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We discuss the geometries of crystalline fcc C60 for three cases of directional order, the hypothetical
unidirectional structure with space group Fm3, the bidirectional structure (P42/rnurn) which is the
ordered version of the structure observed for alkali-metal-doped compounds at room temperature,
and the quadridirectional, low-temperature structure (Pa3) of pure Cso. Analytical, parameter-free
expressions for the t& wave functions are derived and used to obtain analytical conduction-band
Hamiltonians for all three structures. The interactions with other subbands are included in numerical
tight-binding calculations with a basis of 60 radial carbon orbitals per molecule. Ab initio density-
functional Pocal-density approximation (LDA)] calculations are performed for unidirectional fcc Cso
and RbCso for different lattice constants. We use the linear-mufEn-tin-orbitals (LMTO) method in
the atomic-spheres approximation with carefully chosen interstitial spheres. The LDA bands are
compared with photoemission and inverse photoemission data for C6p. For RbC60 we find that
the alkali-metal atom is fully ionized and that the doped electron occupies the tq„band in a rigid-
band-like fashion. Tight-binding theory explains why, and indicates that this holds generally for
A~ &B&C60 with n & 3. The LDA calculation shows that, for a given structure, the conduction
band scales uniformly in energy when, because of doping, the lattice constant a is changed. The
energy scale behaves like W oc d(a) exp[ —d(a)/0. 58 A] where d is the shortest distance between atoms
belonging to different molecules. Both the LDA-LMTO and the tight-binding conduction bands
are well fitted by the t „iHmailt oiriari. sFor a=14.1 A the density of states for a conduction-band
occupation of three electrons is 15, 17, and 21 electrons/(mol eV) for the unidirectional, bidirectional,
and quadridirectional structures, respectively. The calculated Stoner exchange parameter is less than
half the inverse density of states per spin and atom, but the Coulomb self-energy for a molecular
orbital is presumably larger than the t&„b aduwidth swhich are 0.52 eV (uni), 0.64 eV (bi), and
0.44 eV (quadri) for a = 14.1 A. The LDA value (0.58 A) for the decay of the intermolecular hopping
was used together with experimental data for T, vs a for K3 Rb C6p compounds in the McMillan
formula. The assumptions that the Coulomb interaction p', the electron-phonon interaction V, ph,
and the average phonon frequency ~ are al/ independent of a were found to be inconsistent.

I. INTRODUCTION

The discovery of the Cso molecule, i of its condensa-
tion into an insulating solid, ~ and of superconductivity in
the alkali-metal-doped solids A„BCso (A and B are
alkali-metal atoms and n & 3) (Ref. 3) have generated
enormous interest in these systems. At room tempera-
ture, solid Cso forms a face-centered-cubic (fcc) struc-
ture in which the individual molecules rotate. Below
249 K orientational order develops and at low temper-
ature the structure is simple cubic (sc) with four diff'er-

ent orientations. In the doped systems the alkali-metal
atoms enter the octahedral and tetrahedral sites. At
room temperature, there seems to be two orientations,
equally populated and randomly distributed on the fcc
lattice. Whether orientational order sets in at Iow tem-
peratures is presently unknown. Upon doping, the dis-
tance between the molecules increases, and so does T,
(Ref. 8); it reaches a maximum which is presently 33 K
and occurs for RbCs2C6o. For doping levels beyond 3,
the structure becomes body-centered tetragonal or body-
centered cubic, superconductivity disappears, and com-

pounds with n=6 are insulators.
This behavior is consistent with a one-electron pic-

ture in which the lowest unoccupied molecular orbital
(LUMO) is threefold degenerate (t1„)(Refs. 12 and 13)
and in the solid broadens into a band which is isolated
from the next higher band. ~4 Furthermore, in order that
the doped electrons enter the t brand, this picture as-
sumes that the alkali-metal atoms neither deform the
band appreciably nor induce an extra band below it. The
behavior of T, with doping should then mainly reflect the
change of the electronic density of states at the Fermi
level with occupancy and separation between molecules.

In this paper we shall present accurate ab initio local
density-functional [local-density approximation (LDA)]
calculations as well as analytical and numerical tight-
binding (TB) calculations which support and add details
to this picture. We first discuss the structures of molec-
ular and solid forms of C60 in detail. For the molecule,
we then derive analytical, parameter-free expressions for
the ti„molecular orbitals (MO's). For solids, where the
C60 molecules are on a fcc lattice, we study the influence
of orientational order on t,he conduction-band structure
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using the tight-binding approximation at two levels of
accuracy. At the lowest, where we take Bloch sums of
the ti„MO's as basis and only include hopping between
nearest-neighbor molecules, we can derive analytical ex-
pressions for the band Hamiltonians. These could turn
out to be useful for future studies of the Coulomb corre-
lations and the electron-phonon interaction. The crystal
structures studied are the unidirectional structure (space
group Fm3) considered in previous electronic-structure
calculations, a bidirectional structure (P4q/mnm) which

may be realistic for the doped compounds, and the proper
quadridirectional structure (Pa3) of pure Cso.

We study the energy scale of the conduction band and
its dependence on the lattice constant, as well as the
influence of alkali-metal doping, by performing accurate
ab initio calculations for Cso and ACsii, with A= K, Rb,
or Cs, in the unidirectional structure. We use the LDA
and the linear-muffin-tin-orbitals (LMTO) method in the
atomic-spheres approximation (ASA) with carefully cho-
sen interstitial spheres. The LDA bands for C60 are com-
pared with recent photoemission and inverse photoemis-
sion data. Then we study the efkcts of doping. %e find
that the alkali-metal atom is fully ionized and that the
doped electrons occupy the tq„band in a rigid-band-like
fashion. Our tight-binding ti„model explains why, and
indicates that this holds generally for A„B,Cso with

n & 3.
The LDA calculation of the conduction-band density

of states is performed for three different lattice constants
and we find that it scales uniformly. The energy scale as
a function of the intermolecular separation calculated for
the unidirectional structure can therefore be used to cal-
ibrate the TB results for the bidirectional and quadridi-

rectional structures. We also calculate the value of the
Stoner exchange parameter in the LDA and estimate that
the bandwidth may be considerably reduced before a
spin-density-wave instability sets in. Finally, we try to
correlate the lattice-constant dependence of the density
of states at the Fermi level with experimental data for

T, versus lattice constant for K3 Rb C60 compounds
using the McMillan formula. It turns out that the single-
particle hopping considered by us cannot be the only im-

portant intermolecular interaction.

II. STRUCTURE AND BONDING

The C60 molecule forms a truncated icosahedron with
20 hexagonal and 12 pentagonal faces (Fig. 1 and Table
I). Each atom is threefold coordinated and three of the
four valence electrons occupy two-center a-like bonding
orbitals which are separated from their unoccupied anti-

bonding counterparts by an energy gap of more than 15
eV starting 4 eV below the Fermi level. The levf. ~s of
interest are those around the Fermi level and their MO's
are z-like and formed from 60 atomic orbitals (AO's)
pointing in the radial direction. Due to the curvature
of the Cso molecules, the o- and ir-like bonds are not
formed exactly from, respectively, the sp2 hybrids in the
tangential plane and the p, orbitals in the radial direc-
tion. Neither are they formed exactly from spa hybrids,
with one in the radial direction and three approximately
in the nearest-neighbor directions.

Each atom is the common corner of two hexagons and
one pentagon so that, of the three edges directed towards
the neighbors, one is common to two hexagons (hexagon
edge) and two are common to a pentagon and a hexagon

TABLE I. Atomic positions in C6O with y orientation, and the t&„LUMO, We only include the

nine sites R = (X, Y, Z) = (X, Y, Z)D/2 which lie in the positive octant, because our t „iprat enr

functions have specific parities with respect to the XY', Y'Z, and ZX mirror planes (Fig. 1). The

bond length is 6, and the length difference between pentagon and hexagon bonds is neglected.

The values given below in the three first columns are the positions in units of b/2. The ratio

between the diameter and the bond length is D/b = i/9r + 10. The constant r is the golden ratio

[~5+ 1]/2 1.618. The coefficients c(1,Z) of the low-energy MO Eq. (18) are with high precision

Z/10. The coefficients of the hexagon-edge antibond approximation to the LUMO are c(2, Z) listed

in the fourth column. Orthogonalization of this function to the Z/10 MO yields the high-precision

LUMO with coefficients c(2, Z) listed in the last column. The absolute values of the eight nonzero

LUMO coe%cient are named p to m in order of decreasing magnitude and their decimal values are

given in Eq. (19).
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r:—(V 5+ 1)/2 = 2 cos(s/5) 1.618 (2)

D = 2R = bv/9r + 10 = bg(3r)z + 1 4.96b.

is the ratio of the golden section (1/r = r —1). The
diameter of the sphere passing through the atoms, i.e.,

the diameter of the Cso molecule, does depend on ba-
by„but only weakly: If the bond-length difference were
vanishing, the Ceo-molecule diameter would be

x = (&5+1)/2

FIG. 1. C60 molecule and tq„ I UMO. The atomic coor-
dinates are given in Table I. The choices of Cartesian co-
ordinates and of t ~ partner functions are appropriate for a
molecule with y orientation in the fcc unidirectional or bidirec-
tional structures. These axes in configuration and t~„space
are used as local axes for all molecular orientations consid-
ered in the present paper. The numbers at the atoms are the
c coefficients multiplying the radial AO's in the expansion
(18) of the LUMO. They are listed in Table I. The coefli-
cients on the far side of the molecule may be obtained from
those in the front, by inversion and sign change. The three
partner functions, labeled IZ), IX), and IY), are orthonormal
and related through rotations around [111]. Hence, the upper
labels on the cubic axes are appropriate for IZ), the middle
labels for IX), and the lower labels for IY). The symmetry of
the functions is such that a function labeled IZ) is even un-

der reflection in the sz and yz mirror planes, and odd under
reflection in the xy mirror plane.

Now that ba is (slightly) smaller than bz, the pentagons
are pushed inwards so that the atoms are on a sphere
whose diameter is (slightly) smaller than D, but (con-
siderably) larger than Dm;„. Therefore, we shall keep
referring to D as defined through Eqs. (3) and (1) as the
diameter of the molecule.

According to a recent measurement, s the bond lengths
in solid Cso at low temperatures are

bz ——1.455 and ba = 1.391 A. (4)

These values were used in the numerical tight-binding
and LDA calculations of the present paper (except in

Figs. 11—13). The analytical expressions employed the
same value for both bond lengths. Provided that this
value is obtained from (1), i.e. ,

(pentagon edges). The 30 occupied s-like MO's are ap-
proximately hexagon-edge bonding and the 30 unoccu-
pied ones antibonding. The crudest picture of the bond-
ing in the Cso molecule is therefore one with single bonds
along pentagon edges and double bonds along hexagon
edges. The experimental bond lengths, b& and ba, differ

by only 0.06 A. and they agree reasonably well with those
obtained from the Pauling formula using bond orders cal-
culated in the LDA with the LMTO method. 'z

The presence of two different bond lengths does not
break the icosahedral symmetry. The length of the icosa-
hedron edge is

2'+ by, = 3b

and the pentagons appear by capping the icosahedron
corners at the distance b& measured along the edge. The
remaining middle piece of the edge, with length bl„is the
hexagon edge. Its distance to the center of the molecule
(the radius of the sphere touching the hexagon edge)
therefore only depends on the average bond length b,
defined as in (1). In fact, the diameter of this sphere
touching the hexagon edges is Dm;„=3rb 4.85b, where

b = 1.434 A and D = 7.105 A,

this approximation is surprisingly accurate.
In solid fcc Cso the smallest distance d between atoms

belonging to different molecules satisfies

d ) (a/~2) —D,

with a being the cubic lattice constant. Upon doping, the
latter increases from 14.04 to 14.49 A. when going from
Cso to RbqCsCso, while the size of the molecule remains
comparatively constant. The intermolecular distance d is
therefore twice the intramolecular bond length b, or more.
As a consequence, the hopping interaction between the
molecules is weak and essentially only via the radial AO's.
This interaction is, however, extremely sensitive to the
geometry of the contact region and it has been argued on
the basis of TB calculations that this interaction provides
an important contribution to the orientational energy.
We shall therefore have to discuss the contact geometries
for the three cases of orientational order considered in
this paper.



