
PHYSICAL REVIEW B VOLUME 46, NUMBER 3 15 JULY 1992-I

Structural and electronic properties of Ceo
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We present pseudopotential local-density calculations of the electronic and structural properties
of solid Ceo (fullerite). The calculated molecular bond lengths, lattice constant, bulk modulus,
enthalpy of formation, and the equation of state for compression are in good agreement with experi-
ment. The shape of the theoretical density of states is in excellent agreement with the experimental
photoemission and inverse photoemission spectra. We also present the calculated band structure for
the states near the fundamental gap. We have made a thorough analysis of the electronic states of
C6p and found that they can be conveniently classified according to their angular character, and use
it to identify the origin of the peaks in the electronic density of states

I. INTRODUCTION

In the mid-1980s a cluster containing 60 carbon atoms
was observed to be exceptionally stable in a molecu-
lar beam. It was proposed that the stability of this
molecule, Cso fullerite, was due to a highly symmetric
truncated icosahedral shape. With the recent break-
through of Kratschmer et al. z the production of Cso in
macroscopic amounts has been achieved, and a molecu-
lar solid formed by Ceo molecules has been synthesized.
Solid Cso is a new crystalline material that is expected to
have different properties than the other two more com-
mon forms of crystalline carbon, diamond and graphite.

With the availability of macroscopic amounts of Ceo,
the basic properties of this molecular solid have been de-
termined. The early evidence for the cage geometrys
was confirmed and the icosahedral symmetry established
from Raman and NMR (Refs. 5—7) spectra. The molec-
ular bond lengths have been obtained from NMR (Ref. 8)
and x-ray-scattering spectra. The compressability has
been measured. ii The phonon spectra were determined
with Raman, 4 iz infrared, is and neutron-scattering'
experiments. The electron spectra were observed with
photoemissionis and inverse photoemission. is The re-

port of the formation of conducting films of Cso by
alkali-metal dopingr r was quickly followed by the exciting
discovery of superconductivityis in interstitially doped
KsCsp with a critical temperature of T, = 18 K. Re-
cently, superconductivity was observed in RbsCso, Cs-
doped C6o, and Cs~RbC60, withcriticaltemperatures
of T, = 28, 30, and 33 K, respectively.

We have performed pseudopotential local-density cal-
culations of the structural and electronic properties of
solid Cso. The calculated molecular bond lengths (1.382
and 1.444 A), lattice constant of fullerite (14.0 A), and
cohesive energy (1.6 eV per molecule) are in good agree-
ment with experiment. The calculated pressure versus
volume equation of state also agrees with the experimen-
tal data. The shape of the theoretical density of states is
in excellent agreement with the measured photoemission

and inverse photoemission spectra. We have calculated
the band structure of fullerite, the band gap is direct at
X and is 1.18 eV wide. The width of the lowest set of
conduction bands is 0.47 eV. Because of the problems
with the local-density approximation the true band gap
should be larger. From our analysis of the wave functions
we can classify them according to their o and vr charac-
ter, and their dominant angular momentum component
with respect to the center of the C6o molecules. We are
able to classify the preeminent features of the density of
states, and we show how approximate molecular orbitals
with the correct symmetry can be written for the z sys-
tem of the molecule. Similar calculations were done for
K Ceo crystals and will be discussed elsewhere.

In Sec. II we present an outline of the computational
procedure. In Sec. III we discuss the calculated struc-
tural properties. The electronic structure is presented
in Sec. IV, and in Sec. V we discuss the electron wave

functions. Atomic units are used throughout this paper
unless otherwise noted.

II. COMPUTATIONAL PROCEDURE

The electronic structure calculations for Cso were

performed with the plane-wave pseudopotential local-
densityzz method. zs We use the Ceperley and Alderzs

form of exchange correlation, as parametrized by Perdew

and Zunger. 2s The pseudopotentials were generated us-

ing a method proposed by us, z" which has the advantage
of producing "soft" pseudopotentials for first-row ele-

ments, such as carbon. The carbon pseudopotential used

in these calculations was generated in the ground-state
valence configuration 2s 2p . The radial cutoffs, i.e. ,

the radius at which inside this point the pseudo-wave-

functions are allowed to deviate from the all-electron

wave functions, were r„=r,„= 1.50ao. We use the p
pseudopotential as the local potential and neglect the
nonlocality for the d and higher scattering channels. The
carbon potential was then made separable using the pro-

cedure of Kleinman and Bylander. We checked that
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no spurious ghost states existed by using the theorem
of Gonze, Kackell, and Scheffier2s and by inspection of
the logarithmic derivatives of the separated carbon pseu-
dopotential.

The plane-wave basis used for these calculations has
the advantage of being easy to use and has the nice math-
ematical properties of being a complete and orthogonal
basis set. The convergence of the calculated properties
when using plane waves can be checked by increasing
the number of plane waves. In practice, we include all
plane waves with a kinetic energy less than a chosen
cutoff energy, E,„t——49 Ry. With this particular cut-
off energy, the total energy of all the carbon crystals
(Cso-fullerite, graphite, and diamond) are converged to
within 0.05 eV/atom. sr This small energy correction was
included in all the reported values of atomization ener-
gies. With the E,„& ——49 Ry cutoff energy, the number
of plane waves used for the different calculations ranged
from 17000 to 110000, depending on the unit-cell vol-
ume. In order to handle these extremely large matrices,
highly efficient and robust iterative methods were used
to diagonalize the Hamiltonian matrix. so s~ This type of
iterative procedure does not require the actual calcula-
tion and storage of the Hamiltonian matrix H, but only
the resulting product H@.s2 This task is accomplished
by utilizing fast Fourier transforms and the dual-space
methodM to calculate the action of the kinetic-energy
operator in momentum space and the local potential op-
erator in real space.

