4g-
el g-
a1g-
e4g+

In Fig. 5 we show the normalized energy dispersion
relations plotted as E/ps vs k for (a) armchair and (b)
zigzag fibers, respectively. For the rotational symme-
try of group D(z„+i&g around the armchair (n = 2) and
zigzag (n = 4) fibers, the energy bands can be degener-
ate up to a twofold degeneracy as shown in Table I. In
Fig. 5 the eigenfunctions at k = 0 are labeled by the irre-
ducible representations of D(z„+i&g, in which the + and
—superscripts denote the unfolded and folded energy
bands, respectively. The thick lines in the figure denote
the twofold energy bands with Eis, Ei„, Ez&, E2„, . . .,
symmetry and thus the number of bands appearing in the
figure is smaller than 4m which is expected from Eqs. (5)
and (7).

In the case of the armchair fiber, the energy bands are
all (accidentally) degenerate at the zone boundary, since
the boundary corresponds to the equienergy line of 2D
graphite. To make a rectangular unit cell, we consider
four carbon atoms per unit cell for both types of fibers,
as shown in Fig. 4. The four carbon atoms in the unit cell
are symmetrically equivalent, which causes the degener-
acy of the energy bands. If we view these one-dimensional
energy bands in the extended zone scheme, the disper-
sion relations are obtained by "slicing" the 2D energy
dispersion relations of graphite along the directions of
kz =

N ~ and k„=P —, for the armchair and
the zigzag fibers, respectively. In terms of the number of
distinct atoms per unit cell, we do not need such a large
unit cell for fibers as is given in Fig. 4. The particular
unit cells chosen are selected to simplify the specifications
of the periodic boundary conditions for the fibers.

In both cases, we have two energy bands which cross

-2

-3
X

e2g-

e2g+
el g+
alg+

I

-2

-3

e3g+

e2g+

aIg+r

FIG. 5. 1D energy dispersion relations for (a) armchair
and (b) zigzag fibers, labeled by the irreducible representa-
tions of group D~q„+q~g at A: = 0. The A bands are non-
degenerate and the E bands are doubly degenerate at a gen-
eral k point.

the Fermi energy at E = 0 since the corresponding 2D
graphite energy bands cross at the K point (corners of
the hexagons) of the 2D Brillouin zone where the 2D
energy bands are degenerate. Although the density of
states is zero at the K point in the 2D case, we have a fi-

nite density of states at the K point in the present cases
since these energy bands are one dimensional. There-
fore, if there is no instability for a one-dimensional metal
in these cases, the fibers are expected to be metallic.
The armchair tubule geometry was previously consid-
ered using a first-principles, self-consistent, all-electron
Gaussian-orbital based local-density-functional calcula-
tion by Mintmire, Dunlap, and White, s and the tubules
were shown to be metallic, with a large density of states
at the Fermi level in comparison to 2D graphite.

Next we consider the armchair fiber with a screw axis
as shown in Fig. 3(b). The above discussion is valid in the
case of a chiral fiber if we change the boundary condition
as follows:

V 3N k a + N„k„a = 2vrrn,

in which N„a is the shift vector of the screw in the di-

TABLE I. Character table for group D&2„+i&q [P = 2„+~ (m = 1, . . . , n)].

D(~~+a)a
Ayg

Agg
Ey
Eg

+1
+1
+2
+2

2'
+1
+1

2cosg
2cos2$

(2n+ 1)C2
+1
—1
0
0

z

+1
+1
+2
+2

2iC4,
+1
+1

2cosg
2cos2$

(2n+ 1)og
+1
—1
0
0

Ag„
Ag„

+1
+1
+2
+2

+1
+1

2cosg
2coa 2P

+1
—1
0
0

—2
—2

—1
—1

—2cosg
—2cos 2P

—1
+1
0
0
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rection of the armchair fiber axis and m is an integer for
specifying inequivalent energy bands. If we add the fol-
lowing rule for making a fiber that we connect the two
dotted lines in Fig. 3(a) as explained in Sec. I, there is a
one-to-one correspondence between a vector of (N, N„)
and a fiber. Especially, (N~, N„) = (O, p) and (q, 0)
where p, q are integers, correspond to the zigzag and
armchair fibers, respectively, and thus this expression in-
cludes both cases. When N~ and N& are both integers or
both half of odd integers, that is,