1776 S. SATPATHY et al. 46

A. Unidirectional and bidirectional structures

Figure 2 (and also Fig. 1) shows the molecule ori-
ented in the fcc unidirectional st, ructure, i.e. , with 8 of
its 20 threefold axes (denoted by solid triangles) coincid-
ing with the cubic [111]axes and with 3 of its 15 twofold
axes coinciding with the cubic [100] axes. Since in cubic
symmetry the [100]axes are fourfcild, there are two possi-
ble orientations of the molecule: the "top hexagon-edge"
(the one with the highest z value) can either be parallel
with the z or with the y axis. In Fig. 2, as well as in Fig.
1 and in Table I, the y orientation has been chosen.

In Fig. 2 the dots mark those atoms which are in clos-
est contact (at distance d) with atoms in a neighboring
molecule. These closest contact atoms belong to those
pentagon edges whose centers lie approximately in the
[011] directions. Since the direction from the molecule
center to the pentagon-edge center near, e.g. , [011] is

slightly closer to the y axis than to the z axis, the hop-

ping integral between the radial AO's on the contact
atoms is slightly larger when the two molecules are ori-
ented perpendicular to each other than when they have
the same orientation. For electron-doped C6p this eA'ect

was found in the TB calculation Ref. 15 to destabilize
the unidirectional fcc crystal (space group Fm3) with
respect to a crystal in which the molecules remain on the
fcc sites but their orientation alternates from one (001)
plane to the next. In this bidirectional crystal (space
group P4z/mnm), the hopping integral is increased for
the largest possible number of nearest neighbors, i.e. , for
8 of the 12. Such a structure with equal population of the
two directions was also deduced from room-temperature

x-ray-diR'raction data for the doped compounds I43C6p,
although in that case the orientations were found to be
disordered. So far the ordered bidirectional structure has
not been observed, but since the x-ray scattering does not
resolve short-range order below about 20 A, we believe
that not only the hopping integrals that we shall deduce
for this structure, but even the density of states are rel-
evant.

In the following, we shall be using a global as well

as local coordinate systems. The global system has its
axes along the cubic translation axes. A local system is
centered at a particular molecule and is oriented as in

Figs. 1 and 2. Hence, for a y-oriented molecule, the local
and global axes coincide, but for an x-oriented molecule,
which is rotated by —90' around the z axis, the global
axes are rotated with respect to the local axes by +90'
around the z axis. Coordinates in the global and local
systems will be denoted (z, y, z) and (X, Y, Z), respec-
tively.

In order to find the dependence of the hopping integrals
on the lattice constant and on the orientational order, we

need to specify the contact geometries. As seen from Fig.
2 and Table I, the position of a contact atom on the y-

oriented molecule at the origin is Rq —(1,2+ r, 2r)b/2
and the position of its nearest neighbor on the z-oriented
molecule is Rz ——(1, 27., —2 —r—)b/2 in the global system,
but relative to the center (0,1,1)a/2 of this molecule. The
vector distance between these closest contact atoms on
molecules with perpendicular orientation is therefore

d~ = (a/2)[0, 1, 1] + R2 —R,

Iz&

Ix&

ly&

[(a/2) —(1+ Br/2)b] [0, 1, 1]

[(a/+2) —0.978D] [0, 1, I]/+2. (7)

Had the second molecule been y oriented, the position of
its closest contact atom would have been Rq ———(—1, 2+
r, 2r)b/2 and the vector distance accordingly

X

Y
Z

Fm 3

(a/2) [0, 1, 1] —b[0, 2 + r, 27.]

= dg + (1 —r/2)b[0, —1, 1]

—dg + 0.055D[0, —1, 1]/v2. (8)

FIG. 2. y-oriented C60 molecule in the unidirectional or
bidirectional structure {Em3 or P4z/rnnrn) as in Fig. 1 and
Table I. For an x-oriented molecule, the global translation
axes are rotated by +90' around the z a.xis. The dots mark
those atoms which are closest to an atom in a, neighboring
molecule (contact atoms) and only the corresponding LUMO
coeKcients r, s, and t have been given. The cubic axes are
twofold axes and triangles denote the threefold axes. The
octahedral and tetrahedral sites for alkali-metal dopants are,
respectively, a/2 away from the center of the molecule along
a. cubic axis and a /v 3aw4ay along a threefold axis.

Comparing with (6) we note that for these edge-to-

edge contacts the "effective" molecule diameter is a few

percent smaller than 0, e.g. , the contact distance is

d~ (a/~2) —0.978D for perpendicular molecules.
Secondly, for such molecules the vector distance is in
the fcc nearest-neighbor direction. Finally, for parallel
molecules, the increment d~~

—d~ is perpendicular to
d~ so that the closest separation is now a bit larger:

d~ + (0.055D) . Using the data D=7.105 A

and a=14.04 A appropriate for pure Cso, we find that
dj ——2.980 A and that dII is 0.8% larger.
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B. Quadridirectional structure

The low-temperature structure of pure C6o was solved
recently: the molecules are centered on a fcc lattice like
in the unidirectional and bidirectional structures but the
translation cell is sc with four orientations per cell and
the space-group symmetry is Pa3. With respect to the lo-
cal axes of the molecule at the origin, the translation axes
are rotated by an angle y 22' around the +[111]axis,
which is then the only conserved threefold axis through
the origin of the sc cell. The new translation axes are
shown in Fig. 3. In the notation of Ref. 6, p = 120' —g.
The orientation of the molecules at (1,1,0)a/2, (0,1,1)a/2,
and (1,0,1)a/2 may be obtained by rotating the molecule
at the origin by 180' around, respectively, the z, the y,
and the z axis. The conserved threefold axis is thus [111]
for the molecule at (1,1,0)a/2, [111]for the molecule at
(0,1,1)a/2, and [111]for the molecule at (1,0,1)a/2.

As indicated in Fig. 3, this quadridirectional structure
succeeds in making all intermolecular contacts equiva-
lent but not symmetric. A contact is between one of
the 6 pentagons neighboring the conserved threefold axis
and one of the hexagon edges belonging to the equatorial
zig-zag line which runs perpendicular to this threefold
axis and which consists of 6 hexagon and 12 pentagon
edges. The angle of rotation y is determined by the
condition that all contacts be equivalent. This means
that all contact pentagons (and all the contact-hexagon
edges) should be equivalently positioned with respect to
the nearest-neighbor direction, i.e. , to the appropriate
[011] direction. The z = y, the y = z, and the z = g
planes must therefore coincide with the appropriate mir-
ror planes of the molecule. This leads to the value

I*)
)x)
Iy&

(a)

Pa 3

fx)
I y&

to the molecule at the origin, appears in Fig. 3(a) on the
upper-left-hand side of the (lll) equator, carries a label
r, too, and has the position (1,—2 —r, 2r)b/2 in the lo-
cal system. In the global system, and rotated back to the
orientation appropriate for site (0,1,1)a/2, the position is
Rz ——[1—(1—~2)7, —1+(1—4~2)r, 1—(1+5~2)7] b/6
For the vector distance we therefore obtain

p = arctan(~3/7 ) 22.24' Y
-Z
-X

-X

-z
and, hence, cosy = 7 /~8. This value deviates slightly
from the 22.38' defined as the ideal in Ref. 6. The reason
is that at this level of accuracy, which is well beyond the
experimental uncertainty of about one degree in y, the
definition of "ideal" is arbitrary because the icosahedral
symmetry of the molecule is weakly broken in the solid.
As a consequence, the z = y, y = z, and z = z mirror
planes are not exact.

The contacts in the unidirectional and bidirectional
structures have a mirror plane perpendicular to the con-
tact, e.g. , the yz plane for the [011] contacts. In the
quadridirectional structure this is not the case and the
two pairs of contact atoms have diferent separations, d4,
and d~~. We now seek the vector separation for the clos-
est pair: For the pentagon pointing towards [011], the
corresponding contact atom is the same as the one con-
sidered in the unidirectional and bidirectional structures.
Its position is Rq ——(1,2+ 7, 2r)b/2 in the local coor-
dinate system and, hence, with the use of (9), Rq
(1+r—~2, 1+7 + ~2, 1+v) b/2 in the global system.
In Fig. 3(a) this atom has a label r. The closest hexagon-
edge contact atom on the molecule at (0,1,1)a/2 is the
one which, translated and rotated around the y axis, back

Pa 3

FIG. 3. (a) C60 molecule at the origin of the sc translation
cell for the quadridirectional structure (Pa3). Compared with
the previous figures, the translation axes have been rotated
around the +[111]axis by y 22'. Out of the four threefold
axes through the origin, only the [111]axis has been conserved
and is labeled by a triangle. The molecules at (1,1,0)a/2,
(0,1,1)a/2, and (1,0,1)a/2 are rotated with respect to the one
at the origin by 180' around the x, y, and z axes, respec-
tively. The dots mark those atoms which are nearest and
next nearest to an atom in a neighboring molecule, and only
these LUMO coefficients have been given. For each molecule,
we have chosen the LUMO partner functions to equal those
shown in Fig. 1, i.e., we use functions glued to the molecule.
All contacts are equivalent and consist of a pentagon neigh-
boring the conserved threefold axis and a hexagon edge at the
"(111)equator. " The contact hexagon edges of the neighbor-
ing molecules are indicated by dashes. The octahedral and
tetrahedral sites are, respectively, a/2 away from the center
of the molecule along a cubic translation axis and a~3/4 away
along a [111]axis. (b) Same as (a), except that the molecule
is viewed from behind.
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dp =—(u/2) [0, 1, 1] + R2 —R,
= ( /2)[0 1 1] — (b/6) [(2 —3~2)+ (4 —A), (4+3@&)+ (2+4@2), 2+ (4+5~2)]

[(a/V2) —0.964D] [0, 1, I]/v2+ 0.067D [—0.97, —0.18, 0.18] . (10)

As in Eq. (8), the projections are onto the fcc nearest-
neighbor direction and a plane perpendicular to it. The
squared distance is therefore dz& [(a/+2) —0.964D] +
(0.067D)z. For this face-to-edge contact, the shortest dis-
tance is larger, or the e6'ective molecule diameter shorter,
than for the edge-to-edge contacts found in the unidirec-
tional and bidirectional structures. In fact, with a=14.04
and D=7.105 A, we obtain d~ ——3.115 A, which is 4.5%
larger than di. The experimental distance derived with-
out assuming that the molecules have icosahedral sym-
metry and equal bond lengths is d4,

—3.12 A, i.e. , almost
identical with our value.

The second-closest separation d~z is between the con-
tact atoms labeled —v and —

q in Fig. 3(a) and is
experimentally 4.8% larger than the closest separation
dy and, hence, 9% larger than di. The remaining inter-
molecular atom separations are distinctly larger. With
our simplifying and quite accurate assumptions that the
molecules have icosahedral symmetry and equal bond
lengths, we shall now discuss the geometry of this asym-
metric contact a bit further.

We first wish to show that the mirror plane of the
molecule at the origin, which reflects the (r to —v) pen-
tagon diameter onto itself, is parallel (but not coinciding)
with the mirror plane of the molecule at (0,1,1)a/2, which
reflects the contacting hexagon edge (dashed line between
open dots) onto itself. To prove this, we first note that
the operations required to take the former mirror plane
into the latter are a +120' rotation around the threefold
axis, followed by a 1804 rotation around the y axis and,
finally, a translation by (0,1,1)a/2. (The two latter are
not symmetry operations of the molecule. ) Using Table
I, it is then easy to show that the mirror planes of the
two sides of the contact would be parallel if the turn an-

gle were p = ar ccos[( 3/r + 2 —2)/4] = 22.09'. To the
experimental accuracy, this is true. One consequence is

that the pentagon diameter is parallel with the hexagon
edge. In fact, the experimental paper noted that the
angle between the two is 0.4'. This means that the four
contact atoms form an elongated trapezium where the
short parallel edges are of lengths rb (pentagon diame-

ter) and b (hexagon edge), and where the remaining long
edges are of lengths d~ and d~~.