Since the size of the Brillouin zone for solid Cso is small
and the occupied electron states of the system are pre-
dominantly of molecular character, the band dispersion
of the filled states is small. As an example, the calcu-
lated width of the band derived from the highest occupied
molecular orbital is 0.6 eV. Use of only the I' point in
sampling this small Brillouin zone to calculate the screen-
ing potential was sufficiently accurate to obtain pictures
of the wave functions and charge densities. However, to
determine the structural properties, the band structure,
and density of states for solid Cso, we found that two
special k points were required to calculate the screening
potential.

III. STRUCTURAL PROPERTIES

The structure of a truncated icosahedral Cso molecule
consists of 20 hexagons and 12 pentagons (see Fig. 1).
The molecule has two diferent types of bonds: a bond
shared by two hexagons edges, Aq —As in Fig. 1, and a
bond shared by a pentagon and hexagon edge, Aq —As or
equivalently Aq —A4 in Fig. 1. These two bonds are often
called "double" and "single" carbon bonds, but they are
both mainly aromatic in character. Figure 1 also shows
the weak intermolecular bonding between C60 molecular
units (dashed lines).

For the isolated Cso molecule, the two bond lengths are
the only degrees of freedom of its equilibrium structure.
In solid Cso, we have the added freedoms of determining
the Bravais lattice, the orientation and number of molec-
ular units within the primitive cell, and the distortions

FIG. 1. Atomic positions of solid fcc-Tj, C60 projected
on the (001) plane. The thick lines (e.g. , from Aq to A2)
show the "short" hexagon-hexagon edge bonds, and the thin
lines (e.g. , from Aq to As or from Aq to A4) show the "iong"
hexagon-pentagon edge bonds. The dashed lines represent
the weak bonds between C6o molecules. The molecular units
are orientated in the T~ symmetry, maintaining the highest
possible symmetry for the calculation.

of the molecule due to the crystal field.
In crystalline fullerite the Ceo molecules are located at

the sites of a face-centered-cubic (fcc) lattice. s ss This is
consistent with a picture of weakly interacting, almost
spherical molecules, that would like to form a closed-
packed structure. Although the basic pattern is simple,
the orientation of the Cso molecules raises some inter-
esting questions. Below 249 K the Cso molecules are
rotationally ordered and form a superstructure of the fcc
lattice which has a simple-cubic lattice ss and the Pa3
space groups4 with four Cso molecules per primitive cell.
In this low-temperature structure, the four Cso molecules
are located at the unit-cell positions (0,0,0), (0,0.5,0.5),
(0.5,0.5,0), and (0.5,0,0.5) and have different rotational
orientations. Above 249 K fullerite has the a fcc crystal
structure with orientational disorder. ss We notice that
the dynamics of this orientation order-disorder transition
should be very interesting since the NMR datass finds
such a transition well below 233 K, while above this tem-
perature the spectra is consistent with a free rotation of
the C60 molecules. We expect that further experimental
work will identify whether the disordering is due to free
rotation or to jumps of the molecules between equivalent
orientations. First-principles molecular-dynamics calcu-
lations predicted a free rotation of the molecules. ss

The existence of an orientational ordering transition
show that the particular orientation of the molecules
should not be important in determining the fundamen-
tal properties of fullerite. Since accurate calculations for
the Pa3 structure with 240 atoms per unit cell would
be too expensive, we performed our calculations for the
simplest structure that has the molecules in a fcc lat-
tice. We therefore placed the molecules in a fcc lattice
and oriented them to obtain a tetrahedral space group
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T&(Frn3) (see Fig. 1). This choice of the tetrahedral
space group T&~ maintains the highest possible symmetry
between the icosahedral symmetry of the Cso molecular
units and the fcc lattice. With use of this type of ar-
rangement, the difference between the experimental and
theoretical structures is only in the weak bonds between
molecules, and therefore our geometrical assumption is
reasonable.

To obtain the optimized atomic positions for the fcc-Th
Cso solid, we calculated the quantum-mechanical forces
acting upon the atoms, and then adjusted the atomic
positions using these forces, until the resulting forces
were negligible. Several different initial starting configu-
rations were used, in which the atoms were placed in the
molecular icosahedral symmetry with different choices
for the two C-C bond lengths. This procedure yielded
two distinctly different types of C-C bonds. The calcu-
lated length of the shorter bond (hexagon-hexagon) was
1.382 A and the longer bond (hexagon-pentagon) was
1.444 A.. While the influence of the tetrahedral crystal
field does result in further distortions of these bonds, the
effect is negligible and well below the accuracy of the
calculation. These values are in good agreement with
the x-ray data values of 1.391 A. for the shorter bond
and 1.455 A for the longer bond, s7 and also the NMR
C's-C's valuess of 1.40 + 0.015 and 1.45+0.015 A. for
the short and long bonds, respectively. Other calcula-
tions of the bond len hs in the solid found similar val-
ues of 1.40 and 1.45 for the short and long bonds us-

