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Imperfect nesting in spin-density waves
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We study theoretically the effects of imperfect nesting in spin-density ~aves (SDW's) in quasi-one-
dimensional systems. We analyze the phase diagram, the specific heat, and the threshold electric field in
the presence of imperfect nesting. The latter result appears to describe the temperature dependence of
the threshold electric field observed in SDW's of quenched di-tetramethyl-tetraselena-fulvalene chlorate
[(TMTSF)2C104] observed by Shimizu et al.

I. INTRODUCTION

For a long time it has been assumed that the charge-
density wave (CDW) and spin-density wave (SDW) found
in quasi-one-dimensional systems are essentially one di-
mensional, since the energy gap extracted from the elec-
tric conductivity of a typical CDW is much larger than
the value expected from the mean-field theory. ' This
discrepancy was usually ascribed to the large fluctuation
or the strong coupling in the one-dimensional systems.
Further, the observed peak in the temperature derivative
of the electric conductivity at the CDW transition tem-
perature gave the one-dimensional fluctuation, if it is in-
terpreted in terms of the theory put forward by Horn and
Guiddoti. However, one of us discovered recently that
the theory by Horn and Guiddoti does not apply to
CDW's of NbSe&, since these compounds are usually in
the clean limit. Then in light of our theory, the same
data are interpreted as due to the three-dimensional fluc-
tuation. In general, the effect of the fluctuation is not
large and treated within the loop expansion. As to the
large ratio of 2b, , /T, observed in CDW's where b,, is the
apparent energy gap, it is realized that this is due to im-
perfect nesting. Making use of an early model proposed
by Horovitz, Weger, and Gutfreund, and a parallel mod-
el used by Yarnaji for SDW, we are able to interpret the
large ratio of 2A, /T, and the pressure dependence of T,
in NbSe3 observed by Briggs et al. Indeed, we can de-
scribe the temperature dependence of b,, ( T) determined
from the electron-tunneling density of states in CDW's in
NbSe3 by Ekino and Akimitsu in terms of the three-
dirnensional model with imperfect nesting. Therefore,
the mean-field theory appears to be adequate to describe
CDW's, though the detailed comparison between theory
and experiment is so far limited to NbSe3.

As to SDW, 2A, /T, in SDW of di-tetra-
methyl-tetraselena-fulvalene hexafluoro-phosphate
[(TMTSF)2PFb] is close to the BCS value' which implies
small imperfect nesting. Further, Yarnaji has already
described the pressure dependence of the SDW-transition
temperature T, (Ref. 11) observed in (TMTSF)2PF6 in
terms of increase in imperfect nesting due to the pressure.
More recently, the same model is shown to describe many
features of the field-induced spin-density waves' ' ob-

served in (TMTSF)2C104 and (TMTSF)2PFb under high
pressure (P-7-8 k bar) in high magnetic fields
(5 &H &30T). Some of predictions' ' made based on
Yamaji s model (i.e., anisotropic Hubbard model) wait
the experimental verification. We note in passing that
the temperature dependence of the threshold electric
field' associated with nonohmic conduction observed in
SDW's of both pristine and x-ray irradiated samples of
(TMTSF)2PF6 is well described in terms of the model
with small imperfect nesting. Very recently, Shimizu
et al. ' reported observation of the threshold electric
field in SDW of quenched (TMTSF)2C10~. Unlike SDW
(Ref. 22) in (TMTSF)zN03 and (TMTSF)zPFb, the thresh-
old electric field in this SDW exhibits much stronger tern-
perature dependence.

The object of this paper is to extend our analysis of the
effects of imperfect nesting to thermodynamics and the
threshold electric field for large imperfect nesting. We
found that the model with large imperfect nesting indeed
describes the strong temperature dependence of the
threshold electric field as found in quenched
(TMTSF)2C10q.