We can now find the second-nearest separation d~~.
The distance between the two parallel mirror planes is
a(2 —r)/[47/2+ r] If the a/b rati.o were 2/2+ r/(2—
r) 9.96, this distance would equal (r—1)b/2 and, conse-
quently the dy edge would be perpendicular to the paral-
lel edges of the trapezium. The second-closest separation
would therefore be given by

d~~
—d~+ [(r —1)b] .

This holds exactly for a=9.96b=14.28 A and, approxi-
mately, for the real lattice constant of pure C60. For
the second-nearest separation, (11) yields d4, q

——3.24 A

as compared with the experimental values of 3.27 A.
This slight discrepancy is mainly caused by the fact that
the experimental molecule has a whole spectrum of in-
tramolecular bond lengths, and not merely one (or two).

In the TB calculation Ref. 15 this quadridirectional
structure was found to give a favorable kinetic energy.
First, the {hypothetic) case was considered where the
hopping integrals corresponding to the distances dy and

d~~ were equal, and equal to the nearest-neighbor hop-
ping integral in the unidirectional structure, while hop-

ping between more distant neighbors was neglected. In
this case, the hopping energy was found to be about
20% lower in the quadridirectional than in the unidi-
rectional structure due to favorable phase factors of the
MO's for this face-to-edge contact, leading to good-sized
overlaps between occupied MO's on one molecule and
unoccupied MO's on the other. For edge-to-edge and
face-to-face contacts such overlaps are often small, be-
cause occupied MO's tend to be bonding and unoccu-
pied MO's to be antibonding between nearest-neighbor
atoms inside the molecule (that is what causes the in-

tramolecular two-center bonds). However, by placing a
hexagon edge across a pentagon face, such a cancellation
of AO pair contributions does not occur: The higher oc-

cupied MO's have a phase of 2 2z/5 between pen-
tagon second-nearest neighbors and this matches reason-
ably well with the phase x between the hexagon-edge
atoms for the unoccupied MO's. Moreover, the phase an-

gle 4 2z'/5 between second-nearest pentagon neighbors
for the higher unoccupied MO's matches the phase angle

0 of the hexagon-edge bonding MO's reasonably well.
When taking into account that for geometrical reasons

d~ & d~2, the relative energy of the quadridirectional
and unidirectional structures depends also on the repul-
sive forces which determine the intermolecular separa-
tions. For the extreme case of a hard-core repulsion which

fixes dy ——
dpi {by adjustment of the lattice constant for

constant p), the quadridirectional structure was found

to be unfavorable due to the reduced hopping across
the second pair of contact atoms. For the intermedi-
ate case where the repulsion fixes the average distances
to be the same, {d~ + dd, q)/2 =

dpi or di, the quadridi-
rectional structure was found to have the lowest energy
of all three structures. The quadridirectional structure,
furthermore, benefits from the isotropic part of the van
der Waals interaction. The reason is that for, e.g. , a
hard-core repulsive potential, the separations of the cen-
ters of the molecules are smaller in the quadridirectional
structure, and the van der Waals interaction is therefore
more attractive. (Note, that in the orientational-energy
problem the lattice constant is a variable which should
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be minimized together with the orientation. This dif-
fers from the point of view of the present paper where
we seek the conduction-band structure at the experimen-
tally well-known lattice constants and for different orien-
tational orders. )

III. TIGHT-BINDING CALCULATIONS

In this section we present tight-binding (TB) calcula-
tions of the conduction-band structure of pure Csp in the
unidirectional, bidirectional, and quadridirectional struc-
tures, anticipating LDA results to be presented in Secs.
IV B and IVC concerning the rigidity of the conduction
band under alkali-metal doping and its dependence on
the lattice constant.

We have performed electronic-structure calculations at
essentially three levels of accuracy. At the highest, the
ab initio LDA-LMTO level, we are presently only able to
perform the calculations for one molecule per cell, that is,
for the unidirectional structure. Since the LDA-LMTO
calculations are charge-self-consistent they are well suited
for studying the influences of the alkali-metal dopants
and of the changes of lattice constant. At the second
level, we can perform numerical calculations also for the
bidirectional and quadridirectional structures, but only
for pure Csp, because we use the empirical TB method
with a basis consisting of merely the 60 radial AO's per
molecule. The hopping integrals are those used in the
study of orientational ordering, and they were obtained
by fitting to the overall x-band structure of an LDA-
LMTO calculation for unidirectional Cop. The limitation
to undoped Csp is due to our ignorance about the hopping
matrix elements to the alkali-metal atoms and is justified
by the results of the LDA-LMTO calculations for doped
crystals. At the third level, we are able to perform the
TB calculations analytically because we use a basis set of
just the three fq„MO's per molecule. These analytical,
single-MO calculations provide insights and they result
in band Hamiltonians which can fit the available LMTO
and TB calculations with good accuracy. They can there-
fore be used for extrapolation to the more complicated
structures. The present section deals with the TB cal-
culations of the second and third levels, which we shall
refer to as, respectively, the radial-AO and the single-MO
approximations.

The TB calculations employ a basis set with one radial
orbital per carbon atom. The on-site elements of the one-
electron Hamiltonian are all identical. For the hopping
integral between the radial orbitals on atoms 1 and 2 we
use the following form, valid for pp hopping:

Vgp ——[V~(d) —V~(d)](Ry d)(Rz . d) + V~(d)(Rg R2).

(»)

Here, R = R/R is a unit vector in the radial direction
and d = d/d is a unit vector in the direction from atom
1 to atom 2. For the ratio between the 0 and x integrals
we take the value —4 recommended by Harrison. The
distance dependence we parametrize as

V~(d) = —4V (d) = (d/dp)Vp exp[—(d —dp)/L] . (13)

As in Ref. 15, we use the parameter values

L = 0.505 A, Vp ——0.90 eV, and dp = 3.00 A, (14)

In the order mentioned, the hopping integrals decrease by
10%, 22%, and 20%. This is due partly to the increase of
the corresponding distances through Eq. (13) and partly
to the variation in the alignment of the radial orbitals
through Eq. (12). The near distances, as given by the
expressions in the previous section, are

dg = 3.02, d(( = 3.05, dy ——3.16, and d» —3.28 k,

(16)

and, as was the case for a = 14.04 A. , they increase in the
order mentioned by 0.8%, 4%%uo, and 4'%%uo. Since according
to (13) the decay of the hopping integral with distance
has the logarithmic derivative

P=1 —d/L —5,

the distance-induced decrease is 4%, 20%, and 20%.
Therefore, the 10% increase of the AO hopping integral
achieved for 8 of the 12 nearest-molecule neighbors when
going from the unidirectional to the bidirectional struc-
ture is partly due to the decreased distance, and partly to
the improved alignment of the AO's. When going from
the parallel to the quadridirectional orientation, the 22%%uo

decrease of the largest hopping integral, and the addi-
tional 20'%%uo decrease of the second largest, are due to in-
creased distances.

and we truncate the hopping after the nearest neigh-
bors inside but not between the molecules; the appropri-
ate x-like intramolecular hopping integrals are thus Vj,
= —2.78 eV and V&

———2.59 eV. The parameters were
determined by fitting the width of the entire x-like band
and the widths of the subbands near the gap in unidirec-
tional Csp to the results of a LDA-LMTQ calculation. ~s

The value of L was thus determined by the ratio of the
x-band width to the average subband widths. As we

shall see in Sec. III B, this value gives a conduction-band
dispersion in good agreement with the one given by the
LDA-LMTQ calculations for the unidirectional structure.
In order to reproduce the dependence on the lattice con-
stant, a more appropriate value would be L=0.58 A (see
Sec. IV C), provided that the intramolecular hopping in-
tegrals are unchanged.

We perform the numerical calculations with the
molecule geometry given by (4) and with the same lat-
tice constant, chosen to be a=14.10 L, for all three cases
of orientational order. The extrapolation to other lattice
constants will be considered in Sec. IVC. For 14.10 A,
the values of the intermolecular hopping integrals for
the near-neighbor contact atoms can be found from Eqs.
(12), (13), and (14), using the contact geometries derived
in the previous section, to be

V~ ——816, V~~
= 742, V&

——597, and V» ——508 meV.
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A. The t~ LUMO

The relatively large distance between neighboring
molecules (d/b ) 2) causes a relatively weak hopping be-
tween them (Vg/Vi, ( 0.3) so that the states of the crystal
are approximately Bloch sums of linear combinations of
degenerate MO's only (single-MO approximation). That
is, the mixing in the crystal between Bloch states derived
from different irreducible representations of the icosahe-
dral group can, for many purposes, be neglected. We
now give analytical, parameter-free expressions for the
LUMO's, which will enable us to derive analytical ex-
pressions for the dispersions of the unidirectional, bidi-
rectional, and quadridirectional conduction bands.

Considering the Hilbert space with 60 radial AO's per
molecule, there are two threefold degenerate ti„MO's,
~1, M) and ~2, M), with M=1,3. The latter, high-energy
MO is the LUMO. If we expand a ti„MO in AO's, ~i)
with i from 1 to 60, viz. ,

)I, M) = ) ~i) c;(I, M), (18)

and then expand the coeKcients in real spherical harmon-
ics with respect to the center of the molecule, c,(I, M) =

Yi (R, )Ct (I, M), only the coefficients with 1=1
and 5 are different from zero. (Components with I ) 5

grh

do not contribute when R are on the 60 discrete points. )
Consequently, the low-energy MO, ~1, M), has almost ex-
clusively I=1 character, Ct (1,M) oc bi ib M. We now
choose the ti„partner functions such that ~1, M) are the
real spherical harmonics in our chosen local coordinates
(Fig. 1). c, (1, M) are therefore proportional to X, Y, and
Z as given in Table I.

A first approximation to the LUMO, ~2, M), may now

be generated by projection of an antibonding two-center
hexagon-edge orbital onto ti„symmetry. Its coefficients,
denoted c(2, M), are given in the fourth column of Ta-
ble I. Subsequent orthogonalization of this function to

~1, M) results in a highly accurate LUMO whose coeffi-

cients c, (2, Z) are given in the fifth column of Table I,
as well as in Fig. 1. This is the LUMO that we shall
use to form conduction-band wave functions from, in the
single-MO approximation. Its c coefficients are numbers,
independent of the hopping interactions and the size of
the Cso molecules.

The orthonormal partner functions, II, X) and ~I, Y'),

are obtained as shown in Fig. 1 by rotation of ~I, Z)
around one of the threefold [111] axes. This choice of
tz„partner functions, which will turn out to simplify the
band Hamiltonian for the unidirectional and bidirectional
structures considerably, is such that ~I, Z) is even with

respect to the twofold Z axis but odd with respect to the
twofold X and Y axes or, in other words, ~I, Z) is even

with respect to the ZX and ZY mirror planes but odd
with respect to the XV mirror plane. We therefore only
need to specify the c coef5cients when L & 0, Y & 0,
and Z & 0, and since there are only nine such sites and

one of these is on a nodal plane, any set of degenerate tq„
functions is specified by just eight e coe%cients. These
we denote by the letters p to m, chosen in such a way

that for the LUMO they are positive and in order of de-
creasing amplitude. Their definition is given in the last
column of Table I and their decimal values are

p- 0.219 [0.224],

q ~ 0.200 [0.181],
r —0.155 [0.181],
s 0.123 [0.112],

0.104 [0.069],
u 0.096 [0.112],
~ = 0.045 [0.000],

0.031 [0.069].

(19)

Here, the numbers in parentheses refer to the hexagon-
edge antibonding LUMO before orthogonalization to the
lower MO. Since the conduction-band width will be pro-
portional to the product of the c coefBcients for the con-
tact atoms, this latter approximation is too inaccurate.

