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Ferromagnetism of the Kondo lattice in the low-carrier-concentration limit
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Exact diagonalization of a one-dimensional finite-size system with two conduction electrons is used to
demonstrate the existence of an incompletely saturated ferromagnetic ground state in the low-carrier-
concentration limit of the Kondo-lattice model. Interactions between the spin-polarization clouds
around the electrons play an important part in the stabilization of the ferromagnetic ground state. In a
spin-wave analysis of this ground state, two regimes are identified: The very-low-concentration limit is
well described by the mean-field approach, whereas with increasing concentration spin fluctuations be-
come important and suppress ferromagnetic order gradually.

I. INTRODUCTION

During the last decade the Kondo-lattice model has at-
tracted much attention for the reason that it might repro-
duce various physical properties of the heavy-fermion
materials. ' It also represents an example of a strongly
correlated electron system, which is of basic theoretical
interest. The structure of this model is given by a lattice
of localized spins that interact with the conduction elec-
trons via an exchange coupling. The Hamiltonian has
the form

&=—g (t, c,,ci, +H".c. ) —J QS s
I)J,S

where c;, (c;, ) denotes the annihilation (creation) opera-
tor of a conduction electron at site i with spin s. The vec-
tor S; is the localized spin operator and

s, =(A'/2) g c,,o„.c...
$, $

defines the conduction electron spin operator at the site i.
Further, t; stands for the hopping matrix element be-
tween the sites i and j, and J for the exchange-coupling
constant. We will restrict this paper to the case of nega-
tive J, i.e., antiferromagnetic coupling between localized
and electron spin.

The Kondo-lattice model can be derived as an effective
model from the more fundamental periodic Anderson
model in the strong-coupling limit. Both models have
been studied by various approaches like the Gutzwiller or
the slave-boson method. ' In this way it could be
demonstrated how the quasiparticles in this model form a
coherent band with a very heavy effective mass. Howev-
er, these treatments turned out to be insufficient for the
description of magnetic properties or mechanisms of su-
perconductivity found in some heavy-fermion materials.
Even the ground-state properties of the model are still a
matter of question.

Recently, various numerical studies of the one-
dimensional (lD) finite-size Kondo-lattice system con-
sidered the ground-state properties by exact-
diagonalization or quantum Monte Carlo methods.
For the case of a half-filled conduction band (one conduc-
tion electron per site) these calculations suggest a ground
state forming a total spin singlet. On the other hand, in
the low-concentration limit an incompletely saturated
ferromagnetic state seems to be energetically most favor-
able. ' This latter result was very recently supported by
the rigorous analysis of the case of one conduction elec-
tron. This problem is very close to that considered by
the Nagaoka theorem, which states that the presence of
one hole leads to a ferromagnetic ground state in the
infinite-U limit of the half-filled Hubbard model. Actu-
ally, the one-electron Kondo-lattice model is identical to
the Nagaoka problem in the limit of J~—~. However,
in Ref. 8 it was proved that for finite J the ground state is
ferromagnetic for considerably less restrictive conditions
than necessary in the Nagaoka theorem. Especially, it is
valid for all dimensions, despite the fact that the Nagao-
ka theorem does not apply for 1D systems.

In going beyond the one-particle problem, the interac-
tion between the electrons has to be taken into account.
It was shown in Ref. 8 that the conduction electron
moves as a quasiparticle dressed by a polarization cloud
of the localized spins, i.e., as a spin polaron. In this spin
polaron the localized spins tend to align antiparallel to
the electron spin. The extension of the cloud is deter-
mined by the correlation length of the localized spins.
This correlation length g is also the length scale of the in-
teraction among spin polarons. Note the J dependence of

g is large for J close to zero (g -&2t l~J ~ ) and ap-
proaches zero as J~—00. In the latter case the interac-
tion among the spin polarons is reduced to hard-core
repulsion only. As we will show below, there are good
reasons to believe that due to the interaction among spin
polarons for finite J the ferromagnetism proved for the
one-particle case can be extended to a (small) finite elec-
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tron concentration in the thermodynamic limit. Because
in the U= ~ Hubbard model, which is equivalent to the
J= —~ Kondo-lattice model, the holes have only hard-
core repulsion, there are discussions whether for the
Nagaoka problem a similar extension is possible. '

The first part of this paper is devoted to the problem of
two particles in the Kondo lattice in order to show that
the interaction between the two spin polarons favors a
ferromagnetic ground state. For that purpose we per-
form exact diagonalization in 1D finite-size systems. Al-
though it turns out that the ground state depends qualita-
tively on the form of the boundary conditions, our results
strongly support the existence of a ferromagnetic order
for the two-electron system.