(N*, N ) = (p q) or (p+ -,', q+ -,')

(pq g 0, p, q: integers), (9)

we can make a chiral fiber. In the case of Fig. 3, N,
and Nz are zi and &, respectively. Let us adopt the unit
cell and Brillouin zone for the chiral fiber which we have
already used for the armchair fiber as shown in Fig. 4(a).
When we put Eq. (8) into Eq. (3), eliminate k~, and
rewrite k„ss k, we get the following energy dispersion
relations for chiral fibers:

(ma N„ka) (kalE' (k) = +go 1 + 4cos
~

— "—
~

cos
~

—
~i2r

i/2, (kal
+4 cos

&2r

(—z(ka(7r) (m=1, . . . , N ), (10)

yielding 4N~ inequivalent energy bands in the generic
Brillouin zone used in this work when we doubly count
for the degenerate energy bands. It is stressed here that
if we do not adopt any rotational boundary condition
for the fibers but consider the electronic structure as a
pure 1D problem, there will be many carbon atoms in the
large unit cell especially for the chiral fibers. To avoid
the complexity of the one-dimensional energy dispersion
relations in the corresponding small Brillouin zone, we
find the above treatment to be very efFective. Since the
atomic arrangement in the chiral fiber still gives rise to
a lattice structure described by two sublattices, the cal-
culated energy band structure consists of 1D energy dis-
persion relations which are obtained by slicing the 2D
energy dispersion relations of graphite in the direction
expressed by Eq. (8).

The condition that a fiber is metallic is that the
one-dimensional band intersects the K point in the 2D
graphite Brillouin zone and this is not always possible
for the general chiral Gber. We found that when N& is a
half of a multiple of 3 for any N~, the corresponding fiber
can be a metal. Especially for the armchair case, where

N&
——0, there is no limitation on N, since the metallic

bands in Eq. (5) correspond to m = N .
It is noted here that the two atoms on the different

sublattices remain distinct even for the chiral fiber. This
implies that some chiral fibers can be metallic while oth-
ers are semiconductors, depending on the geometry. It is
interesting that we can have either metallic or semicon-
ducting materials depending on the boundary conditions,

where 'H and 8 are the Hamiltonian matrix and the over-

lap matrix, respectively, E and c are the eigenvalue and
eigenvector, respectively. Usually 8 is taken as a unit ma-
trix in the tight-binding approximation. However, when
we consider the mixing of the o and x bands, the overlap
matrix 8 is necessary for determining the relative posi-
tions of the o and vr bands correctly. The matrix elements
of 'H and 8 are calculated on the basis of the Bloch 2s,
2p, 2p„, and 2p, orbitals in which only nearest-neighbor
interactions are considered. As a result, we need nine
tight-binding parameters as listed in Table II in which
E(2s) is the site energy of the 2s orbital relative to that
of the 2p orbital, while t(ppn'), t(ppo), t(sp), and t(ss)
are transfer integrals of vr and 0 bonds between 2p or-
bitals and the transfer between 2s and 2p, and 2s and
2s orbitals, respectively. It is noted that the parameter
po appearing in Eq. (2) and t(pgnr) are identical. The
corresponding overlap integrals are denoted by s(pgnr),
s(ppo), s(sp), and s(ss). These parameters are deter-
mined by fitting the energy dispersion relations of 2D
graphitei7 at the K and I' points in the graphite Brillouin
zone. is These parameters are similar to Chadi's tight-
binding parameters in which he neglected the overlap
integrals. In Fig. 6(a) we plot 2D energy dispersion re-
lations of graphite using these parameters and the re-
sults reproduce very well the many significant features in
2D graphite obtained by projection of the first-principles
calculations of 3D graphite. zo We can use the same pa-
rameters in the case of the fibers, if we assume that the
C-C bond length in the fiber does not change relative
to that in 2D graphite. There are two possibilities for
bending C-C bonds. That is, the bending occurs (1) at
the atom because of the hybridization change and (2) in
the overlap region of the wave functions. Since there are
many possible hybridizations in carbon, it is reasonable
to adopt the former case in the present calculation of the
matrix elements.

Here we show only the calculated results for zigzag

TABLE II. Tight-binding parameters for 2D graphite
(eV): the definition of each parameter is taken such that the
overlap integrals are positive. E(2s) is the energy of the 2s
level relative to that of 2p (Ref. 18).