The exact LUMO may be obtained by diagonalizing
one of the 2 x 2 matrices (I, M ~H ~

J, M). For a nearest-
neighbor Hamiltonian (and equal bond lengths) this ex-
act result only deviates a few percent from the one in

(19), e.g. , r 0.153, s 0.124, and t 0.107. This
retlects the high accuracy of approximating ~1) by the
t = 1 spherical harmonics. Expressing the LUMO by the
values in Fig. 1 will therefore sufBce.

In the remainder of this paper we shall only be con-
cerned with the LUMO, not with the low energy ti„MO,
and we therefore drop the index I.

B. Unidirectional conduction band

(Z )
H

) Z) = 4[ Vj~ (rr) cos(k„a/2) cos(k, a/2)
—

Vj~ (ss) cos(k~a/2) cos(k„a/2)

+Vj~ (tt) cos(k a/2) cos(k a/2)],

(20)

(Y(H)Z) = 4'~(rt) sin(kza/2) sin(k, a/2).

In Fig. 4 we show the conduction bands of Cso in

the unidirectional fcc structure calculated with the TB
method in the radial-AO approximation. The corre-

sponding ab initio LDA-LMTO bands for RbCso are
shown in Fig. 5 and a comparison of the two proves the
relevance of the TB bands. It should be kept in mind
that the TB parameters (14) were chosen to fit the over-

all x-band structure rather than the details around the
gap. The zero of energy is in both cases taken at the
top of the valence band. We shall now provide a detailed
understanding of these bands by going to the single-MO
approximation.

In the single-MO approximation the Bloch functions
are formed from the three LUMO's. If we restrict
the intermolecular hopping to between nearest-neighbor
molecules, which is an exceedingly good approximation,
the conduction-band Hamiltonian is given by



CONDUCTION-BAND STRUCTURE OF ALKALI-METAL-DOPED C60 1781

i/
2.2

Unidir.

2.1

2.0

1.9

c~ 18
uJ

1.7

1.6—

f X W L
I

K X

Here, the zero of energy is taken at the LUMO energy,
which is the center of gravity for the three bands. If we
further restrict the range of the intermolecular hopping
to between nearest-neighbor atoms, the conduction-band
Hamiltonian depends on the coefficients of the contact
orbitals only (see Fig. 2) and

Vjj(crcz) = ci Vjjcz + ciVjjcz (21)

is the integral for hopping from a pentagon edge with
LUMO amplitude c1 on both atoms, to the neighboring

FIG. 4. Csp conduction band in the fcc unidirectional
structure (space group Fm3) with a=14.1 A calculated in

the radial-AO TB approximation. The coordinates of the
high-symmetry points in the fcc Brillouiu zone are I' (0,0,0),
X (2,0,0)z'/a, W (2,1,0)z'/a, I (1,1,1)z/a, K (3/2, 3/2, 0)z/a,
and X (2,2,0)z/a. The zero of energy is at the top of the va-

lence band and the parameters in (14) aud (4) were used. The
Fermi levels for dopings of one, two, three, and four electrons
per molecule are, respectively, 1.76, 1.80, 1.85, and 1.95 eV.
The density of states is shown in Fig. 7. Table II gives a fit
to this band structure. Scaling to other lattice constants is
explained in Sec. IV C.

Vg(c1cz) = ) c;V;,c, , (22)

where i runs over the atoms near the contact of the first
molecule and j runs over the atoms of the second, neigh-
boring molecule. The subscript & characterizes the ge-
ometry of the contact, , and chic~ characterizes the overlap
of the LUMO's in the contact. (We shall use odd numbers
for i and even for j.) When the sum in (22) extends be-
yond nearest neighbors, Vz(r f) does, of course, not equal
the geometrical average of Vg(r r ) and Vg(tt) as in (21).

In the second column of Table II we give the converged
values of the LUMO hopping integrals (22) using again
the hopping parameters (14) chosen for the numerical TB
calculations. By comparison with the results in the first
column, the nearest-neighbor approximation is seen to be
reasonably well converged. The worst case is the hopping
across the (ft + tt) contact (see Figs. 1 and 2) where, in
addition to the positive contribution oc 2tt from diagonal
hops across the pentagon-edge to pentagon-edge contact,

pentagon edge with amplitude c2 on both atoms, includ-
ing only the two direct (not the diagonal) AO hoppings.
The values of the integrals for hopping between LUMO's
in this nearest-neighbor atom (NN) approximation (21)
may be obtained from Eq. (15) and Table I, or Eq. (19),
and are given in the first column of Table II.

The remaining matrix elements of the Hamiltonian
(20) may be obtained by cyclic permutations of X, Y,
and Z and, simultaneously, of k, kv, and k, . Its simple
form is due to the facts that hopping beyond nearest-
neighbor molecules can safely be neglected, and that the
ay, yz, and zz mirror planes, with respect to which our
t 1„part ner functions have definite parities, are conserved
in the crystal. As seen in Fig. 2, these mirror planes are
perpendicular to the contacts and the (ss + ss) contact
is odd while the (t'r + rr) and (tt+ ft) contacts are even.

When we allow hopping beyond nearest-neighbor
atoms, but not beyond nearest-neighbor molecules, Eq.
(21) is replaced by

2. 2—

2.0

1.9

1.8

UJ

1.6—

I

unidir. TABLE II. ti -hopping integrals (single-MO approxima-
tion) and effective W and real Wx bandwidths derived here-
from for the unidirectional structure and a=14.10 A. The ti„
hopping integrals listed in the columns radial-AO and LDA
were fitted as described in the text to the conduction bands of
Cep and RbC6p calculated with, respectively, the TB method
in the radial-AO approximation and the LMTO method in
the LDA. Scaling to other lattice constants is explained in
Sec. IVC [Eqs. (47) and (48)].

1.5—
t

I

XW L f KX

FIG. 5. RbC60 conduction band in the fcc unidirectional
structure with a=14.1 A calculated ob initio with the LDA-
LMTO method. The zero of energy is at the top of the valence
band. The density of states is shown in Fig. 8. The Fermi
level is at 1.75 eV and the levels holding two and three elec-
trons per molecule are at 1.81 and 1.86 eV, respectively. See
the caption of Fig. 4.

(meV)

4Vjj(rr)
4Vjj(ss)
4Vjj(tt)
4Vjj(rt)

Single MO
Nearest neighbor

142
90
64
96

390
464

Conv.

159
84
23
101

400
486

Radial AO
Fig. 4

150
85
20
100

385
470

LDA
Fig. 5

171
79
23
105

417
500
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the pentagon-edge to pentagon-diameter hopping gives
a contribution oc —4tu which is relatively large and of
opposite sign. At the (rr + rr) contact, this pentagon-
edge to pentagon-diameter contribution proportional to
4rip is relatively small and positive. At the (ss + ss)
contact, the negative contribution proportional to —2ss
from diagonal hops is largly canceled by the contribution
proportional to 4sq from the pentagon-edge to pentagon-
diameter hopping. Finally, at the (i't + rt) contact, the
numerical increase due to diagonal hopping proportional
to —2rt is largely canceled by the contribution propor-
tional to 2t'u.

In order to obtain the results given in the last two
columns of Table II, which present fits to the bands
shown in Figs. 4 and 5, we first need to understand the
dispersion given by the single-MO Hamiltonian (20).

%hen the Block vector is along one of the three I'X
lines [e.g. , from (0,0,0) to (2,0,0)s/a], or along one of
the three XWX lines [e.g. , from (2,0,0)s'/a to (2,1,0)7r/a
to (2,2,0)s/a], the off-diagonal Hamiltonian matrix el-
ements vanish and we obtain three bands with cosine
dispersion. The bands are degenerate at I' and reach ex-
trema at the X point. The energy at I' is 4Vjj(rr)—
4Vjj(ss) + 4Vjj(O) (degeneracy=3).

At X (2,0,0)s/a, the three energies and corresponding
wave functions are —4Vjj (i'r) —4Vjj(ss) —4Vjj (&&) and (X),
—4Vjj(») + 4Vjj(») + 4Vj (&&) and I&& and 4Vjj("")+
4Vjj(ss) —4Vjj(tt) and )Z . The bandwidth at X is thus

Wx = SVjj(i'i') + SVjj(ss),

and the sum of the energies at I' and the three X points
is zero.

Since W is at the midpoint between two X points and
since the bands have cosine dispersion along X%X, the
three energies at 8' are just t;he averages of the three
energies at X and, hence, equal —4Vjj(i i), —4Vjj(tt),
and 4Vjj(ss). Note that each of the three bands along
Xt/VX is not symmetric around t/V so that along one
Xt/V line the two upper bands cross, and along another
the two lower bands cross.

At the L point (1, 1, 1)ir/a the energies are seen to
be —4Vjj(i t) (degeneracy=2) and 8Vjj(rt), with zero
average.

With the Bloch vector along I'IxX (e.g. , in the [110]
direction), one band (~Z)) is pure, but the two others
hybridize strongly in the interior of the zone and the
corresponding anomalies are clearly seen in Figs. 4 and
5.

In order to fit a given conduction-band structure by
hand to this single-MO model, the simplest choice would

be first to go to the L point and obtain the conduction-
band zero (center of gravity) as the energy which is

one-third from the bottom and two-thirds from the top,
and to obtain 4Vjj(it) as one-third the L bandwidth.
The remaining three MQ hopping integrals might then
be obtained as the energies at R', measured from the
conduction-band zero and with appropriate signs. Ex-
cept for obtaining 12Vjj(rt) as the bandwidth at L,
this procedure is, however, inaccurate because it involves

small energy differences and because the model Hamilto-

W:—V'12 ( (E —(E))' ) (24)

which would be the exact bandwidth if the density of
states were rectangular. In the single-MQ approxima-
tion, (E) = 0 and the second energy moment per state
may be evaluated as

nian is not exact; it neglects the interaction with other
MQ bands. A satisfactory procedure is to use the four en-
ergies at I' and X to find the remaining three coefficients
and the center of gravity. Specifically, if we measure the
energies with respect to the energy at I' and if we number
the bands at X in order of increasing energy, the result
is 16Vjj(pf') = Es —Ez Ei, 16Vjj(ss) = E3+ E2 Ei
16Vjj(ft) = Es+—Ez —Ei, and, for the center of gravity,
(E) = (Es+ Ez+ Ei)/4.

The third column in Table II gives MO-hopping inte-
grals fitted by the above-mentioned procedure to the TB
band structure calculated in the radial-AO approxima-
tion and shown in Fig. 4. Apart from being perfect at I
and X, this fit deviates by merely 10 meV at L, and a bit
more at W. This TB calculation employed the same AO-

hopping integrals given by (13) and (14) as used in the
first two columns of the table, but it included all 60 ra-
dial AO's rather than just the three LUMO's. The facts
that the fit is so good and that the coefficients just diRer
slightly from the ones obtained using the single-MO ap-
proximation, indicates that this approximation is sound
for the unidirectional structure, even at the fairly small
lattice constant chosen.

The ab iiiiiio coiiductioii-band structure of RbCsp
shown in Fig. 5 is very similar to the TB band struc-
ture of Csp shown in Fig. 4 and the fit to the LDA-
LMTO bands is of the same good quality as the fit to
the TB bands. From the coefficients given in the last
column of Table II we see that the increase of bandwidth
S'x is mainly due to the increase of the hopping integral
Vjj(i'r). The actual width of the LDA band is 517 meV
rather than Wx=500 meV because the top of the band
occurs at the I point.

In Figs. 6, 7, and 8 we show the densities of states
for the conduction band calculated, respectively, in the
single-MO approximation with converged hopping inte-

grals, with the TB method in the radial-AO approxima-
tion (Fig 4), an.d with the LMTO method in the LDA for
RbCsp (Fig. 5). The similarity of Fig. 6, 7, and 8 demon-
strates the quality of the radial-AO and the single-MO
approximations; the most visible deviations are caused by
the cruder Brillouin-zone integration used in Fig. 7. All

figures show that in the unidirectional structure, the two
lowest subbands are fairly well separated from the up-
permost subband with the deep valley between the two

peaks being centered approximately at the upper-band
crossing along XW. The value of the density of states at
the Fermi level corresponding to a doping of three elec-
trons is about 15 states per eV per molecule and for both
splns.