In a second part we consider the effect of spin fiuctua-
tions under the assumption that the ground state is fer-
romagnetic. By means of a spin-wave analysis of a 3D
Kondo lattice we will show that the very-low-carrier-
concentration limit may be well described by a mean-field
approach. However, a critical concentration exists
beyond which spin fluctuations are dominating the be-
havior of the system.

II. THE KONDO-LATTICE WITH TWO ELECTRONS

In this section we study the ground state of the 1D
Kondo lattice with a finite (even) number of sites contain-
ing two conduction electrons. Our purpose in treating
this model is the confirmation that a Kondo-lattice sys-
tem with more than one conduction electron prefers also
a ferromagnetic ground state, analogous to that in the
one-electron case. This system was investigated numeri-
cally to some extent already by Hatsugai, Imada, and
Nagaosa for other reasons.

It is convenient to consider this system as a ring where
the boundary conditions can be defined simply by a phase
a attached to an electron traveling once the whole way
around the ring. Setting a=O corresponds to periodic
boundary conditions (PBC's) in this system and a=sr to
antiperiodic boundary conditions (APBC s). Intermedi-
ate a values (twisted boundary conditions) produce states
with finite currents. We will concentrate in our numeri-
cal study on the ground state for the two extreme bound-
ary conditions, PBC's and APBC's, for reasons that will
be explained later.

We use a simplified version of the Hamiltonian in Eq.
(1) by setting t; =r for j nearest neighbor of i, and 0 oth-
erwise. To calculate the ground-state energy the Lanczos
method is applied for the exact diagonalization. Subse-
quently, we obtain the wave function of the state by an
inverse iteration method using the conjugate-gradient
method (see, for example, Ref. 6 or 7). For this type of
numerical calculation the available computer memory
limits the size of the system treatable. Therefore the spin
and translational symmetry have been used to reduce the
needed memory and to increase the treatable system size
(number of lattice sites N& 14 on a nonvectorized com-
puter).

The fact that the conduction band is discretized in our
finite-size system leads to problems related with the
choice of the boundary conditions. For even X, the

0.3 i

(

K 12ii
0.15—

~O
~O

(a) PBC

0.25-

K(t (0)
Q~

D~

Ck

(b)
1/20 1/12 1/8

1/14 1/)0

PiN

APBC

1/6

FIG. l. Correlation of the localized spins: (a) For the total
spin singlet state (PBC). The empty circles give the amplitude
of the correlation peak in q space at q =2m/N for different sys-
tem sizes N. (b) For the ferromagnetic state (APBC). The emp-

ty circles mark the amplitude of the uniform correlation.
(J= —0.2t; lines are drawn as a guide for the eye. )

PBC's yield to a conduction-electron band with one level
at the bottom, 0 =0, ~hereas for the APBC's there are
two degenerate lowest band levels, k =+~/N. Therefore
neglecting the interaction part of the Hamiltonian the
ground state for two electrons is nondegenerate in the
PBC case (spin singlet), but for the APBC's it is fourfold
degenerate (any spin configuration of the electrons is de-
generate). In both cases a finite energy gap must be over-
come to generate excited states in the conduction band.
For that reason the ground-state electron-spin
configuration tends to be singlet for PBC's even if the in-
teraction part of the Hamiltonian is turned on.