ing a pseudopotential plane-wave local-density approx-
imation (LDA) methodss and 1.39 and 1.45 A using a
Gaussian-orbital LDA method. ss The most accurate cal-
culations with correlated wave functions were done with
the second-order Moiler-Plesset (MP2) method and give
bond lengths ofss 1.406 and 1.446 A.. These are quite
different from the large-scale Hartree-Fock4s values of
1.369 and 1.453 A. , showing that inclusion of correla-
tion (within the LDA or with correlated wave functions)
is required to obtain the length difference between the
short and long bonds that is in agreement with exper-
iment. Among the molecular calculations of Cso bond
lengths we notice the following: Huckel4~ gives 1.405 and
1.426, Coulson-Golebiewski self-consistent Huckel4z

gives 1.403 and 1.434 A, MNDO (Ref. 43) gives 1.400
and 1.474 A, self-consistent-field (SCF) STO-3G (Ref.
44) gives 1.376 and 1.465 A. , PRDDO (Ref. 45) gives 1.373
and 1.397 A. , semiempirical SCF molecular orbital (MO)
(Ref. 46) gives 1.396 and 1.443 A, PPP CI molecular
orbital4~ gives 1.398 and 1.439 A. , INDO (Ref. 48) gives
1.397 and 1.449 A, and LDA with Gaussians4s gives 1.39
and 1.43 A. for the short and long C-C bonds in molecular

C6o
Compared to the length of the "single" C-C bond in

diamond (1.544 A.) and organic molecules ( 1.541 A.) the
two bond lengths in Cse are both considerably shorter.
The typical lengths of "double" C-C bond lengths in or-
ganic molecules are 1.337 A., making them much shorter
then the C6o bonds. The in-plane C-C bonds found in

graphite are 1.421 A. , and the bond lengths found for
most aromatic compounds are 1.395 A. , that is, they
have the same order of magnitude as the bond lengths in

TABLE I. Atomization energies E t, for C60 are listed for
several lattice constants, a. The first two values were cal-
culated using only the I' point to sample the Brillouin zone,
and the remaining values use two special k points to sample
the Brillouin zone. The last eight values were used for the
equation-of-state fitting in Table II.

a (A)

22.033
17.543

E~t (eV)

-500.902 (1')
-501.761 (I')

14.875
14.573
14.235
13.879
13.614
12.907
12.381
12.167
12.022

-502.039
-502.106
-502.445
-502.267
-502.083
-498.239
-487.433
-480.185
-473.840

Cso. This indicates that the bonding found in the Cso
system has an aromatic character with a delocalized reso-
nant z-bond system. This is confirmed by our calculated
molecular orbitals as discussed in Sec. V.

In Table I, we show the atomization energies &o,t of fcc-
T&~ Cso obtained for several lattice constants. These are
obtained by subtracting from the total energy of the crys-
tal, 60 times the calculated spin-polarized ground-state
energy of the carbon atom. The values for the lattice
constants range from 12.02 to 22.033 A. ( 35% volume
compression to 300'%%uo volume expansion). For the two
largest lattice constants (22.0 and 17.5 A) we used only
the I' point to sample the Brillouin zone, the remaining
values were obtained using two special k points. The data
points (excluding the two largest lattice constants) were
fitted to the Murnaghan, ss the Birch-Murnaghan, s~ and
the universal (by Vinet et aL)sz equation of state. The
best fit was obtained with the universal equation of state.
In Table II we list the values obtained for the the equilib-
rium lattice constant ao, the bulk modulus Bs, the pres-
sure derivative of the bulk moduli Bo, and the enthalpy
of formation Hy, for the three fits. Only in the case of the
ao=13.879 A lattice constant were the internal degrees of
freedom (the Cso bond lengths) optimized. For the ex-
panded and contracted lattice constants, the geometric
structure of the molecule was assumed to be the same as
the one optimized at as=13.879 A.. We estimate from the
calculated residual forces and force constants that the er-
rors in the total energies are smaller than 0.7 mRy for the
extreme case of the 35Fo lattice volume compression.
For all the other lattice constants the error estimates are
even smaller in magnitude. We are therefore justified in

neglecting further geometry optimization.
Compared to the value of the experimental lattice

constant, ~~ the calculated values are in very good agree-
ment, being approximately 0.7—1.8% smaller (see Ta-
ble II). This slight underestimation of the lattice con-

stant is typical of well-converged LDA plane-wave cal-

culations. For the experimental lattice constant, the in-
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TABLE II. The calculated equilibrium lattice constant ap, the bulk modulus Bp, the pressure
derivative of the bulk modulus Bp, and the enthalpy of formation Hf of C6p are compared with
experiment (Ref. 11). The calculated values sre from fits to the data listed in Table I using the
equations of state of Murnsghsn (Ref. 50), Birch-Murnsghsn (Ref. 51), snd the universal equation
of state of Vinet et al. (Ref. 52). The enthslpy of formation is per carbon atom, snd is referenced to
the calculated total energy for carbon in the graphite structure. The positive values of Hf indicate
that C6p is less stable than graphite.

ap (A.)
Bp (GPs)
B1

Hr (eV)

Murnaghan

14.095
18.56
7.21
0.388

Birch-Murnaghan

13.946
17.05
15.30
0.391

Universal'

14.044
16.46
10.48
0.389

Expt. d

14.198
18.1 6 1.8
5.7 + 0.6

Reference 50.
bReference 51.
'Reference 52.
Reference 11.

termolecular spacing between Csp centers is 10.040 k
Given a molecular "diameter" of 7.047 A obtained from
the optimized bond lengths, this results in an intermolec-
ular nearest carbon-carbon distance of 3.182 A.. This in-
termolecular carbon-carbon distance is slightly smaller
than the 3.45-A distance between graphite planes. This
suggests that the bonding for the intermolecular nearest
carbon-carbon atoms in Csp is slightly stronger than the
interplaner graphite bonds. The calculated bulk modulus
is also in good agreement with experiment (see Table II).
The range of the calculated pressure derivatives of the
bulk modulus is very large because this quantity is very
sensitive to numerical noise and the choice of the fitted
range of the lattice constant.