II. THERMODYNAMICS

E(p) = 2t~cos(api ) 2tbcos(bp2 )

—2t, cos(cp3) —p
= v ( lpi I pF ) 2tbcos(bp2 )— —

—Eocos(2bp2 )
—2t, cos(cp3 ), (2)

Although the thermodynamics of the present model
has been already described by a few authors, ' we
reanalyzed it here, since we have found simple analytical
expressions for free energy, etc. , which apply in the limit
of large imperfect nesting (eo & b. where eo is the paraine-
ter characterizing the imperfect nesting and 6 is the
SDW order parameter). Also, most of the present results

apply as well for CDW. However, we limit ourselves to
SDW for simplicity. The Hamiltonian we study is given
by

H= g E(p)c c~ + U gn tn
P, A

where
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with f.O 6.6

so= ,—'t~—cos(ap~)[t,sin (apF)]

Here cl and c are the electron creation and annihila-
tion operators with momentum p and spin a (= 1' or 1)
and n

&
and n

&
are the corresponding density opera-

tors. We introduced an approximation ' for the quasi-
particle energy, which is valid in the vicinity of the Fermi
surface and when t, » tl, » t, . Then for not too large e0,
the ground state of the Hamiltonian is SDW with nesting
vector Q=(2pi, ~/b, tr/c) and the quasiparticle Green's
function is given by

(4)
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where

g= v ( Ip ] I

—p~) —2ti, cos(bp~ )—2t, cos(cp3),

rt =socos( 2bp z ),
and co„ is the Matsubara frequency and p s are the Pauli
matrices operating on the spinor space formed by the
right-going and the left-going electrons. The gap equa-
tion is now written as

2U '=nT Q(](ru„+]q]'+6']
n

0 0.2 0.4 0.6
eo/tio

0.8 ).6f.o

f J (a +ib cosP+ic cosx )
z~d dx

(2m)'

cos +c2 1/2
0 277

FIG. 1. (a) T, /T, o and (b) 6, /T, are shown as functions of
Gp/ko where T, and 6 is the SDW transition temperature and
the apparent energy gap when co%0 and Ao is the SDW order
parameter at T=O K.

=in(2E, /b, ) —2 g (
—1)"+'Kv(nPb )Iv(nPeo)

n=1

=ln(2E, /so) —2 g ( —)"+'Iv(nPE)Kv(nPsv),
n=1

(6a)

&c coM +g2 1/2
0 21T

Further, Eq. (6a) gives a convergent series for so&A„
while Eq. (6b) for s]])h. One of the consequences of this
symmetry is that the SDW transition temperature T, in
the presence of c0 is given by

b,(T, /T, o)=Ev,
(6b)

where U= UND, Nv=(nvbc) ' is the electron density of
states at the Fermi surface per spin, and ( ) means aver-
age over P=bpz, E, is the cutoff energy, and Iv(z) and
Ko(z) are the modified Bessel functions. The symmetry
between tI], and Eo as seen between Eqs. (6a) and (6b) fol-
lows from the relation

whel e T 0 is the transition temperature for c0=0 and
t)],(T/T, v) is the temperature-dependent order parameter
when so=0. T, /T, o and 6, /T, are shown in Fig. 1 as
function of Ep/6p where Av is the order parameter at
T=O K and b, =6+so (i.e., the peak in the electron
density of states ).

Following the standard procedure the thermodynam-
ic functions are constructed from Eqs. (6a) and (6b).

F=.
No —,](b, —Eo)+—2b, g ( —1)"+'Kz(nPb, )Io(nPeo) for 5) eo,

n=1

—,](n T) +26, g ( —1)"+'Iz(nPE)Ko(nPso) for b, &so,
n=1

(9a)

(9b)

4NDPb g ( —1)"+'[6K'(nPb )Io(nPco) —EDK, (nPE)I](nPED] for 5) so,
n=1

(loa)

—,'~ T+4p& g (
—1)"+'[DID(npb )Ko(n pro) sp, (npb, )—K](npeo] . for iI], & so,

n=1
(lob)
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No ~
—26 +4PA g ( —1)"+'IBK~(nPA)[IO(nPso) —nPsoI, (nPco)]

n=1

—EOK, (nPb, )[I,(nPeo) —nPEOIO(neo)]j for b, )eo, (1 la)

2 dh
No mT——4Psob g (

—1)"+'nIO(nPso)K, (nPeo)T

+4pb, g (
—1)"+'[bIz(npb, )[K 0(np eo)+np eoK, (np Eo)]

n=1
—eDI, (nPb, )[K~(nPeo)+nPeoKO(nPeo)]j for 6 &Eo .