The numerical results for the PBC's suggest that the
ground state always forms a total spin singlet (including
the localized spins). This is the case for any finite-size
system and any value of J (

—3 & J & 0). The correlation
function of the localized spina KII(a) = ( g,. S, S;+, ) /N
is clearly dominated by the Fourier component
K/I(q =2m/N). Plotting K&&(q =2m/N ) versus 1/N the
points lie on a straight line, which extrapolates to a finite
value for N ~ ~ [Fig. 1(a)].' We take this as the indica-
tion that no qualitative change occurs for any parameter
J ( &0) and N, except for J~—~ where the ground
state is highly degenerate in one dimension. On the other
hand, the ground state for the APBC breaks the symme-
try of the system by having a finite total spin quantum
number [S„,=(N —2)/2, incompletely saturated fer-
romagnet], for any value of J ( & 0) and N. Consequent-
ly, the dominating component of K&&(q) is the one with
q=O, which gradually approaches the value —,

' for in-

creasing N [Fig. 1(b)].
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FIG. 2. Energy gain of the ground states in the two-particle
system for both boundary conditions, PBC and APBC, for
different J and N (see text): empty circle, J=—0.2t; filled trian-
gle, J=—0.5t; filled circle, J=—1.0t; filled square, J= —2.0t.
(Lines are drawn as a guide for the eye. )

FIG. 3. Nearest- and next-nearest neighbor correlation of the
localized spins. Empty circles stand for the ferromagnetic
ground state (APBC) and filled circles for the total spin singlet
state (PBC). (J= —0.2t; lines are drawn as a guide for the eye. )

At first sight it seems discouraging to find such a
discrepancy in the qualitative properties of the ground
state depending on the chosen boundary conditions.
However, this fact provides a good instrument to com-
pare the interaction of two spin polarons if they have
preferentially parallel (APBC} or antiparallel (PBC) spin
alignment.

As a first point let us consider the energy gain of the
two states relative to the free-electron ground-state ener-

gy. In Fig. 2 we plot the quantity [E(0}—E(J}]/2Eb(J)
for different N and J, where we use for the normalization
Eb(J), the energy gain of one electron with a coupling
constant J in an infinitely large lD system (see Ref. 8).
The energy gain for the singlet state (PBC} is clearly
smaller than for the ferromagnetic one (APBC). For the
singlet state even the ground state loses energy compared
with the infinitely dilute system (N ~ ~ ). On the other
hand, the interaction between the spin polarons works to
lower the energy for the ferromagnetic state. This indi-
cates that parallelly aligned spin polarons (ferromagnet)
are energetically favored rather than the antiparallel ones

(total spin singlet).
The short-range correlation of the localized spins hints

at the tendency of the system toward a ferromagnetic
ground state, too. We consider the nearest- and next-
nearest-neighbor correlations. For both types of bound-
ary conditions these correlations approach —,

' for increas-

ing N, indicating that, at least in the short range, fer-
romagnetic ordering is developing with increasing N (Fig.
3). It has to be noticed that for large i Ji the ferromag-
netic correlation of the PBC ground state is suppressed
due to the shortening of the correlation length
g' ( =&2t li Ji for small

i Ji). Furthermore, the electrons
each tend to form an on-site singlet with the localized
spins diminishing the correlation, too, as iJi increases.
This behavior also affects the relative energy gain of the
ferromagnetic ground state compared to that of the sing-
let ground state as can be easily observed in Fig. 2. The
larger the iJi, the smaller the relative energy gain is.
This is due to the fact that the extension of the interact-
ing spin-polarization clouds is shrinking and that the

TABLE I. Lowest-energy eigenvalues for different coupling constants J and system sizes N for the
1D Kondo-lattice model with two conduction electrons. For PBC the ground state is a total spin sing-
let, and for the APBC ground state it is an incomplete ferromagnet with spin quantum number
St t (N —2)/2. The energies and the coupling constant are given in units of the hopping matrix ele-
ment t.