In Fig. 2, we plot the volumetric compression versus
pressure for the fitted universal equation of state and the
experimental data of Duclos et aLii The theoretical data
have been normalized to the theoretical equilibrium vol-

0.9

0.8

0.7

0.6

ume. The agreement between the two curves is quite
good, and demonstrates the rather large compressability
of bulk fullerite, with a ~30% compression at 20 GPa.
This large compressability is due to the relative softness
of the intermolecular C-C bonds and not due to the com-
pression of the basic Csp molecular units. (We recall that
during compression with constant bond lengths the forces
on the atoms remain small. )

The last row of Table II lists the calculated enthalpies
of formation per carbon atom, Hy, of Csp. The en-
thalpy of formation is referenced to the calculated to-
tal energy of carbon in the graphite structure using the
same pseudopotential and plane-wave cutoff energy. The
positive value of 0.4 eV for the enthalpy of formation
shows that if the C-C bonds are broken, fullerite should
transform into graphitic carbon. This is consistent with
the fact that Csp is only formed in special circumstances.
If we assume that for the lattice constant a=22.033 A
the intermolecular interaction is negligible, then we get a
value for the cohesive energy of 1.6 eV per Csp molecule.
(This is the energy required to remove one molecule from
the fullerite crystal. ) This compares quite well with the
experimentaPs value of 1.739 6 0.056 eV, and with the
theoretical value of 1.6 eV from a calculation with a
Gaussian basis set. s4 For a lattice constant of 22.033 A,
the Csp molecules are separated by 8.6 A.. Similar calcula-
tions for graphite have shown that when graphite planes
are separated by 8.6 A their interaction is very small in
the local-density approximation. ss Our value for the co-
hesive energy, while being strictly a lower bound, should
therefore be quite close to the limit of infinite molecular
separation.

10 15

Pressure (GPa)
20 25

IV. DENSITY OF STATES AND BAND
STRUCTURE

FIG. 2. Volume vs pressure equation of state for solid C6p.
The solid line is from a St to the calculated total energies as
s function of lattice constant using the universal (Ref. 52)
equation of state. The experimental data (large dots) are the
room-temperature measurements of Duclos et al. (Ref. 11).

We have calculated the band structure of Csp in de-
tail for a lattice constant of 13.879 A and for the fccT&~-
geometry. The states at the center of the Brillouin zone
(I') are shown in Table III. In that table we also give the
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wave-function symmetry in the tetrahedral point group
Th. We have also classified the wave functions accord-
ing to their o. or ~ character. As discussed in the next
section, the cr and vr orbitals have a dominant angular
momentum contribution / when they are decomposed in
spherical harmonics with respect to the center of the C6o
molecule. We use that dominant angular momentum as
a subscript in our labeling of the orbital type, as in o.i
and 7rL ~

In Fig. 3(a) we compare the theoretical results for the
density of states (DOS) of the occupied orbitals to the
photoemission data of Weaver et at. is for two different
photon energies. The theoretical curve marked "DOS" in
Fig. 3(a), was obtained by using the tetrahedron method
with 64 k points in the Brillouin zone, which reduces
to 8 points in the irreproducible wedge of the Brillouin
zone. The curve was then convoluted with a Gaussian
function of variable width, 0.23 eV + 0.02~E~. Here E is
the energy measured in electron volts from the highest
occupied state (which is at the X point of the Brillouin
zone). The present DOS curve obtained with the tetra-
hedron method is nearly identical to that we obtained
previously by using just the eigenvalues at the two special
k points broadened by a similar Gaussian function. is M

Since the Brillouin zone is small, the k-space dispersion is
also small, and the DOS is already well described by the

use of just two k points. The series of curves shown at the
bottom of Fig. 3(a) show the eigenvalues at I' grouped
according to their ~L and xL character and broadened
with the same Gaussian procedure used for the DOS. It
is clearly seen that orbitals of the same type are close
in energy, that the bottom of the valence band is made
of o states, the top of 7r states, and that orbitals with
increasing values of t have increasing energies.

In the DOS spectrum of Fig. 3(a) the peak at the top
of the valence band is formed by 7rq states. This band
is derived from the highest occupied molecular orbital,
which has h„symmetry. This level is split by the tetra-
hedral crystal field into a t„and a e„state at I' and
forms five dispersive bands. The zs DOS feature is fol-
lowed by a 7r4 peak at lower energy, which is derived from
a gs and a hs molecular state. The vr4 states appear to
be split in the I' point curves, but in fact, they form a
single broad feature in the DOS due to band dispersion
effects. With increasing binding energy, we find the first
feature with a mixture of o and m character [labeled C in
Fig. 3(a)j. This feature contains contributions from the
mrs, o&, and 7rs eigenstates, with the prime indicating the
second peak of a split t state. This feature is somewhat
narrower and more bound in experiment than in theory.
We attribute this discrepancy to an underestimation of

0.5—1.0 eV in the binding energy for states containing

TABLE III. The energies of the electronic states at the point I' in C6p are shown together with

the wave-function symmetry in the tetrahedral space group, and the wave-function type (o, vr, etc. ,

and the dominant angular momentum l) as described in the text. All energies are in eV, and are

referenced to the highest occupied state at I'.

