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Effect of electron interaction on the two-dimensional Peierls instability
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The effect of electron interaction on the two-dimensional Peierls instability is studied by using the
screened Coulomb potential to describe the electron interaction. Meanwhile, the calculation in this pa-
per can avoid the uncertainty caused by the finite-size effect. Our results show that, in contrast to the
one-dimensional case, the dimerization of the two-dimensional system is reduced by the electron interac-
tion. Furthermore, the weaker the screening of the interaction, the larger the reduction.

I. INTRODUCTION

Low-dimensional systems possess various instabilities,
which are responsible for many different orders, such as a
charge-density wave (CDW), a spin-density wave (SDW),
a bond-order wave (BOW), superconductivity, etc. In
two-dimensional (2D) systems, competition between
different orders is an important issue in condensed-matter
physics. One example is the 2D electron-phonon system.
Monte Carlo calculation shows that, when this system is
half-filled, the Peierls instability suppresses superconduc-
tivity, but, away from half-filling, superconducting pair-
ing appears. ' Experiments have demonstrated that
BaBi03 has a Peierls instability, but doping with K or Pb
can suppress this instability and form the superconduc-
tors Ba(Pb,Bi)03 or (BaK)Bi03.

It has been realized that the electron interaction plays
an important role in competition in 2D systems. The 2D
Hubbard model shows that a long-range SDW can be es-
tablished in the case of half-filling, and antiferromagne-
tism has been found in undoped copper oxides. The
effects of the electron interaction on various orders are
topics of great significance. This paper studies the effect
of the electron interaction on 2D Peierls instability.

The same problem once arose in the one-dimensional
(1D) case, and its story is instructive for us in studying
the 2D system. For years there was a dispute as to
whether the electron interaction enhanced or reduced 1D
Peierls instability. When using the Hubbard model to de-
scribe the electron interaction, the 1D Peierls instability
is surely enhanced. ' This conclusion is true even for
arbitrary long-range diagonal interaction. " But, if one
takes the bond-charge repulsion into account, the 1D

Peierls instability can be reduced. ' ' This confusion is
clarified by a more general description of the electron in-
teraction. ' ' Starting from a screened Coulomb interac-
tion, it is found that the screening is a crucial factor in
determining the behavior of the 1D Peierls instability un-

der the inhuence of the electron interaction. ' In the usu-
al screening (P- 1 ), the dimerization is enhanced by the
electron interaction. When the screening increases, the
enhancement decreases. Finally, if the screening becomes
strong enough (P) 2), the opposite behavior occurs, i.e.,

the dimerization is reduced by the electron interaction.
Why does the dimerization have such qualitatively
different behaviors in different screenings? The answer
lies in the competition between the diagonal and off-

diagonal components of the electron interaction. ' If the
screening is weak (long-range interaction) and the off-

diagonal part of the electron interaction is negligible,
then the site-charge repulsion (diagonal part) increases
the dimerization. However, if the screening is strong
(short-range interaction), the off-diagonal part becomes
effective, and then the bond-charge repulsion can reduce
the dimerization. It should be noted that, for the realistic
screening, the off-diagonal part is much smaller than the
diagonal one and the bond-charge repulsion does not
reduce the bond alternation. '

It seems that the 2D system is a different story. By us-

ing the Hubbard model, some numerical calculations on a
small 2D lattice show that the dimerization is slowly or
rapidly reduced by the on-site repulsion. ' This is
different from the 1D case. This difference is understand-
able, ' since the 2D Hubbard model can have long-range
antiferromagnetic order, whereas the 1D model cannot.
The competition between the SDW and the BOW
suppresses the dimerization in the 2D system. Neverthe-
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less, there are still some uncertainties to be clarified.
First, the existing calculations are done only in small sys-
tems consisting of about ten sites. In such small systems,
the pronounced finite-size effect can severely, even quali-
tatively, affect the conclusion. In order to get a definite
answer, it is necessary to study a large system. Second,
the 1D studies have shown that the off-diagonal part of
the electron interaction can have a substantial effect on
the dimerization. However, the existing 2D calculations
are based on the Hubbard model, which contains only the
first component of the diagonal part of the electron in-
teraction and is unable to show the effect of the off-

diagonal interaction on the 2D instability.
The theory presented in this paper will provide a better

answer to the above problems, with two improvements.
On one hand, the correlated-basis-function (CBF)
method, ' which is used in this paper and has been suc-
cessfully used in the 1D case, ' can deal with any large
system. Therefore, it eliminates the uncertainty caused
by the finite-size effect. On the other hand, the screened
Coulomb interaction is used to describe the electron in-
teraction. It includes both the diagonal and off-diagonal
parts of the electron interaction.

Section II gives the framework of the theoretical for-
mulation. The result and conclusion are presented in Sec.
III; some discussions are also made there.