PBC

J= —0.2
J= —0.5
J= —1.0
J= —2.0

N=6
—4.013 79
—4.099 41
—4.441 88
—5.557 57

N=8
—4.020 99
—4. 149 26
—4.578 41
—5.746 70

N =10
—4.029 55
—4. 19682
—4.667 66
—5.847 62

N =12
—4.039 11
—4.236 07
—4.725 13
—5 ~ 90645

N =14
—4.049 07
—4.266 33
—4.763 26
—5.943 36

APBC N=6 N=8 N =10 N =12 N =14

J= —0.2
J= —0.5
J= —1.0
J= —2.0

—3.635 37
—3.91823
—4.446 52
—5 ~ 648 10

—3.853 18
—4. 121 60
—4.635 28
—5.821 37

—3.954 28
—4.215 96
—4.723 70
—5.903 13

—4.009 11
—4.267 35
—4.772 20
—5.947 99

—4.042 11
—4.298 46
—4.801 65
—5.975 18
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FIG. 4. Phase diagram, J vs N, for the (absolute) ground
state. PBC stands for the spin singlet ground state and APBC
for the ferromagnetic one (see text).

more the electron spins are locked into singlet states with
the localized spin, the less effective their relative polariza-
tion is (screening effect).

Now we compare the absolute values of the ground-
state energy for the case of PBC and APBC (Table I).
With varying phase a these energies change continuous-
ly. However, because these two ground states have
different quantum numbers, they cannot be connected
continuously by turning a from 0 to m. Rather they be-
long to different branches of the eigenenergy spectrum in
the cz space. Therefore, they represent local minima if we
vary the ground-state energy with respect to a, since for
a values away from n)r (n: integer) the existence of a
finite current leads to an increase of the energy. Some-
where in the region 0 & a & ~ the two levels cross.

Thus, our system considered as a ring may have two
different global ground states depending on the system
parameters J and N. In Fig. 4 the corresponding phase
diagram, J versus N, shows for which parameter pair
(J,N) the ground state is in total spin singlet (PBC) or a
ferromagnet (APBC). The former state is favored for
small J and N, whereas increasing one of the two parame-
ters supports the latter one. The critical line between the
two regions is related to the finite-size gap in the
conduction-electron band as the approximation
J/4=2)[ cos()r/N) 1] (das—hed line) clearly shows; i.e.,
the exchange-coupling energy J( S; s; ) is of the same
magnitude as the separation of the lowest states in the
electron band for the two types of boundary conditions.
Therefore, the system would choose the boundary condi-
tions, i.e., a, to minimize its energy for a particular pa-
rameter set J and N. Consequently, the system would al-
ways turn to a ferromagnet with Sto, =(N —2)/2 if its
size N is large enough (or the electron concentration is
small enough).

For better understanding of the properties of the two
electrons in this system we also briefly discuss here their
correlation functions. The charge-charge correlation
function for the PBC ground state shows a very clear

change varying the value of J Iin Fig. 5(a) plotted for the
case of N=14]. For ~J~ ((I the correlation has a com-
paratively weak structure very close to the structureless
correlation function of the free-electron ground state.
However, turning J to more negative values leads to a
separation of the two electrons. The electrons tend to
form on-site singlets with the localized spins. Thus these
singlet objects are strongly repulsive to each other, since
two electrons on the same site yield an energy loss of
—3J/2. This means that the electrons form hard-core
polarons with the localized spins as J~—~. For the
ferromagnetic ground state (APBC) no qualitative and al-
most no quantitative change is seen in the charge-charge
correlation function varying J. For all finite J &0 the
electrons avoid each other. For ~J~ ((t the exchange
hole is responsible for this feature, because the ground
state breaks the system symmetry, lifting the spin degen-
eracy of the electrons so that the electrons prefer to have
parallel spins. For strong exchange-coupling the elec-
trons behave like hard-core polarons described just
above.

The electron spin-spin correlation function shows for
both types of ground states the following common
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FIG. 5. (a) Charge-charge correlation function of the two
electrons in the spin singlet (PBC) and ferromagnetic ground
state {APBC) in a system with N=14. X, J=O; empty circle,
J= —0.2t; filled triangle, J= —0.5t, filled circle, J= —1.0t;
filled square, J= —2.0t. (b) Spin-spin correlation function of
the two electrons in the spin singlet (PBC) and ferromagnetic
ground state (APBC) in a system with N=14. The values given

here are the spin-spin correlations normalized by the charge-
charge correlation (S, .S, +„)/(n;n;+„). For the symbols, see