Energy
(eV) Label

Energy
(eV) Label

Energy
(eV) Label

-18.766
-18.146
-17.262
-17.221
-16.098
-15.381
-15.326
-14.137
-13.983
-13.585
-13.542
-12.021
-11.993
-11.873
-10.917
-9.830
-9.752
-9.564
-9.423
-8.252
-8.128
-7.368
-7.271
-7.114

0'p-ag

01-t„
0'g-tg

0'2-eg

Cr3-t„
cr3-a„
O3-t„
o4-eg
a4-tg
04-ag
o'4-tg

05-e
05-t~
o 5-t
o5-t
o.6-tg
06-eg
o.6-tg
06-ag
0'6-ag
o.6-tg
o 7-e
o7-t
Kp-Gg

-7.109
-6.533
-5.829
-5.802
-5.563
-5.389
-5.371
-5.257
-5.004
-4.946
-4.929
-4.587
-4.109
-4.089
-3.597
-3.452
-3.189
-3.120
-2.766
-2.755
-2.628
-1.850
-1.615
-1.084

oy-t„
0'7-t„
0q-a„
oy-t„
vr1-t~

tg
(Ts-eg

os-tg
'Ir2-eg

0's-Gg

os-tg
0-s-tg

og-t„
og-a

mrs-eg

0-s-tg

og-e„
0'g-tu

K3-t„
~4-eg
X4-Gg

7r4-tg

-0.965
-0.225
0.000
1.710
2.372
3.469
4.052
4.103
4.217
4.971
5.149
5.515
5.878
6.240
6.423
6.495
6.974
7.212
7.430
7.454
7.815
8.298
8.318
8.754

vr4-tg

x5-e„
m5-t„
7r5-t~

vr6-tg

7r5-t„
vr6-eg

7r6-tg

Cp-ag
K7-e~
K6-Gg

vr7-t„
Wg-G~

vr6-t g

og-t„
Op-ag

Tp&-G

To+-Gg
C1-t„
010 tg
og-t„
C2-tg
0 1o-eg
01-t
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FIG. 3. In (a) we show the calculated density of states (DOS) spectrum for the valence states of solid Csp, and compare
them to the experimental photoemission data of Weaver et al. (Ref. 15). The bottom curve in the figure shows the distribution
of 0 and x levels at the I' point in the Brillouin zone. Each group is labeled with its appropriate angular momentum, t. All

of the theoretical curves were Gaussian broadened for easier comparison to the experimental data. In (b) we show the lower

conduction states in the same format as the valence states and compare them to the experimental inverse photoemission data
of Jost et al (Ref. 16).. The theoretical conduction band DOS was also broaden to ease the comparison to experiment.

o character with respect to states containing z character,
as a result of using the local-density approximation. In
fact, similar pseudopotential calculations for graphitess
show a similar discrepancy with experiment in the posi-
tion of the top of the o band with respect to the highest
occupied z state. Continuing down in energy, we see the
broad feature labeled 8 in Fig. 3(a), which contains at
least four features and is followed by a small peak. These
features correspond to the o'z, os, os, mi, and xz states.
The broad feature A appears to have at least three peaks,
and shows the largest deviation between experiment and
theory. It corresponds to the crs, or, and np theoretical
states. The next three features correspond to the cr4, as,
and u6 states. The lowest energy features would corre-
spond to the remaining 0 states.

In Fig. 3(b) we show the calculated density of states
for the empty states of Csp and compare it to two sets of
inverse photoemission data of Jost et al. is The density of
states is obtained by the same Gaussian broadened tetra-
hedron method, with the change that now the energy is
measured with respect to the bottom of the empty states
(X point). This curve is again nearly identical to our
previous results using only two k points. The agr=-
ment between the theoretical DOS and the experimental
data is excellent. At the bottom of the figure we show
the contributions to the density of states at I' from the

cr and vr states decomposed according to their dominant
angular momentum.

For the conduction band, shown in Fig. 3(b), we have
the lowest DOS feature, labeled A in Fig. 3(b), formed
by a zs state which is derived from the lowest unoccu-
pied molecular orbital of ti„symmetry. The next peak
(labeled 8) is derived from a ns state. Notice that the
8 peak appears at lower energy in the I'-point spectrum
than in the two k-point density-of-states spectrum. Con-
tributing to the third feature in the conduction band (C),
we find the first nonmolecular state at 4.217 eV. This
state is just 0.42 eV above the self-consistent poten-
tial maximum, and has a wave function localized within
the center of the Csp cage and of t = 0 character, which
we label as Cp (see Table III). From the examination of
the self-consistent potential, we find that there exist rel-
atively fiat regions at the center of the molecular unit,
and at the octahedral and tetrahedral interstitials. Wave
functions localized near the octahedral and tetrahedral
interstitial sites of the fcc lattice first appear at 4.8 eV
and 5.3 eV above the conduction-band minimum and
are labeled Op, Tp/i, and Tp~ in Table III. There are two
equivalent tetrahedral interstitials, and the splitting be-
tween the bonding (Tp~) and antibonding (Tpg) states
is 0.24 eV. Two other features (D and E) appear in
the inverse photoemission spectra, and they correspond
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to prominent features in the theoretical density of states.
These features contain contributions &om a few vr states,
antibonding og states, and from the nonmolecular states
which start the transition to the "delocalized" states ex-
pected for higher electron energies.