A measure of the bandwidth which is easy to calculate
in TB theory, even for complicated structures, is
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where N runs over the nearest-molecule neighbors. For
the unidirectional structure we obtain

(E ) = 4[ Vjj(r'r) + Vjj(ss) + Vjj(tt)' + 2Vjj(rt)' j,
(26)

where the contributions from the (sr-sr) and (sf-st) con-
tacts vanish, as we have noted before. Using the MO-
hopping integrals listed in Table II, we obtain the ef-
fective bandwidths W listed at the bottom of the table.
Only within the single-MO approximation is this proce-
dure exact. For the radial-AO bands shown in Fig. 4, for
instance, a measure of the importance of MO mixing and,
hence, of the quality of the fit, is the difference between
the 385 meV given in the table and the correct value of
405 meV, obtained from (24) by using the energy bands
and performing the averages over the Brillouin zone.
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FIG. 6. Conduction-band density of states (DOS) for both
spins and per molecule for C6o in the unidirectional, bidirec-
tional, aud quadridirectional structures with a=14.1 A. The
calculations were performed in the single-MO approximation
using the Hamiltonians (20), (28), and (36) with the con-
verged MO-hopping integrals listed in Tables II, III, and IV.
The zero of energy is at the center of gravity and the vertical
lines indicate the Fermi levels for dopings of one, two, three,
and four electrons per molecule. The Brillouin-zone integra-
tions were performed with the tetrahedron method using 1030
(uui), 726 (bi), aud 461 (quadri) irreducible points. Scaling
to other lattice constants as explained in Sec. IV C.
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FIG. 8. LDA-LMTO conduction-band density of states
for both spins and per molecule for RbC6o in the unidirec-
tional structure with s=l4. 1 A. The bands are shown in Fig.
5. The Fermi level is labeled n=1 and the levels correspond-
ing to doping with two and three electrons are shown, too.
The Brillouin-zone integration was performed with the tetra-
hedron method using 396 irreducible points. Scaling to other
lattice constants as explained in Sec. IVC.

FIG. 7. Same as Fig. 6, except that the bands were cal-
culated with the TB method in the radial-AO approximation
and are shown in Figs. 4, 9, and 10. The Brillouin-zone inte-
grations were performed by sampling over 125 points in the
irreducible 1/8th of the sc zone and smoothening with a Gaus-
sian proportional to exp[ —(E —Es)/20 meV] . The zero of
energy is at the top of the valence band in the unidirectional
structure.
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C. Bidirectional conduction band

In the bidirectional crystal, the molecular orientations
alternate between y and z when we proceed from one
(001) layer to the next. For a given molecule, therefore,
one-third of the neighbors have parallel orientation, like
in the unidirectional structure, and two-thirds have per-
pendicular orientation. Now, we have seen in Eq. (15)
that the AO nearest-neighbor integral for perpendicular
orientation is 10'%%uo larger than for the parallel orientation
(for the same lattice constant) and we therefore expect
the conduction band in the bidirectional structure to be
about 6.7% wider. Before dealing with the intricacies
of the dispersion in this structure with two molecules per
cell, let us now investigate this question of the bandwidth
in slightly more detail by using the single-MO approxi-
mation and the second-moment procedure ('25).

We easily find that the second moment, is given by the
same expression (26) as for the unidirectional structure,
but with the substitutions

V(i(clc2) ~ si V[((clc2) + sVJ (clc2) (27)

In the nearest-neighbor approximation our expectation
therefore holds with good accuracy.

The converged MO-hopping integrals for the perpen-
dicular orientation [defined in Eq. (22)] are listed in Ta-
ble III where, at the bottom, we give the effective band-
widths obtained using these hopping integrals together
with those of Table II for the parallel orientation. The re-
sults are that long-range hopping is relatively important
in the bidirectional structure and that it increases the
eKective bandwidth W from the nearest-neighbor result, ,
which is 6.7% larger, to being 20% larger than in the uni-
directional structure. The main cause for this increase is
that whereas longer-range hopping decreased Vj~ (tt), it in-

creases V~(tt) and it significantly increases V~(ss). The
reason is that with perpendicular orientation, pentagons
face pentagons (rather than hexagons) and the dominant
contribution to the long-range hopping is now from pen-
tagon diameter to pentagon diameter (rather than from
edge to diameter). As seen in Fig. 1, this contribution
is particularly strong for the (ss+ ss) contact, where the
pentagon diameter has the large LUMO amplitude q.

The densities of states in Fig. 6 for the converged
single-MO approximation clearly exhibit this 20% in-

crease of effective bandwidth, and corresponding decrease
of state density, when going from the unidirectional to
the bidirectional structure. If we compare the widths be-
tween the actual band edges, the increase is even 30'%%uo,

but this is hardly relevant because, in both structures,
these widths are strongly influenced by tails at the top
of the band. On the other hand, for an occupancy of
three electrons per molecule, the Fermi level falls at a
density-of-states peak in the bidirectional structure. For
the relevant occupancy, therefore, the density of states is
about the same [17 st. /(mol eV)] for the unidirectional
and bidirectional structures. Figure 9 shows the conduc-
tion band for the bidirectional structure at the standard
lattice constant, now calculated with the TB method in
the radial-AO approximation. This band is noticeably
broader than the unidirectional band, and its high-energy
tail even overlaps the next higher band. The density of
states for the six lowest radial-AO bands is shown in the
middle of Fig. 7. It resembles the single-MO result, but
there is a slight shift of weight from the high-energy to
the low-energy part.

Another important diA'erence between the densities of
states for the two structures is that the low-energy peak
is split (into two or three) in the bidirectional structure,
and this causes the conduction-band energy to be lower

than for the unidirectional structure when the occupancy
is about three electrons. This contribution to the orien-
tational energy in favor of the bidirectional structure for
the doped compounds should be added to the contribu-
tions from MO mixing considered in Ref. 15.

We now discuss the dispersion in detail by deriving the
6 x 6 band Hamiltonian in the single-MO approximation
and diagonalizing it in k-space planes, lines, or points of

2.3

2.2

2.1

2.0

ch 1g
C

1.8

TABLE III. Additional tq„-hopping integrals and derived

eKe "tive W and real Wr bandwidths for the bidirectional
structure and a=14.10 A. Otherwise like Table II. f N X l Z A

(meV)

4Vj (rr)4' (ss)4' (tt)4' (rt)

W
Wr

Single MO
Nearest neighbor

156
99
71
105

416
611

Conv.

186
164
109
93

484
627

Radial AO
Fig. 9

150
170
105
95

465
635

FIG. 9. C60 conduction band in the bidirectional struc-
ture with a=14.1 A calculated in the radial-AO TB approx-

imation. The primitive tetragonal Brillouin zone is a box
centered at I' (0,0,0) with edge centers at M (2,0,0)x/a, face
centers at X (1,1,0)x/a and Z (0,0, 1)n/a, and with corners at
A (2,0,1)s/u. The X point at (0, 0, 2)s/a in the fcc Brillouin
zone is now folded into I'. The Fermi levels for dopings of one,
two, three, and four electrons per molecule are, respectively,
1.75, 1.80, 1.85, and 1.92 eV. The density of states is shown

in Fig. 7. Otherwise, as in Fig. 4.
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high symmetry.
The translation cell is primitive tetragonal and con-

tains two equivalent molecules, one with y orientation at
the origin and one with z orientation at (0,1,1)a/2. We
shall use a notation according to which ~Mz) and jMy)
are Bloch sums of ~M) LUMO's on the z and y sublat-
tices, respectively. Since the group of rotation transla-

tions which take any molecule into any other is not com-
mutative (Abelian), it is not possible with suitable redef-
inition of the Bloch sums to reduce the band-structure
problem to one involving just a single molecule.

Due to the inversion and mirror symmetries of the
LUMO partners (see Figs. 1 and 2), the Hamiltonian
matrix can be written in the following form:

H = A cos(k~a/2) cos(kva/2) + 8 cos(k&a/2) cos(k, a/2) + C cos(k, a/2) cos(k a/2)

+D is n(k~a/2) sin(k&a/2) + Esin( k&a /2) sin(k, a/2) + F sin(k, a/2) sin(k a/2), (28)

(Yy)A[Yy) = (Yz[A)Yz) = 4Vjj(r r),
(XzjAjXz) = (Xy)AjXy) = 4Vjj(tt),
(Zz [A [Zz) —(Zy[ A j Zy) —

4Vjj (ss)
(29)

8 and C provide the coupling in the 2x 2 diagonal blocks,

(Yy(BjXz) = —(Xy[C[Yz) = —(Zz(C[zy)
= -(ZziBiZy) = 4V, (rt),

(30)
(YylC(Xz) = (XyjB(Yz) = 4—Vg(ss).

Finally,

(YyjDjXy) = (Xz)jDjYz) = 4V—jj(rt),
(YulEIZ ) = (Y IF lzu) = -4'.(tt),
(XzjE]zy) = (XyjFJZz) = 4V~—(rr).

All matrix elements not mentioned in (29)—(31),except
the transposed ones, vanish.

When the sine coefFicients of E and F in (28) vanish,
i.e. , when the Bloch vector is in the k, =o plane, along
the k, axis (I'Z), or along the line MA parallel herewith,
there is no coupling between the two jz) MO's and the

where A through F are sparse 6 x 6 matrices which we
shall specify below. It is obvious that A and D pro-
vide the hopping in the (001) planes and therefore will
be given by Vjj integrals while 8, C, E, and F provide
hopping between planes and therefore are given by V~
integrals.

It will prove useful to arrange the orbitals in the or-
der )Yy), (Xz), [Xy), (Yz), (Zz), and (Zy) because, by
virtue of the mirror symmetries, there is no coupling be-
tween (Yy) and )Yz), between (Xz) and (Xy), between

)Zy) and )Yy), between (Zz) and )Xz), between )Zy)
and (Xy), and between ~zz) and ~Yz). The matrices A,
8, and C are 2 x 2 block diagonal, with A being strictly
diagonal, and 8 and C giving the coupling. The three
2 x 2 off-diagonal blocks of the 6 x 6 matrix are repre-
sented by D, E, and F, respectively, and each of them
are "diagonal. "

The diagonal matrix A now has the following nonzero
elements:

four ~X) and ~Y) MO's. The corresponding grouping of
the six bands in 2 plus 4 is clearly seen in Fig. 9 along
the lines I'M, MX, XI', and I'Z.

We first consider the two jz) bands, which are given

by the corresponding block of the A, 8, and C terms.
Since the A block is degenerate, the dispersion of the jz)
bands is simply

E= —4Vjj(ss) cos(k a/2) cos(kza/2)
+ 4V~(rt) [cos(k a/2) + cos(kva/2)] cos(k, a/2),

(32)

so that the energies are —
4Vjj (ss) +8Vg (r&) at I', 4Vjj(»)

at M, 0 at X, —4Vjj(ss) at Z, and 4Vjj(ss) again at
A. The lowest level at I' marks the bottom of the band.
In the figure, the )Z) levels are the highest at M and A,
and these levels coincide with the highest level at W in
the unidirectional structure.

We then consider the four ~X) and ~Y) bands in the
I'MX plane, along I'Z, and along MA. Along the two
latter lines and along I'M, all sine factors in (28), includ-
ing the coefficient of D, vanish, so that the ~Yy) and (Xz)
bands do not mix with the ~Xy) and ~Yz) bands. The
energies at I' and M are doubly degenerate and equal,

E = 2Vjj(rr) + 2Vjj(tt)

2'~ rr —2'~ && + 4' rt + v4Vg ss

(33)

where v=1 for I' and —1 for M. The highest level at I
marks the top of the band. (In the figure this level is
the one at 2.25 eV.) At the midpoint between I' and M,
only the B term of the Hamiltonian is nonzero and the
energies are simply +4Vg(ss) and +4Vg(rt). At Z the
doubly degenerate energies are 4Vjj(rr) and 4Vjj(tt),
and at A they are —4Vjj(rr) and —4Vjj(&&).