(a). (Lines are drawn as a guide for the eye. )
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features [Fig. 5(b)]. The short- as well as the long-range
correlation is decreasing with increasing

~ J~ as we expect
from the fact that g is decreasing as

~ J~ is increasing. For
the singlet ground state (PBC) an additional structure is
occurring. For large ~J~ the tendency toward parallel
alignment of the electron spins is enhanced. For this
effect the cloud of aligned localized spins around each
electron is responsible. The two electrons close to each
other tend to generate one common parallelly aligned
cloud. For ~J~ &&t close to zero this effect is covered
mainly due to the small size of the system, since the ex-
tension of the spin-polarization clouds is about the sys-
tem size.

Concluding this section, we emphasize that these nu-
merical results strongly support the idea that the ground
state of a Kondo-lattice system is ferromagnetic for low
carrier concentrations. Therefore, we believe that the
rigorous result given for the one-electron case can be ex-
tended to the thermodynamic limit with a finite electron
concentration. This could not be stated for the U= 00

Hubbard model to date. ' ' ' There is a qualitative
difference between the finite J and the infinite J systems
(equivalent to the U= ~ Hubbard model). In the latter
system the "spin polarons" have no extension (on-site
singlets) and behave like hard-core particles. As pointed
out above the relative energy gain due to the spin-polaron
interaction is shrinking with J~—~, since no informa-
tion about spin polarization can be exchanged directly
between the two spin polarons. Thus, in this situation
the spin configuration in the ground state is decided only
through the gain of kinetic energy. However, if the spin-

I

polaron clouds overlap, as is the case for finite J, their
relative polarization plays a role in the interaction be-
tween them, supporting the formation of ferromagnetic
long-range order. This fact may give the reason why the
infinite J Kondo-lattice model for two electrons need not
necessarily yield a ferromagnetic ground state.

III. SPIN-WAVE ANALYSIS

The results of the previous section strongly suggest
that the ground state of a Kondo lattice is ferromagnetic
even for a small finite number of electrons larger than
two. Unfortunately, it is very diScult to give a reliable
extrapolation from finite-size calculations to the thermo-
dynamic limit to analyze how the stability of the fer-
romagnetic ground state depends on the electron concen-
tration. It is generally not possible to fix the electron
concentration (number of electrons per lattice sites) for
different system sizes except for very special ratios. In
order to gain insight into the qualitative behavior of the
low-carrier-concentration limit of this model in the ther-
modynamic limit, we will study here the stability of the
ferromagnetic ground state against spin fluctuations by
an approximate analytic treatment (Tyablikov-decoupling
scheme). The following analysis has the advantage of giv-
ing results in a continuous range of concentrations. To
make the calculations simple we will study here the fer-
romagnetic critical temperature in a three-dimensional
system.

It is more convenient for the following calculations to
write the Hamiltonian H of Eq. (I) in the Fourier space

H= g s(k)cz, cz, — g [Sf+(q)S, ( —q)+Sf (q)S,+( —q)+2Sf(q)S;( —q)],
k, s q

(2)

where

a

Sf(q)= g S,e ' and s, (q)= g cz+~, cz, = QS, (k, q),
l k, s, s' k

and e(k) is the electron band spectrum (A'=1}. The magnetic properties of this system can be described by the follow-

ing susceptibilities (causal Green functions of the spin operators) for the localized (Sf) and the electron spins (S,):

G .(q, t) = ((S+(q, r);S. ( —q) )), (3)

where p, v=f, c and (( A(t);8)) = —i8(t)([A(t),8]) (( ) is the thermal expectation value). These susceptibilities
can be obtained from their equation of motion. For Gff (q, t) and G,f(q, t) this leads to the following coupled equations:

i Gff(q, t)=5(t)(2Sf'(0)) — g ((2Sf'(q+q', t)S,+( q', t);Sf (
—q)))—

dt 2N

+ g ((2Sf+(q q', r)S;( —q', &);Sf ( —q)))
2N

(4)

and

i—Ez(q, t)=[E(k)—e(k+q)]F&(q, t) — g ((Sf (q', t)(cz+z&cz+~& cz+~ .&cz&—)(~);Sf ( —q)))~ d J
2N