In both the photoemission and inverse photoemission
spectra we can see numerous and sharp features, in par-
ticular near the top of the valence band and the bottom
of the conduction band. The photoemission spectra of
Cso have many more distinct and sharper features than
either of the other two forms of crystalline carbon, dia-
mond and graphite. This richness and sharpness of struc-
tures reflects the molecular character of solid Cso. For a
detailed analysis of the experimental aspects of the pho-
toemission and inverse photoemission spectra of Cso we
refer the reader to the recent papers of Weaver and co-
workers. ~s s~ I The densities of states for Csc calculated
by other authorsM's4'ss'sc using the local-density approx-
imation are similar to our results, the small differences
are due to numerical details, like the choice of the basis
set.

In Fig. 4 we plot the band structure of Csc along the
b, symmetry direction (I'-X), and the Z symmetry direc-
tion (X-W), for energies close to the fundamental gap,
showing the highest group of valence bands and the two
lowest groups of conduction bands. The gap is direct
at X. The transverse and longitudinal effective masses
for holes are 1.26 and 3.31, respectively. The transverse
and longitudinal electron effective masses are 1.15 and
1.33. Our bands are quite different from the results of a
local-density calculation with a Gaussian basis set. s4 For
example, our top valence band is broader (0.58 versus

3.0

2.0

1.0
LI
C

LLI

0.0

-1.0

FIG. 4. The band structure of fcc-T& C60 along the 4
and Z directions is plotted for the highest valence bands and
the two lowest conduction bands. The top of the valence band
was chosen as the zero of the energy. The moderate dispersion
of these levels clearly shows the departure from the molecular
state.

0.42 eV) and the gap is narrower (1.18 versus 1.5 eV).
The details of the band dispersion are also different. The
calculation with Gaussians used only two decays per or-
bital. Chelikowsky and Louie have found that the use
of two Gaussians per orbital for carbon will result in rea-
sonable solid-state properties, but not in eigenvalues. In
atomic calculations using the same pseudopotential and
Gaussians decays as the Gaussian calculation we found
errors of 2.5 and 3.5 eV in the atomic eigenvalues due to
basis-set incompleteness. Our atomization energy for the
Csp cluster of —8.3 eV per atom (see Table I) is lower
(the cluster is more bound) than the —7.4-eV value of
that Gaussian calculation, s4 but is in good agreement
with the value of —8.51 eV of an all-electron calculation
with a large Gaussian basis set.s We therefore attribute
the disagreement between the two band structures to the
very small basis set used in the Gaussian calculation. Our
band structure is completely converged (within 1.4 meV)
with respect to the number of plane waves.

As a closing comment about the band structure we no-
ticed during the pressure studies that solid Cso undergoes
a transition from a semiconductor state to a semimetal
state at 35%%uo lattice compression. At this compression,
corresponding to a pressure of 20—25 GPa, the I' point of
the conduction band coincides and then becomes lower
than the valence-band maxima.

V. WAVE-FUNCTION ANALYSIS

Making a drastic approximation we can assume that
the potential of the isolated Csp molecule is an attrac-
tive spherically symmetric well. The bottom of this well

occurs in a spherical surface with a radius of 3.55 A.

and a width of 3.0 A.. In this model potential the elec-
tron states can be indexed with the quantum numbers,

n, l, and rn, where n is equal to one plus the number
of radial nodes, and / is the angular momentum of the
wave function. The model wave functions are the prod-
uct of a radial function by a spherical harmonic Y& . The
real molecular potential is not spherically symmetric, but
the pattern of the model and real molecular wave func-
tions are quite similar for bound states, and the quantum
numbers of the model can be used to label the true wave
functions. 3 5 This labeling scheme can be put on a
solid footing if we consider the topology of the nodal sur-
faces for the spherical model wave functions and for the
C6p orbitals. For example, the cr-type molecular orbitals
of Csp do not have a "radial" nodal surface in the wave
functions and correspond to the n = 1 model wave func-

tions, while the ~ molecular orbitals which have a radial
nodal surface correspond to the n = 2 model functions.
The radial nodal surface of the vr orbitals of C6p is not
a sphere, but rather a closed surface that resembles a
dimpled ball with a diameter of 7 A.. In the absence of
a symmetry plane the nodal topology of the wave func-
tions allow us to keep the notation familiar to chemists
for the delocalized three-dimensional orbitals of C6p. We
should, however, remember that in the curved bonding
network of C6p the vr orbitals contain contributions from
both 28 and 2p atomic orbitals.
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simple way to find the labels of the molecular wave
functions is to calculate the auxiliary radial functions

Fj(r) = ) Y[' (r)@(r)dn
m

for each solid-state wave function g at the center of the
Brillouin zone and for / & 0. The integration in Eq. (1)
is carried out over the surface S, of a sphere of radius r
centered at the middle of the Csti cage. We then search
among those functions to find which has the largest mag-
nitude, Fj,(r), obtaining the angular label /o, by inspect-
ing the radial behavior of I'i, (r), we can easily determine
the number of radial nodes, giving us the label n (and the
o, vr, etc. character). Except for a few noticeable cases,
each wave function of Css has one particular function F~,
that was at least one order of magnitude larger than the
others, making the determination of n and / unambi u-

ous. To give an explicit example of this procedure, we
plot in Fig. 5 for several values of / the functions Fj for
the highest occupied wave function at I'. As can be seen
in Fig. 5, the function Eq is much larger then the I's or Fq
functions. Other functions Fj are even smaller for that
orbital. A radial node in the wave function is respon 'blponsi e
or the zero of Fs in the plot. This indicates that the

state has the labels of n = 2 and / = 5, and we call it a
m.5 state.