At the X point the only nonvanishing term of the
Hamiltonian is D, so that the three doubly degenerate
energies are +4Vjj(rt) and 0, which is jz)-like as men-
tioned above. Finally, at the midpoint between Z and
A, only the I" term survives so that the six energies are
+4Vj (rr), +4V~(ft), and 0. The latter energy is dou-
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bly degenerate and marks the crossing along ZA of the
cosinelike, pure jYy) and jXz) bands.

The above-mentioned description of the conduction-
band structure gives the basis for understanding how
each MO-hopping integral infiuences the dispersion. In
order to fif, for instance, the radial-AO band in Fig. 9 to
this tq„model, the following procedure is simple and rea-
sonably accurate: 8V~(rr) and 8V~(tt) are obtained as
energy differences at the ZA midpoint, 16V~(rf) as the
splitting of the ~Z) bands at the I' point, and 8V~(ss)
as the largest splitting of the (jX), jY)) bands at the I'M
midpoint. 8Vjj(rt) is obtained as the bandwidth at X
and, finally, differences between levels at Z and A give

8Vjj(rr), 8Vjj(rr), and 8Vjj(ft) . The center of gravity
may be obtained at X, or at the ZA midpoint, or better,
as a suitable average.

The result of this procedure applied to the radial-AO
band in Fig. 9 is included in Table III as regards the
hopping between perpendicular molecules. The values
are quite close to those calculated properly using the
single-MO approximation, except maybe V~(rr), which

is a bit low. The parameters for hopping between par-
allel molecules should equal those fitted to the unidirec-
tional radial-AO band and given in Table II. With those
values in Eq. (27) we obtain an effective bandwidth of
W=465 meV for the bidirectional structure. This num-

ber is given at the bottom line in Table III. Direct nu-

merical calculation for the six lowest bands of Fig. 9
yields 445 meV.

The integrals for hopping between parallel molecules
fitted directly to the bidirectional radial-AO band struc-
ture are 4Vjj(rr )=80, 4Vjj(ss)=75, 4Vjj(tf) = —25, and

4Vjj(r&)=125 meV. The value for 4Vjj(r r) is almost half
the one obtained from fitting the unidirectional band
structure, but the other values are more reasonable. In-

serting these values in Eq. (27) we obtain an effective
bandwidth of W=455 meV which is closer to the 445 meV

calculated by Brillouin-zone integration; this indicates
that the fit has, in fact, been improved. The factor-
two discrepancy for 4Vjj(rr) presumably arises because
the highest level at Z, which is used for determining this
parameter, has been pushed down considerably by hy-

bridization with the above-lying MO band. This effect is

seen most clearly at I' where the lowest level of the higher
MO-band lies below the highest doubly degenerate level

of the t~„band; since these levels do not seem to mix at I'

this does, however, not influence our parameters (but the
directly calculated effective bandwidth, of course). Along
I'M the two nearly crossing bands are clearly influenced

by the higher MO band: in the single-MO theory their
distance at the I'M midpoint equals half the splitting be-
tween the (Z) levels at I' [=16'(rt)/2=210 meV], but in

reality it is only 50 meV. Finally, at the X point the jZ)
energy should be the average of the (jX), jY)) energies,
which it is clearly not.

For the bidirectional radial-AO band at a=14.1 A, MO
mixing is therefore not negligible. Nevertheless, the den-
sities of states in Figs. 6 and 7 calculated in, respectively,
the single-MO and the radial-AO approximations with-

out fitting the results of the latter to the former, are in

reasonably good agreement. Besides, at the lattice con-

stants a 14.25—14.45 A where the bidirectional struc-
ture is relevant, the importance of MO mixing should be
reduced.

Since the bidirectional structure is presumably a good
approximation to the local structure of the real, doped
superconducting compounds, it is important to estimate
the hopping integrals for its conduction band as well as
possible. For lack of a real LDA calculation, but in view
of the good agreement found for the unidirectional struc-
ture with the radial-AQ approximation, we recommend
using the radial-AO values from Tables I and II.

D. Quadridirectional conduction band

23

2.2
quadridir

2.0

P 1.9

LLI 18

1.6

t X M R I M

FIG. 10. C6O conduction band in the quadridirectional

structure (space group Pa3) with a=14.1 A calculated in the

radial-AO TB approximation. The Brillouin zone is a cube

centered at I' (0,0,0) and with face centers at X (1,0,0)s/a,
edge centers at M (1,1,0)s'/a, and corners at R (1,1,1)s/a.
The Fermi levels for dopings of one, two, three, and four

electrons per molecule are, respectively, 1.74, 1.80, 1.84, and

1.91 eV. The density of states is shown in Fig. 7. Otherwise,

as in Fig. 4.

The density of states for the quadridirectional struc-
ture at the standard lattice constant and calculated in
the single-MO approximation is shown at the bottom of
Fig. 6. The 12 conduction bands obtained by diagonal-
izing the 240 x 240 radial-AO Hamiltonian are shown in

Fig. 10 and their state density is at the bottom of Fig.
7. Apart from the difference in resolution, the densities
of states resulting from the single-MO and the radial-AO
approximations are for practical purposes identical, and
the same holds for the bands.

The bands roughly group into three bundles with four
bands in each and the density of states has three cor-
responding peaks, each of which can hold two electrons
per molecule. Similar to the unidirectional conduction
band, the upper one-third of the quadridirectional band
is nearly separated from the lower two-thirds, but the val-

ley is much narrower and the lower two-thirds is relatively
more compressed. At the standard lattice constant, the
bandwidth WR is 435 meV which is 90% of the unidi-

rectional bandwidth Wx (and 69% of the bidirectional
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bandwidth Wi ). The efFective bandwidth, W=420 meV,
is slightly larger than for the unidirectional structure and
is, in fact, quite close to the real bandwidth W~. This
refiects the compactness of the quadridirectional conduc-
tion band.

That the bandwidths for the quadridirectional and uni-
directional structures are about the same for the same
lattice constant is not what one would have expected
from the reduction of the AO-hopping integrals: accord-
ing to (15) the latter are reduced by 22%%uo for the nearest
AO pair and by 32% for the second-nearest pair. As we

shall see, the reason is that for this edge-to-face contact
the LUMQ-hopping integrals are relatively large due to
constructive interference in the sums (22). Like for the
perpendicular orientation, this constructive interference
extends to beyond first and second-nearest-atom neigh-
bors. This is the same kind of effect which is responsible
for the stability of the quadridirectional structure, the
only difference being that now the effect works within the
ti„band. In the following, we shall use the single-MO
approximation, first to evaluate the effective bandwidth

Vy(ci c2 + csc4) —ci Vpc2 + cs Vjpgc4, (34)

and in Table I we defined o —=0. With the values of Vt, and

V~~ in Eq. (15) and the LUMQ coefficients from Eq.(19)
we obtain the values for the nine MO-hopping integrals
given in the first column of Table IV. By comparison
with the converged values given in the second column,
the former are in most cases too small.

The second moment may now be obtained from
Eq. (25) by summing over the contacts and the LUMO's.
The result is simply,

and then to derive the band Hamiltonian.
The MO-hopping integrals are defined in (22), and for

the quadridirectional structure (see Fig. 3) the notation
is such that, for instance, V4, (tt+ pro) describes the hop-

ping from a pentagon diameter with LUMO amplitudes
t —and p, to a hexagon edge with LUMO amplitudes

—t and m. The first term, tt, refers to the shorter con-
tact distance and the second, pm, to the longer. In the
nearest-two-neighbors approximation, therefore,

(E ) = 4 [ Vt, (rr+ vq) + V4, (ss+ ou) + V4, (tt p ptv) + Vp(rs+ vu) + Vp(sr+ oq)

+Vp(rt+ vto) + Vt, (tr+ pq) + Vp(st p oto) + Vt, (ts+ pu) j.

TABLE IV. tqt, -hopping integrals and derived effective W
and real WR band~idths for the quadridirectional structure
and a=14.10 A. Otherwise like Table II.

(meV)

4'(rr + vq)
4'(ss + ou)
4V~(tt + pw)
4'(rs + vu)
4'(sr + oq)
4'(rt + veau)

4'(tr + pq)
4'(st + os)
4'(ts + pu)

Single MO
Nearest two neighbors

76
36
40
55
46
42
128
31
74

Conv.

77
—20
44
75
67
48
155
57
104

339
335

420
435

The effective bandwidths obtained herefrom are given
at the bottom of the table and the converged value
W=420 meV is in reasonable agreement with the
400 meV obtained by direct calculation using the radial-
AO approximation. The point, that in comparison with
the unidirectional structure, the increased contact dis-
tance is compensated by a better match in the contact
region of the c phases, may be illustrated by compar-
ing the second moments calculated from Eqs. (35) and

(26) by setting Vj~
—— V~ ——Vy2

——V and neglecting
all farther hoppings. The results for the eff'ective band-

widths are W«ad„=0.609V and W~o;=0.526V, that is,
the nearest- and second-nearest-neighbor phase effect im-
proves the hopping by about 15%%uo. That, in addition,
there is longer-range constructive hopping at this edge-
to-face contact may be illustrated by comparing the ra-
tios W«„„/WNNfor the different structures: From Tables
II, III, and IV we obtain increases of, respectively, 3%,
16%, and 24% for the unidirectional, bidirectional, and
quadridirectional structures.

We now work out the band Hamiltonian. The transla-
tion cell is simple cubic and the molecules at (1,1,0)a/2,
(0,1,1)a/2, and (1,0,1)a/2 are rotated with respect to the
one at (0,0,0) by 180' around the z, y, and z axes, respec-
tively. The molecule at (0,0,0) (Fig. 3) is rotated around
the threefold [111)axis by —y with respect to one with

y orientation (Fig. 2). As for the bidirectional structure,
the group of rotation translations which take a molecule
into any other is not commutative and, as a consequence,
it is not possible to reduce the band-structure problem to
one involving just a single molecule per cell. The Bloch
sums are therefore over the four sc sublattices and, in the
following, ~M, 110) denotes such a sum. Here, M refers
to a LUMO in the local coordinate system. The order
of the Bloch orbitals we take as (X, 000), (Y, 000), ... ,

~Z, 101), and the 12 x 12 Hamiltonian we thus imagine
as composed of 3 x 3 blocks. With the help of Fig. 3 and
using the symmetries of the t~„partners one may now
derive the following expressions.

Since we include hopping only between nearest-
neighbor molecules and since we take the LUMO level as
the zero of energy, the four diagonal blocks of the Hamil-
tonian vanish. For the off-diagonal blocks we have
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(000iHi110) = (011[Hi101)t

= S cos[(k + k„)a/2]
+St cos[(k —k„)a/2],

( —V~(rr + vq) V~(rs + vu) —Vy(rt + vis) )
U = 2

~
Vy(sr+ oq) —Vy(ss+ ou) Vy(st + oiv)
Vp(tr + pq) V—p(ts + pu) V4, (tt + piv)

(38)

(000(H [101)= (110[H [011)t

= U cos[(k, + k )a/2]
+Ut cos[(k, —k )a/2],

(000)H [011)= (110IHI101)
= Tcos[(k„+k, )a/2]

+Tt cos[(k„—k, )a/2]. 2 [V~(rs+ vu) —V~(sr + oq)] = 4V~(rs), (39)

The band edges are at the R point (1,1,1)7r/a and,
here, where each of the three bundles are degenerate, we
are able to diagonalize the Hamiltonian analytically. The
cosines in (36) are either plus or minus unity so that the
Hamiltonian is given in terms of St —S, Tt —T, and
Ut —U . Therefore only the following three combinations
of hopping integrals enter:

Here, S, T, U, (011(H~101),etc. are meant to be 3 x 3
matrices with elements (L~S~M), and this implies that
(L[(011(H)101)t)M)= (M[(011[H(101))L),and of course
not (M [(101[H[011)[L).