g ((Sf(q', r)(cz+~ ~.&cz&+cz+ztcz+~ & }(~);Sf( —q})),
q

with G,f(q, t)= Q„F&(q,t}=gz((S,+(k, q, t};Sf ( —q))). These equations contain fourth-order Green functions,
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which in turn lead to equations of motion with again higher-order Green functions. It is, in general, impossible to solve
such a hierarchy of coupled equations rigorously. One way to obtain an approximate solution is to decouple these equa-
tions at a certain level. The simplest treatment is obtained with a decoupling in lowest order by replacing some of the
operators by expectation values (mean fields) in Eqs. (4) and (5), assuming ferromagnetic order in the ground state (Tya-
blikov decoupling)

S'(q+q')S,+(q') = (S'(0) )S,+(q)5 ~

S+(q+q')S;( —q') = (S;(0))S (q)&

S/+(q')(ci, + &ci,+z, &

—ci,+~ z ici, i ) =SI+(q)((nz+zt ) —(ni, i ) )5

(6)

In a strict sense there is no justification for this type of decoupling. Qualitatively this procedure leads to a treatment of
independent spin-wave modes. However, we will see below that the self-consistency equations for the mean field, based
on a sum rule, takes the missed coupling of the spin-wave modes in an effective way into account again. This method
has been applied to various magnetic systems, such as the Heisenberg model, giving very reliable results for the critical
temperature. '

Using Eq. (6), the equation of motion transformed from the t to the co space can be written as

—coGI/(q, co) = 2(SI(0) ) ——(Sj(0)) G,/(q, co)+—(S;(0)) G//(q, co),1, J J
2m'

J J
coFI, (q,—co)= [E(k)—E(k+q)]Fi, (q, co)+—(Sf'(0) )Fi,(q, rd)+ ((ni, g ) —(ni, +q$ ) )GfI(q, ~)

N 2N

From the second equation we obtain

G,I(q, co) = g F„(q,co) =Jy, (q, co)G&&(q, co)
k

1
x, (q, ~)=

2N i, co+ E(k) —E(k+ q)+ (J/N) (S/(0) )

so that with the first equation

(S;(0)&

G/I(q, co) = ——
+ (J'/N) (S'(0) ) [y, (0,0)—y, (q, ) ]

(10)

The poles of this susceptibility of the localized spins describe the spectrum co of the spin waves. Independent of
y, (q, co) it is guaranteed that co ~0 for q~O.

As an example, we consider here the case of a free-electron band energy s(k) =k —p. In the low-concentration limit

this is certainly a good approach. For this case we obtain for y, (q, co) at T= 0 K the following well-known expression:

1 k, +kp,
g, (q, co) = g s (kz, —k, ) ln +2k+, k,

32m q, -+) k, —k~,

with

k, = [co+sq~+ J(S&(0)) /N]/2q,

and k„, the Fermi momentum for the electrons depend-
ing on their spin ( I ~s = + 1 and J, ~s = —1). This
Fermi momentum depends on the spin direction, since
the electron spin is coupled to the uniform background
via Js, (S (0)). This susceptibility is discussed in detail
in Ref. 18. The spin-wave excitations are well defined for
small q, where the dispersion of cu is quadratic in leading
order. However, this is not the case for q between
—

~kz&
—k~i~ and —~kz&+k~&~, where the spin waves

are damped due to electron-hole excitations. For
q) ~k~& +k~i ~

this damping disappears again.
The mean field (S&(0)) contained in G&&(q, co) has to

be determined self-consistently. For this purpose the fol-
lowing sum rule is applied:

Ides Jd'q(S&+(q, co)S& ( —q) ) =—+—(S&(0)),
which is easily obtained from the commutation relations
for the spin operators. As mentioned above, this sum
rule imposes some constraint on the spin-wave modes and
leads to an effective coupling among them, which was
neglected by the decoupling procedure in Eq. (6). The
self-consistency equation corresponding to the
fiuctuation-dissipation theorem for (SI (q, c0)S& (

—q) )
has the form

+~ pcog I dcocoth ImG&&(q, ~) . (12)
N q

2
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kB Tc 1

X (0 0} X.(q 0)
(13}

where (Sf (0) ) is set zero. This equation corresponds to
that obtained from the Ruderman-Kittel-Kasuya-Yosida
(RKKY) perturbation theory.