(1 lb)

In particular, the jump in the specific heat at T= T, ( e)0 is given by

2

db, 00

b, C, = ,'Nap —g( —1)"+'n Ko(npEO)
dT T=T

,'N P—e' g ( —1)"+'nK, (nPe )
n=1

2

g (
—1}"+'n Ko(nPeo) .

n+1
(12)

Making use of Eqs. (9a}, (9b), (1 la), and (lib), the free energy and the specific heat of SDW are calculated. For exam-
ple, the phase boundary between SD%' and the superconducting state is determined when F=F„where F„ is the free
energy of the BCS state if we assume that the superconducting state in Bechgaard salts is an ordinary S-wave state. F„
is obtained from Eq. (9a) by putting so=0 and changing T,o to T„ the superconducting transition temperature. We
show in Fig. 2 the temperature dependence of F for a few c0's and in Fig. 3 the phase boundary between SDW and the
superconducting state when T„/T,O=0. 25 and 0.15. The phase boundary is quite similar to the one determined by
Yarnaji earlier, except perhaps a somewhat sharper slope near T=T„. The specific heat is evaluated for a few cp/60
and shown as function of T/T, in Fig. 4. The jump in specific heat decreases with increasing eo as already predicted by
Montambaux. ' It appears that the specific heat takes the same value independent of Eo/bo when T/T, =0.55.

1 —2pb, g ( —1)"+' nK(npb, ) I(onp e)ofor b, )eo,
n=1

1

2Pb, g (
—1)"+'nI&(nPb, )KO(nPe) for 6&so,

n=1

(13a)

(13b)

and

1 —2 g ( —1)"+'K(nPE)IO(nPso) for b )eo,
n=1

(14a)

4T
(sech ( —,'Pg})—2 g ( —1}"+'I(nPb,)Ko(nPeo) for b, &eo, (14b)

where f, and fo are the static and the dynamic limit' and

K(z)= f dxsech xe """"and I(z)= f dy(z —y)IO(y) .
0 0

(15)
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III. ELECTRON DENSITY OF STATES AND TUNNELING CURRENT

Making use of the Green's function given in Eq. (4), the electron density of states is given by

—12 x —5+1—5-'" (x+5+ i)ll- , r —5E(r) for 5—1&x &5+1,
7T 25 (16a)

—[x —(5—1) ]
' (x+5+1)II —,r ' 5E(r—') for x&5+1,

7T x+5—1 (16b)

when 5=6/eo& I, while for 5 & 1,

N(E)/N =—[(1+5) —x ]
' xE(r )+II — r +II rp foro&x&1 —5, (17)

and for x &1—5 it is same as in Eqs. (16a) and (16b),
where x = ~E~/eo, r= —,'[x —(5—1) /5]'~ and

where the lower limit of integration is b —cp when 5 & cp
and 0 when 5 & cp and

r, =[(1—5) —x /(1+5) —x ]'~ (18)
R(z)

and E(z), II(n, z) are the complete elliptic integral of the
first kind and the third kind. The electron density of
states is evaluated for cp =0.165, 0.925, 1.086, and
1.846, is shown as function of x =E/b in Fig. 5(a) and
5(b). When Eo&b„ the energy gap is given by ~, —eo,
while the maximum in the density of states is at 6+Fp.
We identify the apparent gap determined from the elec-
tric resistivity with 6, =b, +cp, since the resistivity for
not too low temperatures (i.e., T &O. 5T, ) is controlled by