E(2s)
t(ss)
t(sp)
t(ppo )
t(pp7r) = pp

—8.868
—6.769
—5.580
—5.037
—3.033

s(ss)
s(sp)
s(pp~)
s(pp7r)

0.212
0.102
0.146
0.129

without changing any hybridizations.
So far we have neglected the mixing of cr and x or-

bitals. For graphite, where the graphene planes are flat,
there is no mixing. However, in the case of a fiber, the
curvature of the fiber gives rise to some mixing of cr and
7r bands. is Here we check that this efFect is small at the
Fermi energy within the tight-binding approximation for
0. and m bands. The secular equation we use is

'Rc = E8c,
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FIG. 6. 2D energy dispersion relations of (a) graphite and
(b) a zigzag fiber (the 0-z mixing efFect).

III. INSTABILITY AT THE FERMI LEVEL
AND DISCUSSION

Finally we discuss the instability of the 1D energy
bands. Since the one-dimensional energy bands which

fibers since there is no essential difference between the
zigzag, armchair, and chiral fibers. Since the energy dis-
persion of 2D graphite is more familiar than that of the
fiber, it is easier to understand the 0-z mixing efFect in
the Brillouin zone of graphite. In Fig. 6(b) the 2D energy
dispersion relations for a zigzag fiber are plotted. From
the figure we can see that there is no significant change of
the energy dispersion relations of the zigzag fibers com-
pared with those of 2D graphite especially near the Fermi
level. For the fibers we can see an enhancement of the an-
ticrossing of the energy bands only at the crossing points
of the antibonding 0 and vr bands. This means that the
mixing of o and vr is small, since the mixing factor of
sin(n/2N ) with N = 9 multiplies the matrix element
between the 0 and z orbitals.

However, it is noted that using our calculation there is
a narrow energy gap of 0.14 eV at the Fermi level for the
Nz = 9 zigzag fiber. Thus in this case we can say that
the zigzag fiber is a narrow-gap semiconductor. However,
the mixing efFect associated with the curvature of the
cylinder produces an energy gap which decreases quickly
with increasing N (as & 1/N ) since the energy gap
formation at the Fermi energy can be considered to be
a second-order perturbation of the mixing efFect. Unless
the fiber diameter is smaller than N = 9, the small
energy gap can be neglected at room temperature.

It is also easy to see that the second-nearest-neighbor
interactions would be more sensitive to curvature than
the nearest-neighbor interactions. The curvature, how-
ever, does not much affect the energy band structure even
in this case, since the mixing factor is proportional to
the distance d between two atoms, while the matrix ele-
ments are proportional to d 2 or smaller and the number
of atoms is proportional to d (not d ). Thus the mixing
effect from near neighbors on the energy dispersion rela-
tions for the Qbers is of the same order at most, if d is
much smaller than the diameter of the fiber.

cross the K point of the graphite Brillouin zone have a
finite density of states at the Fermi energy, these bands
would be expected to be unstable against perturbations
which open an energy gap at E~ and consequently lower
the total energy. is In the case of the nanometer fibers
discussed in the present work, there are some lattice dis-
tortions which couple with the electrons at the Fermi
energy: (1) in-plane lattice distortions which induce the
formation of Kekule structures, and (2) out-of-plane dis-
tortions. Mintmire, Dunlap, and White have discussed
case (1) and have concluded that the fibers are stable
against a Peierls distortion at room temperature. s How-
ever, for the in-plane lattice distortion, the unit cell will
be at least three times as large as that of graphite. In this
case a symmetry-lowering distortion is not always possi-
ble by the boundary conditions for the general fibers. ~i

On the other hand, out-of-plane vibrations do not change
the size of the unit cell, but result in a difFerent site en-
ergy for carbon atoms on A and B sites in the case of the
fiber structures. Therefore we consider the out-of-phase
distortions. If we do not consider the limitations im-
posed by the boundary conditions and the coupling con-
stants, the discussion of the instability is similar to that
of Mintmire, Dunlap, and White. s Further we only show
the calculated result for the zigzag fibers since there is
no essential difference between this result and that for all
other fibers. Mintmire, Dunlap, and Whites have given
a similar discussion for the armchair tubules.