Under the assumption that T, &( Tz (in the low-
concentration limit this condition has to be considered
more carefully, as we do below) we can use the zero-
temperature form of y, (q, co). This condition can be
satisfied for any kF & 0 by choosing the coupling constant
i Ji small enough. (Note that i J~ much smaller than t cor-

I

Due to the damped spin-wave modes in the spectrum of
Gff(q, ro) it is in general rather difficult to evaluate this
equation. Therefore, we will concentrate here on the cal-
culation of the transition temperature T, obtained from
this equation by the limit (Sf(0) )~0. For small values
of (Sf'(0) ) the spin-wave dispersion ros is proportional to
(Sf'(0)). Thus it is easy to see that for temperatures
close to T, the electron susceptibility y, (q, co) can be re-
placed by y, (q, O). It is then very simple to perform the
integration over co, since the electron-hole damping does
not play any role in this limit [it is of higher order in
(Sf'(0) ) ]. We obtain

responds to the physical limit obtained by the Schrieffer-
Wolf transformation of the periodic Anderson model in
lowest order. ) Then the denominator of the integrand
shows the limiting behavior

and may be approximated by

2

24kF
, q &2&3k,

y, (0,0)—y(q, O)=
2

X '

k
1(2„}, )2~3k

2
~ q F ~

(15)

where the boundary 2&3kF is chosen to obtain a continu-
ous functional dependence on q. Introducing a cutoff ra-
dius q, for the upper boundary of the q integration

(q, -bandwidth) the integration in Eq. (13) leads to

2

)

+O(q'), q «2kF
24kF

y, (0,0)—y(q, O) = X '

k (14

+0(q '), q»2kF,

J2
48&3k„+ (q, —24~3kF )

3kF

q,
kF&

2 3
(16)

(24kFq, )
qc

kF&
2&3

In Fig. 6 the curve of T, (kF ) is plotted. The critical tem-
perature has a pronounced maximum at kg =0.2q, with

ksT, =0.012J2/q2 (the zero-temperature limit is ap-
propriate at this concentration if J &(q, ). This corre-
sponds to about (kg/q, ) =0.8% band filling. For small

k T = (2~)
(0,0) .B c l6 3 Xc

qc
(17)

kF it is like kttT, =3J2kF/32qs+0(kF). In this case, T,
approaches the ordinary mean-field result, which is

x 10-2

0.01
U

I—

0.005

3kF, i 384kF

t

The reason for this behavior is that the lower kF the
more ferromagnetically long-ranged the RKKY interac-
tion among the localized spins is becoming. Thus the
mean-field solution is becoming better as it is exact in the
infinite range limit of the interaction. [Certainly, the con-
dition T, « TF must be violated for very small kF, since
T, ~kF in the zero-temperature approach but TF ~kF.
However, keeping the mean-field approach, it is easy to
see how T, vanishes as kF goes to zero. The high-
temperature static, homogeneous electron susceptibility
y, (0,0; T)=kF /6~ ks T leads to

0
0 0.2 0.4

k lqc
0.6 0.8 1.0

' 1/2

k 3/2

Sq,
(18}

FIG. 6. Ferromagnetic transition temperature T, vs kz. The
solid line shows the result of Eq. (13) evaluated numerically.
The dashed-dotted line is the approximate result of Eq. (16).
The dashed lines show the limiting behaviors where especially
the one denoted by 3kF/32q, corresponds to the mean-field re-
sult.

for very small kF, i.e., T, ~ &n with n as the density of
electrons. ] The extension of the mean-field regime is
essentially determined by the range of the effective fer-
romagnetic interaction between the localized spins. Us-
ing the standard expression of the RKKY coupling con-
stant for a parabolic band,
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J,"~ [ sin(2kFr;. ) —(2kFr; ) cos(2kFrj )]/r;

we find the first node in the spatial oscillation of the in-
teraction at r, ="2.9a for kz=kg=0. 2q, [the lattice con-
stant a is defined by the volume of the first Brillouin zone,
4vrq, /3=(2m/a) ]. Thus, the critical value kP corre-
sponds to the situation where only two shells of neighbor-
ing localized spins are ferromagnetically coupled.