II. THEORETICAL FORMULATION

We consider a square lattice with the lattice constant a.
If the hopping between the nearest-neighbor sites is dom-
inant, the Fermi surface of a half-filled 2D system has a
nesting with a wave vector (n., m. ). In this case the origi-
nal square lattice is unstable and results in a distortion
with that wave vector —it is the well-known Peierls insta-
bility. The physics of this instability is understandable:
the original lattice can be imagined as a complex lattice
formed by two sublattices A and 8 (see Fig. 1). Once a
displacement d between these two sublattices appears, the
primitive cell is doubled, and the border of the new Bril-
louin zone will coincide with the Fermi surface. Then a
gap is opened at the Fermi surface, and the total energy
of the system is reduced. This means that the distorted
lattice has lower energy than the original one, and a lat-
tice distortion or dimerization d results. The reduction of
the energy in this dimerization is called the energy gain
hE,

L&

FIG. 1. The sublattices and dimerization.

the theoretical study is to calculate the interaction depen-
dence of the energy gain b,E( U). As mentioned in the
Introduction, in order to include the effect of the off-
diagonal part of the electron interaction, a screened
Coulomb repulsion v(r) should be used to describe the
electron interaction,

U
v(r; )= exp( Pr,j)—,

V

(2)

where U and P are the strength and screening factor, re-
spectively, of the electron interaction. In the second
quantized representation, the interaction (2) contains all
the diagonal and off-diagonal matrix components. If we
only take the first diagonal component, we have the Hub-
bard model. The first off-diagonal component, the ex-
change term, is the bond. -charge repulsion. ' Based on
this general description (2), the result for the effect of the
electron interaction will be more comprehensive than
that from the Hubbard model. Hence, in our theory, the
energy gain hE( U, P) will depend on both the strength U
and the screening P of the electron interaction.

With the electron interaction (2), the Hamiltonian of
the system reads

AE =E —E„, H =Ho+ ,' g v (r,.j ), — (3)

where Eo and Ed are the energies of the system before
and after dimerization. Therefore, the energy gain hE is
a quantitative measure of the Peierls instability. The
larger hE, the more instable the system.

When the electron interaction U is taken into account,
the energy gain b,E(U) with the same dimerization will
depend on U. The U dependence of hE(U) reflects the
effect of the electron interaction on the instability. If
AE ( U) decreases with increasing U, it means that the in-
stability is reduced by the electron interaction; but, if
hE ( U) increases with increasing U, the instability is
enhanced by electron interaction. Thus, the main task in

Ho= g
g2

V', + g V(r, ,RI )
2m I

(4)

where V (r, , R& ) is the potential produced by the Ith ion at
R& and exerted on the ith electron at r;. Since EE(U,P)
has a fixed dimerization, the elastic energy is a constant
and is omitted in the Hamiltonian (3).

Following the Jastrow-Feenberg ansatz, the wave
function for a system with repulsive interaction can be
expressed as

%(1,2, . . .,N)=D [P„]exp[u (1,2, . . . ,N)],
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where D [P ] is a Slater determinant consisting of occu-
pied orbits P„, which are the eigenfunctions of Ho, and
u (1,2, . . . ,N) is a correlation factor which can be deter-
mined by the variational principle. For the repulsive in-
teraction (2), there is no condensation. And, in the half-
filled system, each cell only contains one electron; the
density is not high. In such a case, the probability for
three or more electrons gathering closely is small; then

the two-body correlation is much more important than
three-body or multibody ones. So, it is a good approxi-
mation to take only the two-body correlation,

u (1,2, . . . , N) =
—,
' g u;. .

Thus, the energy in the wave function (5) is

(q iHie&
(qiq &

= ps(~)+ —,
' f d 1 f d2[P(l) n—o] U(r, 2)[P( 2) —no]+ —,

' f dl f d2P(1)v(r, ~)[g(1, 2) —1]P(2)
k

fi+ f d 1 f d2P(1, 2)[V,u, 2]
+ f dl f d2 f d3P(1, 2, 3)[Viui2] [Viui3], (7)

where s(z) is the eigenvalue of Ho, no the average electron density, P(1,2, . . . , n) the n-particle distribution function,
and g (1,2) =P (1,2)/P (1)P(2) the electron correlation function. On the right-hand side of Eq. (7) the first term is the
noninteracting energy, the second the electrostatic energy, the third the exchange energy, and the fourth and fifth the
correlation energies.

According to the CBF method, ' P (1) and P(1,2) can be obtained by solving the following equations,

P(1/g)=P(1~0)exp fdg' f d2uizP(1, 2~$')/P(1~(')

+-,' f dg' f d2 f d3u»[P(1, 2, 3~(')/P(1~(') —P(1,2~(')]

P(1, 2~$)= P(1,2~ 0)exp gu, 2+ f d(' f d3(u, z+u23)P(1, 2, 3~$')/P(1, 2)g')

+ —,
' f dg' f d3 f d4u3&[P(1, 2, 3,4~(') —P(1,2~(')P(3, 4~(')]/P(1, 2~(') (9)

Since the two-body correlation is dominant, the convolu-
tion approximation ' can be used to expand the three-
and four-particle distribution functions in Eqs. (8) and (9)
in terms of g (1,2). Then, Eqs. (8) and (9) are closed, and
the density P(1) and correlation function g(1,2) can be
obtained by numerically solving the combined integral
equations (8) and (9).