When the site energy for A and B carbon atoms is
shifted by +U6/2 in which U is the electron-phonon cou-
pling constant per the distortion 6, the energy dispersion
of the distorted z. bands of the zigzag fiber EP is ex-
pressed as

(U61 t ~3kal (mz&EP = +70 +1+4cos cos
&2wor ~

2
p &N. )

i/2
, t'mz&

+ 4eos
uJ

This relation implies an energy gap of U6 at the K point.
Taking account of the potential energy of the lattice as
g62/2 per unit cell of graphite, in which g is a spring
constant, we obtain the following gap equation for the
zigzag fiber:

gpo 1 1 ) - 1 2B
(U/2)2 2mN -gA +B ( A +. B )

'

(1S)

in which K(x) is the complete ellipsoidal integral of the
first kind and A and B are given by

A~ =!
i

+1+4cos
(U61' , t'ma i

&Nvi
'

(14)

B = 4cos!
(mm &

&Nir
'

respectively. In Fig. 7, we plot the normalized energy gap
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IV. DISCUSSION AND CONCLUSION

D

G
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L
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FIG. 7. Plot of normalized gap U6/2' vs normalized
interaction ~U /4gpo~ for a zigzag carbon fiber with N„=
3, 6, 9, 12, and oo (2D graphite). The case of the 1D tight-
binding model is also plotted for comparison.

—(U6/2') as a function of the normalized intensity of
the interaction of —Uz/4gpp (pp ( 0) for special values
of N, = 3, 6, 9, 12, and N, = oo (2D graphite). For
comparison we also present data on the same plot for the
1D simple tight-binding model with the transfer energy
of po for comparison and where there are two atoms at
the distance of the lattice constant of a. From the figure,
we see that the dependence of the energy gap of the fiber
on the electron-phonon coupling constants is very close
to that for the 2D case and that the energy gap is much
suppressed compared with the 1D results.

If cos(& ) = kz in Eq. (13), there is a logarithmic

singularity of the ellipsoidal function when b ~ 0, which
corresponds to the case where the one-dimensional bands
cross the K point in the Brillouin zone without interac-
tion. Therefore we have a nonzero value of 6 which satis-
fies Eq. (13) for arbitrary values of U and g whenever N„
is a multiple of 3. However, the gap that forms decreases
exponentially with increasing N& as seen in the figure.
This means that the energy gap is negligibly small and
we can neglect it, if we consider fluctuations or finite
temperature efFects. 2

In the limit of N„+oo, we can g—et the two-dimensional
case in which a nonzero value of 6 appears only when
—U /4gpo ) 1.117. Since there is no experimental dis-
tortion in 2D graphite, the normalized interaction of
—Uz/4gpo satisfies the above condition.

It should be mentioned that in the case of a real car-
bon fiber it seems to be difficult to require the one-
dimensional energy bands to cross just at the degenerate
energy points. If we introduce anisotropy into the trans-
fer energy, the degenerate point is still a point in the
Brillouin zone, though its position is shifted from the K
points. The fact that degenerate points with an energy
E = 0 exist does not change even if we consider long-
range interactions in a layer. Since the band crossings
will not all coincide, it may be difficult to get metallic
bands. However, if we introduce a random interaction
between two graphite layers in a fiber (as would occur
because of the turbostratic relation between adjacent in-
commensurate layersz) the degenerate points for the two
layers will appear at somewhat difFerent energies, which
gives a smal1 electron and hole Fermi surface near E = 0.
In this case, it is not so difficult for a one-dimensional
band to cross the Fermi surface. In this case the den-
sity of states obtained for one-dimensional energy bands
at the Fermi level is much larger than that of 2D or 3D
graphite.

We conclude that there are some possible carbon fibers
which can be constructed from Cso, following the pictures
in Figs. 1 and 2. Especially the screw fiber can be made
easily without any distortion arising from the screw axis.
The energy dispersion relations of the fiber consist of one-
dimensional energy bands which arise from the slicing of
2D energy dispersion relations of a graphene sheet, and
this procedure is also valid for the case of the chiral fiber.
The instability generally found for 1D energy bands is

greatly suppressed by the special nature of the energy
dispersion of 2D graphite near the Fermi level. The fact
that the band crossings just occur at the degenerate K
point may apply even for realistic fibers when we consider
some 1ong-range interactions.
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