The matrices S, T, and U are related through

which is a small difference, and

'2 [Vy(rt + viv) + Vp(tr + pq))—:4'(rt),

2 [Vy(st + oiv) + V~(ts+ pu)]—:4'(st)
(40)

(L —IISIM-I) = (LITIM) = (L+ IIUIM+1). (37)
The bottom of the band now has the energy

Hence, of the 144 coefficients in the Hamiltonian there
are only 9 independent ones and these are given by the
MO-hopping integrals

Ei —— 4' (—rs) —4 Vy (rt ) —4 Vy (st),

and the two remaining energies are

(41)

E3/2 —
z Ei 6 (12(V~(rs) + V~(rt) + V~(st) + [V~(rs) —V~(st)] + [V~(rt) —V~(rs)] + [V~(st) —V~(rt)] ))

(42)

E3 is the top of the band so that lV~ ——E3 —E~ . The
center of gravity at, R is seen to equal the center of gravity
of the entire ti„band. Using the MO-hopping integrals
from Table IV we obtain the following R point energies:
—186, —63, and 249 meV. Their differences of 123 and
312 meV compare well with the 117 and 316 meV ob-
tained from the TB calculation in the radial-AO approx-
imation (Fig. 10).

IV. LDA LMTO-ASA CALCULATIONS

For the numerical LDA calculations we used the
linear-muffin-tin-orbitals method (LMTO) in the atomic-
spheres approximationi7 (ASA) due to its efficiency in

treating solids with many atoms per cell. For Cso this
eKciency is somewhat onset by the necessity to use inter-
stitial spheres in addition to atomic spheres. Interstitial
spheres must be small, unless they are at sites of high
symmetry. Moreover, the sum of the sphere volumes
should equal the cell volume and the sphere overlaps
should be small. Hence, the choice of spheres requires
care in order that the details of the bands and their de-
pendence on the lattice constant be accurate. We used a
total of 134 spheres: The shell of 60 carbon spheres (ra-

dius s=0.6b) was given an inner and an outer "skin" of
interstitial spheres, each consisting of 12 spheres on top of
pentagons, plus 2Q on top ofhexagons (s;=0.6b, s,=0 7b).
In addition, we used a large sphere (s=1.38b) at the cen-
ter of the molecule. Between the molecules, we placed
large spheres at all corners and edges of the fcc Wigner-
Seitz cell, specifically, at (0,0, 1)a/2 and at (1,1,2)a/6. Of
the former octahedral spheres there is one per molecule;
its radius was chosen as s = (a/2) + (3r + 1)b/2. Of the
latter edge spheres there are eight per molecule and we
chose their radius such that the sum of all sphere volumes
equals the cell volume.

The basis set consisted of the s- and p-LMTO's on the
carbon and octahedral sites, plus the s-LMTO's on all
remaining sites. This set, of 317 LMTO's per cell was con-
structed through downfolding of the set having s, p, and
d LMTO's on all sites (1206 LMTO's per molecule). The
downfolding was performed in such a way that the tail of
each LMTO in the 317 set satisfies the radial Schrodinger
equation for all the (1206—317) downfolded partial waves
at one energy, the center of gravity of the occupied part
of the projected state density. Charge-self-consistency
was obtained with 18 irreducible k points and the den-
sity of states for the self-consistent potential was calcu-
lated using the full-zone tetrahedron method with 396
irreducible k points.



CONDUCTION-BAND STRUCTURE OF ALKALI-METAL-DOPED C60 1789

A. Comparison with photoemission and inverse
photoemission experiments for Cgo
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FIG. 11. LDA-LMTO band structures of C60 and RbC6o
in the unidirectional fcc structure and for the same lattice
constant, a=14.1 A. On the right-hand side we show the total
density of states (both spina) for RbC6O and 60 times the Rb-
induced state density projected onto the octahedral sphere.
This calculation used equal bond lengths.

The LDA band structure for unidirectional fcc Csp
with equal bond lengths (ba = bz ——b) near the HOMO-
(highest occupied molecular orbital) LUMO gap is shown
in the left-most panel of Fig. 11. We used a=14.10 A
which is intermediate between the values measured at
11 K (14.04 A) and at 300 K (14.17 A)." The va-

lence bands start 19 eV below the top of the valence
band in agreement with photoemission datats and other
calculations. z The top of the bonding a' bands is at
—4 eV and all other bands in Fig. ll are x like.

Recent photoemission data for solid Ceo at room
temperature show well-defined peaks from individual MO
bands whose parities were deduced: The peak derived
from the HOMO is approximately 0.7 eV wide and this
MO is odd. At 1.3 eV below the HOMO there is a 1-
eV-wide peak of even character and 3.6 eV below, a 1.4-
eV-wide peak of mixed character. This agrees with our
h„,gz, hz, g„and following bands, except that our hz
band may lie 0.2 eV too low and our g„band 0.3 eV
too high. The calculated, dispersional bandwidths are
comparable to the experimental ones. Experiments show,
however, a substantial level width also for free molecules,
which presumably is due to vibrational satellites. zo For
solids one may therefore expect a substantial contribu-
tion to the bandwidth from phonon satellides, while po-
laron effects may reduce the dispersional width. Inverse
photoemission gives peaks 1.2 and 2.1 eV above the
center of the LUMO. This confirms our tt„-ttz separa-
tion but indicates that our hz or tz„band lies 0.6 eV too
high.

The experimental HOMO-LUMO gap is about 3.5 eV
(Ref. 21) which is considerably larger than the value of
0.8 eV for the direct gap at X calculated for equal bond
lengths. With proper bond lengths (4) the gap widens
to the value 1.6 eV (seen in Figs. 4, 5, 7, and 8). That
the gap is still too small is consistent with the well-

known tendency'of the LDA to underestimate gaps in
nonmetals. For the highly doped system bcc KsCso, the
experimental separation between the centers of the tq„
and the h„bands is reduced to 1.6 eV (Ref. 8) and, hence,
only slightly larger than our LDA result with equal bond
length. Since the tq„band is now completely occupied,
our result is consistent with the experience that the LDA
describes occupied states rather accurately, even for non-
metals and that the occupation of the t~„band reduces
the difference in bond lengths. The earlier LDA linear
combination of atomic orbitals (LCAO) calculation for
Cso of Saito and Oshiyamat gave a direct X gap of
1.5 eV whereas the recent LDA. pseudopotential plane-
wave calculation of Martins, Troullier, and Schabeiz and
Weaver ef al. and Benning et s/. has a gap of less than
1 eV. The most recent LDA LCAO calculation for KsCso
by Erwin and Pickett2s has a gap of 1.1 eV.

B. Alkali-metal doping

On the right-hand side of Fig. 11 we show the bands
near the Fermi level and the density of states for
RbCsp. For ease of comparison, the same lattice con-
stant, a=14.1 A, was chosen as for Ceo. The bands are
essentially unaffected by the presence of Rb at the oc-
tahedral position and the extra electron is seen to enter
the t y„band. There can thus be no extra band below
it. The LDA-LMTO conduction band for unidirectional
RbCsp was shown in Figs. 5 and 8 and was discussed
in detail in Sec. III 8. In particular, it was shown that
this LDA conduction band can be fitted well by the tt„
TB model without accounting explicitly for hybridization
with alkali-metal orbitals (Table II).

This is consistent with the facts that the energy E, of
the alkali-metal valence s level above that of the tt„level
is several eV, and that the interaction (s, n~H~M) of the
alkali-metal s orbital at site n with the tt„orbital, and
with all lower orbitals, is too weak to create a split-off
band. In Fig. 12 we show the valence-electron density in
the yz plane containing Rb at the octahedral sites. Rb is
seen to be almost completely ionized. In the right-most
panel of Fig. 11 we show the density of states projected
onto the octahedral sphere for RbC60, minus the same
function for Ceo. The hybridization of the tq„(and of
the tq~) band is seen to be particularly small, and the
h„,g&, and h& bands are merely pushed down slightly.

The reason why the t~„band hardly interacts with
alkali-metal atoms at the octahedral sites is that the sym-
metry of, e.g. , the ~Z) orbital in Fig. 1 is such that it
can only couple to an s orbital at an octahedral site on
the z axis, but not to one on the z or the y axis; more-
over, the amplitude of ~Z) is relatively small at the top
hexagon edge along the z axis. Quantitatively, and in
the single-MO and nearest-neighbor approximations, the
relative octahedral A s character of the LUMO is
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result, the LUMO contains about 20 times more tetra-
hedral than octahedral A s character in A3C6o., never-
theless, the total hybridization is small. These estimates
are seen to be unchanged for the bidirectional structure,
which presumably is the relevant one for alkali-metal-
doped Csp.

For the quadridirectional structure (Fig. 3), the
nearest-neighbor TB estimate of the relative s character
in the LUMO of octahedral alkali-metal atoms is

Sn jn = ( Vo i/E. )'2 [(p+ &)
2 + q' + (rv —&)']

= 0.278(V~„/E,) . (45)

FIG. 12. Valence charge-density in the yz plane (see Fig.
2) for RbCso in the fcc unidirectional structure. The plane
passes through the Rb octahedral sites and, for each of two
neighboring molecules, it contains a top hexagon edge and
passes between two contact atoms plus the midpoint of an-
other top hexagon edge. The Rb 5s electron is seen to be
transferred to the C6O molecule.

An/n = ) ((s, n(H(Z)(z/E2

Since the distance from the octahedral site to this pen-
tagon edge is slightly larger than to the top hexagon edge
in the unidirectional and bidirectional structures, V, t is
now somewhat smaller. For the quadridirectional st;ruc-
ture, there is therefore about 15 times more octahedral
A s character in the LUMO than for the unidirectional
and bidirectional structures. The by-mixing is thus a few
percent. At the tetrahedral site there is considerably less
room for dopants in the quadridirectional structure than
in the two other structures and it is unlikely that large
alkali-metal dopants enter this site. We thus consider it
possible that the quadridirectional structure of pure C60
is retained for low doping levels, but not for n )1.

=(V„/E,) ) ) c p ——(V„,/E, ) 2(2u)
a P

= (V, /E, ) 2/[5(9r + 10)]- 0.016(V„/E, ) .

(43)

Here, a runs over the six octahedral sites and, for each
of these, P runs over the two nearest C neighbors, i.e. ,
those forming the neighboring top-hexagon edge. c~p are
the LUMO c coefficients given in Fig. 1 and V&&,q is the
integral for hopping from the alkali-metal s orbital to
the nearest-neighbor radial carbon AO. From the LDA
calculation we find that the relative octahedral A s char-
acter of the LUMO is less than 10 s and, hence, that
V„&E, /4.

Iil A3Csp there are alkali-metal atoms also at the
tetrahedral sites (1,1,1)a/4, i.e. , on top of the hexagons
marked by triangles in Fig. 2. Also the electrons from
these donors enter an essentially rigid f i„band, because
the hybridization between the LUMO and tetrahedral
s orbitals is small. The above-mentioned tight-binding
expression, with a running over the eight tetrahedral
sites and p running over the six C atoms of the near-
est hexagon, new yields

an jn = (V„,/E, )'8(—q+ r —s —
& + u+ w)'

= (Vq„/E,) 8r /[5(9r + 10)] —0.171(V«,/E, )

(44)

for the relative tetrahedral A s character of the LUMO in
AsCsu. Since the nearest-neighbor A-C distance is 3.82 A
for the octahedral site and 3.33 A for the tetrahedral site
(for a=14.4 /i), V«/V, i 1.32 if we take the sp hopping
integral to scale like the inverse distance squared. As a

C. Dependence on lattice constant

Ad & b/4 & d/8. (46)

We therefore repeated the LDA calculation for fcc uni-
directional RbCso, but with a=14.40 and 14.60 A (and
equal bond lengths). The resulting density of states for
the conduction band is shown in Fig. 13 for 14.10 and
14.40 A. The band shape is virtually unchanged, only
the width is decreased by the factor 0.763. For a=14.6 A

The results of the previous section show that the
dopant merely transfers its electrons to the t ~„band,
which is thus affected, only because the dopant modifies
the lattice constant and the orientational order. Since
there is presently no experimental evidence to the con-
trary, we shall assume that the size of the molecule (its
diameter D) is independent of the doping.

The efI'ects of orientation at fixed lattice constant was
studied in detail in Sec. III on the basis of TB calcula-
tions. The dependence on the lattice constant is much
simpler to describe qualitatively, but not quantitatively.