Substituting the obtained P(1) and g (1,2) into Eq. (7),
the energy can be calculated. In this way, both Eo(U, P)
and Ed(U, P), and then the energy gain b,E( U, P), can be
calculated.

III. RESULTS AND DISCUSSIGNS

For the sake of simplicity, a cylindrical well with ra-
dius b and depth Vo is taken as the potential V(r, ,R&) in

00. By means of the Wannier wave function, the eigen-
value e(z) and eigenfunction P„of Ho are easily deter-
mined. In the numerical calculation, the parameters are
a =2.56 A, b =0.8 A, and V0=30 eV. Then the hop-
ping constant to =0.35 eV, the bandwidth 8to =2. 8 eV,

0
and the dimerization d =0.048 A. In this paper, two
different polarized dimerizations are studied; one is along
the diagonal direction and the other along the y axis.

In many-body theory, the key quantity is the correla-
tion function g (1,2). Once g (1,2) is known, the energy
Ed( U, P) can be calculated from Eq. (7). In order to solve
the combined integral equations (8) and (9), one needs to
know the noninteracting distribution functions P(1~0)
and P (1,2~0), which are determined by Pz,

k

OCC

P(1,2~0) =P(1~0)P(2~0)—2 g Pq(1)pi, (2}
k

Substituting P(1~0) and P(1,2~0) into Eqs. (8) and (9),
g (1,2) can be obtained numerically. Three typical curves
of the correlation function are shown in Figs. 2—4, in
which the solid curves depict the correlation function be-
fore dimerization and the dashed curves depict it after di-
merization. All these figures show g (1,2} only along the

y axis. Figure 2 has the origin at r, =0; the solid curve is

symmetrical to the origin. The origin of Fig. 3 is at
r& =a /4 and has no symmetry. The origin of Fig. 4 is at
r, =a /2 and the solid curve has symmetry.

Once the correlation function is in hand, the calcula-
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FIG. 2. The correlation function g(1,2) with the origin at
(x &,y& )=(0,0). Solid line —before dimerization; dashed line—
after dimerization.

FIG. 4. The correlation function with the origin at
(x&,y&) =(O,a/2). Solid and dashed lines are before and after
dimerization, respectively.

tion of the energy gain hE( U, p) is straightforward. The
results are shown in Fig. 5, where the solid lines denote
the dimerization in the diagonal direction, the dashed
lines denote it along the y axis. Both the solid and
dashed lines have the same behavior. The lines in Fig. 5
demonstrate the dependence of the energy gain on the
electron interaction. Each line has a fixed screening fac-
tor P. From these lines two conclusions can be drawn.

(1) The energy gain decreases with increasing interac-
tion strength U. This means that the instability is re-
duced by the electron interaction.

(2) For the smaller p, the energy gain decreases more
quickly. So, the interaction with the weaker screening is
more effective in reducing the instability.

These two behaviors of the two-dimensional system are
opposite from that of the one-dimensional case. It is
known that, ' ' for the usual screening (p-l), the 1D
dimerization is enhanced by the electron interaction.
Furthermore, the weaker the screening, the larger the
enhancement of 1D dimerization.

These conclusions are reasonable. As mentioned in the
Introduction, the competition between the SDW and the
BOW can suppress the Peierls instability. The electron
interaction can establish long-range ferromagnetic order

10a 5 E/to

3 0

g = 1.2
0.8

in a 2D system rather than a 1D system. Hence the 2D
dimerization is reduced by the electron interaction. This
causes the 2D systems to exhibit the normal behavior
that the Coulomb repulsion resists the inhomogeneous
distribution of charge following the dimerization. How-
ever, the behavior of the 1D system seems anomalous,
and such a subtle property has been explained by the
valence-bond approach.

Finally, comparing our theory with existing ones, it is
easy to see that the present work has two advantages: (1)
it does not suffer from the finite-size effect, and (2) the
effect comes from the full electron interaction rather than
only on-site repulsion. Thus, the model in this paper is
more physical and its results are more reliable.

g{r, -r, )

2.Q-

g

= 0.8

1.0

-2a -a o a/4 2a 1.Q 2.0 U/t,

FIG. 3. The correlation function with the origin at
(x&,y&)=(0,a/4). Solid and dashed lines are before and after
dimerization, respectively.

FIG. 5. The electron-interaction dependence of the energy
gain. Solid line —dimerization along the diagonal direction;
dashed line —y axis.
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