Increasing the electron concentration beyond 0.8/o
leads to a further shortening of the ferromagnetic interac-
tion range and to a strengthening of the antiferromagnet-
ic coupling included in the RKKY oscillation. In this re-
gime the system starts to deviate from the mean-field be-
havior strongly and the spin fluctuations become more
effective to suppress the ferromagnetic order. Conse-
quently the critical temperature decreases and tends
eventually to kii T, =J /384kFq, .

For simplicity we have introduced a parabolic band for
the conduction electrons. This is certainly not sufficient
if the electron concentration n »0.8%, and the behavior
of T, for a realistic band may deviate from that shown in

Fig. 6. Furthermore, considering a more realistic elec-
tron band we have to take into account that for band
filling close to half filling a spin-density-wave state would
dominate over the ferromagnetic one. Thus, for higher
concentration the ferromagnetic state has to compete
with a spin-density-wave state, which depends on the ac-
tual structure of the electron band. The description of
the change of the system from the ferromagnetic state to
a spin-density-wave state with increasing number of con-
duction electrons is going beyond the scope of this paper
(see Ref. 19 for a recent work on this problem using a
variational method).

IV. CONCLUSION

The aim of the numerical studies presented in Sec. II is
the extension of the rigorous result proved recently for
the case of one conduction electron in a Kondo lattice.
We have shown by exact diagonalization for the case of
two conduction electrons in a finite 1D Kondo lattice
with antiferromagnetic coupling (J &0) that this system
also tends to form a ground state with an incompletely
saturated ferromagnetic order. From our result we be-
lieve that the Kondo-lattice model has a ferromagnetic
ground state also in the thermodynamic limit for a cer-
tain range of low-carrier concentration. The interaction
between the quasiparticles, which are electrons dressed
with a spin-polarization cloud, plays a major part for the
formation of a ferromagnetic state in a Kondo lattice
containing more than one conduction electron. The fact

that the particles in the Nagaoka problem interact only
via a hard-core potential and not via an extended spin-
polarization cloud may be the most important difference
between this (J~—~ ) and our problem (J finite). This
may explain why the extension of the Nagaoka theorem
to the thermodynamic limit is problematic.

In a 3D Kondo-lattice system the ferromagnetically or-
dered state may appear at finite temperatures. By study-
ing the behavior of the critical temperature, we analyzed
the effect of spin fluctuations on this ferromagnetic state.
The result obtained in the Tyablikov-decoupling scheme
shows that there are two distinct regimes. For electron
concentrations below a critical value -0.8% band filling,
the spin fluctuations are suppressed and the simple
mean-field approach gives a rather good description of
the system. This fact can be traced back on the effective
ferromagnetic coupling mediated by the conduction elec-
trons between the localized spins, which becomes more
long ranged as the electron concentration is decreased.
On the other hand, if the concentration exceeds the criti-
cal value 0.8% spin fluctuations start to suppress the fer-
romagnetic order. Additionally, with increasing band
filling, the actual band structure becomes more important
and instabilities to other states may occur. Therefore, a
ferromagnetic phase may exist only in a very restricted
range of electron concentrations.

Discussing the possible realization of this type of fer-
romagnetic order in a certain material, we have to be
aware that in the low-electron-concentration limit inter-
band effects with lower completely filled bands can also
lead to contributions for the magnetic correlation. The
existence of a direct band gap to the lower band could
support the creation of a ferromagnetic phase due to an
additional enhancement of the ferromagnetic spin fluc-
tuations, whereas an indirect band gap would lead to a
competition between intraband ferromagnetic and inter-
band spin-density-wave correlation tendency. For a sem-
imetallic situation (slight overlap of two bands) nesting
properties play a very important role possibly suppress-
ing ferromagnetic ordering completely. These problems
have certainly to be taken into account considering real
physical systems with low conduction-electron concentra-
tion.
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