In LDA theory, what matters is the probability for a
t~„electron to tunnel from one molecule to the other
through the self-consistently determined intermolecular
potential barrier. Quantitative calculation of this re-
quires care and computing power, as explained before.
On the other hand, the results obtained from one orien-
tational order can be used for another because within the
relevant range of lattice constants (14.0 & a & 14.5 A),
the changes of the intermolecular atom-atom distances
Ad are much smaller than the intramolecular bond length
6, and the latter is again considerably smaller than the
intermolecular distances d; specifically, from Eq. (6),
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Hence, for the unidirectional and bidirectional structures
we may use

d~~(a) = d, (a) = (a/~2) —6.95 A. , (48)

as obtained from Eqs. (7) and (5). For the quadridirec-
tional structure we use

&0-

0
Ch 0.8 1.0 1.2

Energy (W~4 ~ / W} (eV}

FIG. 13. LDA-LMTO density of states for unidirectional
RbCsp for two different lattice constants, a=14.1 A (solid)
and a=14.4 A (dashed). The density of states and energy
axes have been scaled with the ratio between the bandwidth
(measured at the X point) and the one for 14.1 A. The energy
axis has been shifted so that the Fermi level for two electrons
coincides with the one for 14.1 A. The Brillouin-zoue inte-
gration was performed with only 18 irreducible k points and
equal bond lengths were used. These are the reasons for the
deviations from Fig. 8 for a=14.1 A.

14,(a) [(a/~2) —6.85 k] + (0.48 A.), (49)

L = 0.58 A. . (50)

The interpretation of this L value, which is a bit larger
than one Bohr radius, is that the orbital energy is a bit
more than 13.6 eV below the top of the potential barrier
between the molecules. This is consistent with the shape
of the LDA potential.

as obtained from Eq.(10). Adjustment of the L value to
fit the LDA results at 14.1 and 14.4 A yields L=0.63 A,
and adjustment to the results at 14.4 and 14.6 A yields
L=0.54 A. The I DA decay is thus more gradual than
dexp( d/L—); but it is steeper than a power law dP be-
cause fittings to the LDA results yield P = —4.1 and
—5.4, in order of increasing lattice constant. We shall
take the average value

the shape is changed slightly and the width is reduced
by a further factor of 0.80. In order to interpolate these
results to other lattice constants and to extrapolate them
to other orientational orders we return to TB theory.

The change of lattice constant is accounted for in TB
theory by changing the hopping integrals Vi2 given by
Eq. (12) via change of the interatomic distances diz and

directions d~~. The geometrical considerations necessary
to do this were presented in Sec. II. For the relevant range
of lattice constants the directional changes in Eq. (12)
are negligible, so that the lattice constant enters solely
via the distances, that is, via V[d(a)] as given by (13). So
far, the parametrization (13) with the parameters (14)
was used to describe the hopping at variable distance
for one, fixed lattice constant (a=14.1 A). The lattice-
constant dependence calculated in the LDA for the uni-
directional structure is, however, also roughly compati-
ble with the form (13), which approximately conserves
all ratios between hopping integrals for the lattice con-
stant varying in the relevant range [see (46)) and there-
fore yields shape-invariant bands. Moreover, the value
L=0.505 A. (14) used for the decay constant roughly re-
produces the lattice-constant dependence given by the
LDA, as we shall now see.

We thus assume that all the conduction-band struc-
tures considered for a=14.1 k scale uniformly in energy
when a changes. The bandwidths, the inverse state den-
sities, and all MO-hopping integrals (22) tabulated for
the standard lattice constant in Tables II, III, and IV
thus scale like

V~(a) = [d~(a)/d~] V~ exp[—(d~(a) —d~ }/I], (47)

where d~(a) is the nearest-neighbor distance for contact
P4, and an omitted argument a indicates that a=14.10 A. .

V. COULOMB AND EXCHANGE
INTERACTIONS

The simplest estimate of the Coulomb interaction be-
tween two electrons in the LUMQ is U = e /R 4 eV.
This estimate will be strongly renormalized by "breath-
ing" of the LUMO and by polarization of the surrounding
molecules. However, it is unclear whether or not this can
reduce U to below the subbandwidth of about 0.5 eV. If
not, many-electron effects may modify the intermolecular
hopping. Our analytical single-MO model then provides
a convenient definition of the kinetic energy in a model
Hamiltonian.

Qne may also ask, how close the doped compounds are
to a spin-wave instability' We have evaluated the effec-
tive Stoner exchange parameter I for an appropriately
renormalized carbon atom in the local spin-density ap-
proximation. The result is I = 2.3 eV/(spin C atom), and
this means that a ferromagnetic instability does not oc-
cur before the density of states at the Fermi level N(Ep. )
exceeds 2x60/2. 3 = 52 st./(moleV). This corresponds
roughly to the intermolecular distance d exceeding 3.7 A.

VI. SUPERCONDUCTIVITY

Fleming et al. 4 measured T, and the lattice constant
for a number of ri=3 compounds: RbzCsCsp and several
Ks ~Rb~Csp compounds. The three data points (a/A,
T,/K) = (14.253, 19.28), (14.299, 21.80), and (14.436,
29.40) for Ks, KqRb, and Rbs show particularly lit-
tle scatter. This is consistent with our expectation that
these three compounds are isostructural to a higher de-
gree of accuracy than the other compounds studied, be-
cause K+ is smaller than Rb+ and the two tetrahedral
holes are smaller than the octahedral hole.
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It is now tempting to relate these results by the McMil-
lan formula:

kT, = (hu/1. 2) exp[—1.04(l+ A)/(A —y.
' —0.62Ap')j.

(»)
We assume that the relevant phonon modes are in-
tramolecular so that the averaged phonon frequency ~
is independent of the intermolecular separation d. Then,
by differentiation with respect to d, assuming for sim-
plicity that also the Coulomb-interaction parameter p'
is independent of the separation, we obtain

d ln T,/dA = 1.04(1+ 0.38@')/(A —p' —0.62Ay, ') .

(52)

From the three data points we can deduce the two slopes:
d ln T, /din d = 11.9 and 9.9, which relate to the two (ge-
ometrical) averages, d= 3.146 and 3.211 A, of the dis-
tances found from (48). Each of these slopes we in-
sert in the numerator on the left-hand side of (52) to-
gether with the following values for the denominator:
dA/d ln d = Ad In A/d ln d = A( —1 + d/0. 58 A.) = 4.42A

and 4.54A. The latter values are obtained by assuming
that A = N(EF)V, &h with a d-independent electron-
phonon interaction V, &h and by taking the d dependence
of the density of states at the Fermi level from the LDA
calculations parametrized by Eq.(47).

The differentiated McMillan equation (52) is thus re-
duced to a relation between A and p' which we solve as a
function of p, '. The resulting values of A for the two dis-
tances, and the average phonon temperatures obtained
by substitution into (51) are given in Table V. We see
that for all values of p, ',

~h/k 600 K.

TABLE V. Electron-phonon coupling constant A and

average phonon frequency ~ as functions of the Coulomb-

interaction parameter p. ', obtained as described in the text,

using experimental T, data and the dependence of N(Ey ) on
lattice constant given by the LDA (L=0.58 A.). Columns (a):
T, = 20.50 K, d = 3.146 A. Columns (b): T, = 25.32 K,
d = 3.211 A.

0.15
0.25
0.35
0.45

(a) (b)
0.79
1.11
1.47
1.92

0.91
1.25
1.65
2.14

d ln Ve-ph

d ln N(E~)

0.54
0.37
0.26
0.21

~h/k (K)

(a) (b)

650 572
603 552
604 565
637 604

—0.61
—0.42
—0.32
—0.25

This value for the average phonon frequency seems con-
sistent with the assumption that the relevant modes be
intramolecular. In fact, it is near the low-lying II&(2, z)
radial mode.

However, for the results to be consistent with our as-

sumptions about a d-independent average phonon fre-

quency and electron-phonon interaction, we should have
ld»V. -ph/d»N(EF)l «»nd Idln~/dlnT
This is not really satisfied for any value of p', although
din V, &h/din N(EF) seems to reach a minimum of 0.2
around p' 0.5. We must therefore conclude that at,
least one of the interactions, the electron-electron or the
electron-phonon, must be in part intermolecular. For ei-
ther interaction there are good reasons why this should
be true.

We would finally like to point out that the consid-
erations above do not depend on the absolute value of
N(EF), but only on its lattice-constant dependence. Our
calculated absolute values obtained from Fig. 8 and
Eq. (47) are N(EF) = 17.2, 18.0, and 20.5 st. /(moleV)
for KsCsp, KzRbCsp, and RbsCsp in the unidirectional
structure, and about 10' larger in the bidirectional
structure. This value for unidirectional KsCso is sorne-
what larger than the value 13.2 st./(moleV) obtained in
a recent LCAO calculation. zs

VII. SUMMARY

In this paper we have considered pure and alkali-metal-
doped fcc Ceo for three different cases of orientational
order, the simple unidirectional structure, an equal-
composition bidirectional ordered structure which, in its
random form, is the structure of alkali-metal-doped Csp
at room temperature, and the low-temperature quadridi-
rectional structure of pure Ceo. After a detailed discus-
sion of the geometries in the regions of contact between
the Cso molecules, we have calculated and discussed the
conduction-band structures, first in the TB approxima-
tion and then in the LDA.

The coeScients of the radially oriented carbon orbitals
for the tq„molecular orbitals could be found analytically
and, on the basis of these, we derived analytical expres-
sions for the conduction-band Hamiltonians for the three
structures; their dimensions are, respectively, 3 x 3, 6 x 6,
and 12 x 12. Although these tq„Hamiltonians neglect the
hybridization with subbands derived from other molec-
ular orbitals, they gave quite accurate bands and they
could be used to fit the conduction-band structures cal-
culated with less approximative methods, the TB method
in the 60 radial-orbitals approximation, and the ab initio
LDA-LMTO method. The hopping parameters of this t q„
model were listed in Tables II, III, and IV. The details
of the band dispersions were then discussed and related
to the contact geometries. The densities of states were

shown in Figs. 6—8 and the bands in Figs. 4, 5, 9, and
10.

We then studied the eA'ects of alkali-metal doping and
the associated change of the lattice constant by perform-
ing ab initio LDA calculations for the simplest structure.
Specifically, we treated unidirectional fcc C60 and RbC60
for three different lattice constants (a=14.1, 14.4, and
14.6 A) using the LMTO-ASA method with carefully cho-
sen interstitial spheres. Comparison with photoemission
and inverse photoemission data for C60 gave reasonable
agreement for the subband positions and widths. For

ACsp, we found that the alkali-metal atom is fully ion-

ized and that the doped electrons occupy the tq„band
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in a rigid-band-like fashion. Crude tight-binding esti-
mates using our analytical t~„orbital explained why this
is so. As a function of the lattice constant and for a
given structure, the conduction band was found to scale
uniformly in energy with the energy scale behaving like
W oc d(a) exp[—d(a)/0. 58 A], where d is the distance be-
tween nearest atoms on different molecules and is given
by (48) or (49). For a=14.1 A. the conduction-band
widths were found to be 0.52 eV (uni), 0.64 (bi), and
0.44 eV (quadri). The density of states at the Fermi
level for KsCsp, KzRbCsp, and RbsCsp was 17.2, 18.0,
and 20.5 st./(mol eV) in the unidirectional structure and
about 10% larger in the bidirectional structure.

Evaluation of the LDA Stoner exchange parameter
yielded I 2.3 eV/(spin atom), meaning, for instance,
that in order to reach a spin-density-wave instability, the
intermolecular separation should be increased to about

3.7 A.. The Coulomb self-energy for a molecular orbital
is presumably several times the LDA bandwidths, and
future studies must take this into account. Finally, we
used the LDA value 0.58 k for the decay of the inter-
molecular hopping together with experimental data for
T, versus lattice constant for Ks zRbzCep compounds in
the McMillan formula. It was found that our assumptions
that the Coulomb interaction p', the electron-phonon in-
teraction V, &h, and the average phonon frequency u be
independent of the lat;tice constant cannot all be true.
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