In Fig. 6 we plot the angular deconvolution of the self-
consistent potential via the use of Eq. (1) with the wave

nction replaced by the self-consistent potential. The
functions for angular momentum / = 0 and / = 10 give
the largest contributions. The largest contribution for( 10 is for / = 6 and is almost two orders of magni-
tude smaller. There are no contributions from / = 2 and

45.0

125 4mQ

4-l0
100 — --------- 4 l2

4~l4

75

50

from odd values of / T. he / = 6 and / = 10 components
(allowed by the icosahedral symmetry) will respectively
split all the wave functions with / & 3 and / & 5. The
/ = 4 contribution is due to the tetrahedral component of
the crystal field and splits the wave functions with t & 2.
Careful inspection of the eigenvalues of Table III or of
Fig. 3 shows that the magnitude of the splittings within
a shell reflect the magnitude of these angular components
of the potential. For example, the large splitting of the
ms eigenvalues (Fig. 3), which are important because they
straddle the gap, is due to the large / = 10 component of
the self-consistent potential.

To make our analogy with the spherical well model
wave functions more rigorous we must consider the an-
gular pattern of the nodes of the wave functions. To do
this we cannot use the usual phase conventions of the
sp erical harmonics, but should use the linear combina-
tions that transform according to the irreducible repre-
sentations of the icosahedral point group. This is done in
Table IV where we show the irreducible representations
generated by the 2/+ 1 functions with angular momen-
tum /, how these representations are further split by the
tetrahedral field, and the combinations of spherical har-
monic functions that are associated with those represen-
tations. For convenience the phases of the sine Yj, and
cosine Yi,~ spherical harmonics of degenerate represen-
tations in Table IV were chosen such that the functions
correspond to the irreducible representations of an or-
thorhombic point group with axes pointing in the z, y,
and z directions.

30.0
4=7( 25
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0.0
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U
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0.5

FIG. 5. The functions Ej(r) [Eq. (2)] of the 120th wave
function (highest valence band) are plotted for several val-
ues of the angular momentum /. The largest contribution is

node in the wave function which is characteristic of vr or-
bitals. From this deconvolution we can label unambiguously
this wave function as vr5.

0.0
0.0 2.0 4.0

r (a.u.)
6.0

FIG. 6. The s "pherical deconvolution of the self-consistent
potential plotted for several values of l. The icosahedral field
contributes the l = 6, 10, 12 components.
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TABLE IV. The table shows how the representations of the rotation group with l & 9 are split by the icosahedral point
group Ih, and how these are further split by the tetrahedral point group T&. The fourth column lists the combinations of sine,
Yt,~, and cosine, Yjc~, real spherical harmonics that generate those representations for l & 6.

l

0
1

Ag
Tl 'v

T2'v

Hg

T2v

Th

Ag
T~

Tg

Ag

Tg

Tg

Yoo

Ylcl
Ylsl
Ylo
Y2c2

Y2o

Y2cl
Y2sl
Y3s2

0.500Y3,2 —0.866Y3p
0 991Y3c3 0 135Y3cl
0.926Y3s] + 0.378Y3s3
0.378Y3s1 —0.926Y3s3
0.866Y3c2 + 0.500Y3p
0.135Y3,3 + 0.991Y3c1
0.645Y4,4 + 0.764Y4p
0.874Y4s 1 —0.486Y4s3
0.764Y4,2 + 0.646Y4 4
0.943Y4,3 —0.334Y4,1

Y4c2
0.764Y4,4 —0.645Y4o
0.334Y4,3 + 0.943Y4,1

0.486Y4, 1 + 0.874Y4s3
0.646Y4,2 —0.764Y4 4

0.523Y5c4 + 0.810Y5c2 0.265Y5o
0.365Y5s1 + 0.803Y5s3 0.472Y5s5
0 637Y5c5 —0.307Y5c3 0.707Y5cl
0.927Y5,1 —0.361Y5s3 + 0.101Y5,5
0.839Y5c4 0.433Y5c2 + 0.331Y5P

0.694Y5c5 + 0.627Y5c3 + 0.354Y5cl
0.789Y5,2 + 0.614Y5,4
0.614Y5,2 —0.789Y5,4

0.153Y5,4 —0.395Y5,2 —0.906Y5o
0.334Y5,5 —0.716Y5c3 + 0.612Y5,1
0.089Y5sl + 0 474Y5s3 + 0.876Y5,5

I Ih, T
6 Ag Ag

Tlg Tg

Gg Ag
Tg

Hg Eg

Tlu Tu

T2v Ttc

G„ A„
TtI,

H„E„
TQ,

8 T2g Tg

Gg Ag

Tg

Hg Eg
Tg

Hg Eg
Tg

9 Tlt T„
T2tt TtL

G„ A„
TQ,

G„ A„
T'g

H„ E„
TQ

0.453Y6c6 0.548Y6c4 —0.671Y6c2 + 0.207Y6P
0.316Y6s]. + 0.939Y6s3 + 0.135Y6s5
0 357Y6s2 + 0.585Y6s4 —0.728Y6s6
0.557Y6c5 + 0.136Y6c3 0.820Y6c].

0.328Y6,6 + 0.758Y6,4 —0.486Y6,2 —0.286Y6p
0.819Y6c5 —0.253Y6c3 + 0.514Y6cl
0.620Y6,2 + 0.434Y6,4 + 0.654Y6,6
0.885Y6s1 + 0.343Y6s3 0.313Y6s5

0.829Y6c6 + o 559Y6c2
0 354Y6c4 + 0.935Y6o

0.700Y6s2 —0.685Y6s4 —0.207Y6s6
0.341Y6,1 + 0.020Y6,3 —0.940Y6,5
0.137Y6c5 + 0.958Y6c3 + 0.252Y6cl

In Fig. 7 we compare the angular part of Cso wave
functions with the icosahedral harmonics. These figures
are contour plots in polar coordinates showing icosahe-
dral harmonics and wave functions on the surface of a
sphere of radius 3.17 A, as a function of the azimuthal
and polar angles. This is similar to a geographical map
with the north pole at the midpoint between the atoms
labeled Aq and Aq in Fig. 1. The large dots in Figs. 7(a)
and 7(c) are the projection of the carbon-atom positions
onto the spherical surface. The atom labeled Ai in Fig. 1
is located at the top left in Figs. 7(a) and 7(c), with po-
lar angle 11.3' (latitude 78.7' north) and of azimuthal
angle 0' (longitude). The radius used for Figs. 7(a) and
7(c) is just inside the sphere of the carbon atoms and was
chosen to be near the maximum of the x wave functions
(peaks of the 2p atomic orbitals). For cr states a radius
of 3.5 A would be more appropriate.

Figure 7(a) shows the angular plot for one of the wave

functions derived from the hq„highest occupied molecu-
lar orbital of Cso. It is a ms wave function of e„symmetry
in the tetrahedral point group of the solid. Figure 7(b)
shows the spherical harmonic 0.789Ys,z+0.614Ys,4 which
can be associated with that state (Table IV). Iri Fig. 7(c)
we show the angular plot for one of the degenerate wave
functions derived from the t~„ lowest unoccupied molec-
ular orbital of Ceo. It is also part of a group of x5 wave
functions and has t„symmetry in the solid. The cor-
responding spherical harmonic, 0.265YSO —0.810Y5,q—
0.523Ysc4, is shown in Fig. 7(d). Comparing the two sets
of figures we see an amazing similarity between the wave
functions and the spherical harmonics. Of course, the
C60 wave functions have added structure corresponding
to the lobes of the 2p atomic functions which are on top of
the carbon atoms; however, the nodal structure is clearly
the same.

Using the similarity between wave functions and spher-
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FIG. 7. Contour plots of the wave functions at I' for states derived from the highest occupied (a) and lowest unoccupied (c)
molecular orbitals of Csp. Corresponding icosahedral harmonics (see Table IV) are shown in (b) and (d). The wave functions

are plotted at the surface of a sphere of radius of 3.17 A. , as a function of the azimuthal and polar angles (see text). The

spacing of the contours is in a.u. The icosahedral harmonic plots (b) and (d) have been normalized to reflect the calculated

wave functions. The dots and the straight lines are the projection of the carbon atoms of C60 onto the sphere and the bonding

network, respectively. The similarities between the two types of functions is striking.

ical harmonics, we can write approximate n wave func-
tions for Csp with the correct symmetry and correct
shape without performing a single diagonalization. First,
we form the atomic hybrid orbitals in the spirit of the
s-orbital axis vector method. 4i These are obtained by
requiring that three of the hybrid orbitals point in the
direction of the three bonds around each carbon atom,
and that all hybrids are normalized. For the atom la-
beled Ai in Fig. I and with a z axis perpendicular to the
plane of the figure, the dangling hybrid orbital is

C' (r) 0.2840@,(r) —0.2555@„~(r)+0.9242@&,(r).

(2)

We found that the s-p hybridization implied by the above
expression agrees qualitatively with the calculated self-
consistent wave functions. Approximate molecular vr or-
bitals for C6o are then obtained by a linear combination
of all 4 hybrid wave functions for the 60 carbon atoms,
with coefficients given by the values taken at the atomic
sites by the icosahedral harmonics listed in Table IV.

VI. CONCLUSIONS

Utilizing efficient diagonalization methods and "soft"
pseudopotentials, we have used the plane-wave pseudopo-
tential LDA method to accurately calculate the struc-

tural and electronic properties of solid fcc Csp. We have
optimized the Csp structure and obtained values that
are in excellent agreement with experiment for the bond
lengths, the lattice constant, the equation of state for
compression, and the cohesive energy. We have presented
details of the density-of-states spectrum of fcc-Csp, wllich
are in excellent agreement with experimental photoemis-
sion and inverse photoemission data. We have also pre-
sented the band structure of the highest valence band and
the two lowest conduction bands, and we have listed val-
ues for the relevant longitudinal and transverse efFective
band masses. Using a simple labeling procedure, we have
identified the preeminent features in the density-of-states
spectrum. We have shown how these labels relate to the
spherical harmonics, and have compared the angular be-
havior of the calculated wave functions with icosahedral
sherical harmonics.
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