When two SDW's are in contact, there will be a cou-
pling between two SDW's in analogy to the Josephson
coupling between two superconductors. This coupling
energy is proportional to

and

Re z g
2 g2 —1/2

T

—(be, ) '"E(r) forz&~eo —b, i,
(&o)—[(6+so) —z ) ''E(r, ) for z&~eo —b, ~,

I+Cp
=b, I dztanh —z R(z)I(z),

p7
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FIG. 2. Free-energy F normalized by Np(hp) is shown as
function of T/T, for a few cp/+p s.
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FIG. 3. Phase diagram for SDW and superconducting state is
shown with the horizontal axis cp/hp. The shaded area is the
superconducting area, two boundaries are for T„/T,p=0. 25
and 0.15, respectively, where T„ is the superconducting transi-
tion temperature. In the insert, the region near cp/hp=1 is en-
larged. As already noted by Yamaji, the superconducting state
invades inside the original SDW region when two states meet.
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FIG. 4. Specific heat C, (cp, T) is shown as function of T!T,
for a few cp/Ao s.

I(z)=Im [(z —»)) —b, ]
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(21)
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FIG. 6. The energy F ( T, t p/5 ) normalized by
F(0,0)=~/4hp is shown as function of T/T, for several
Cp/kp S.

In the limit cp=0, F( T, ep/b, ) reduces to

where r and r, have been already defined in Eq. (18) (now
x has to be replaced by x =z/Ep), while

F ( T, O) = b, tanh—7T

4 2T
(23)

(1+5) —(z/sp)q=— (22)

3.0

2 I5

Oz 2.0—

z ).5—

The F function normalized to the one at
T=ep=0[F(0, 0) =(m/4)bp] is evaluated numerically for
a few values of sp/b, and shown in Fig. 6. In Fig. 7, we
show F (0, ep/b p) /F(0, 0), which increases monotonically
with increasing Ep/kp. We note that the same integral
appears in the pinning potential when sp@0.
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FIG. 5. (a) Electron density of states is shown as function of

E /6 when 6 ) cp; cp =0.29k and co=0.165. (b) Same for
co» co= 1 086 and c,p

= 1.845 FIG. 7. F(0,co/Ao) /F (0,0) is shown as function of E;p/b, o.
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IV. DEPINNING ELECTRIC FIELD Ez (0)=(Q/e)(n, /n)(mN& V) F(0,so/bo) (24)

Generalizing the model due to Fukuyama, Lee, and

Rice for SD% and for all temperatures we can calculate
the threshold electric field corresponding to the depin-

ning of SD%. It is important to distinguish the strong-

pinning limit and the weak-pinning limit, though for pris-
tine samples that contains little impurities the weak-

pinning limit should apply due to weakness of the cou-

pling between SD% and impurities. We do not write
down the phason Hamiltonian here but summarize the
result. In the strong-pinning limit the threshold electric
field is given by

and

Ez (T)/Er(0) = [F(T,EO/b, )/F(O, eo/bo)]f, ', (25)

where both F ( T, Eo/b, ) and f, have been already defined

in Eqs. (19) and (13), respectively. Here, Q =2pF, and n;,
n, and v are the impurity density, the electron density,
and the impurity potential, respectively. At T=O K,
Er(0) increases with increasing so, since Ez (0) is propor-
tional to (F(O, eo/b. o) (see Fig. 7). In particular at
T = T„Eq. (25) simplifies

T2
Ers(T, )/Er(0)= tanh [F(0,0)/F(O, eo/bu)]

gphp 2T, g (
—1)"+'n ICu(npco)

n=1
(26)

where we made use of the expressions

and

f [1T T ~('P~) g ( 1 )"+
& &p(&P&p)

n=1
(27)

BpF ( T, co/b 0)~ tanh (28)p p 4 C

where P= T, . Similarly, in the three-dimensional
weak-pinning limit, the threshold field is given by'

and

Er (0)=—,'(Q/en)[3(mNuV) ] (au Nu)

X(g 'n;) [F(O,so/bo)]

Ez. ( &)/Er (0)= [Er( &)/Ez. (0)]

(29)
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FIG. 8. E&( T)/E&(0) is shown as function of T/T, for a few

cp/6p s.

where a=a. /3, g=vzu3/v the anisotropy factor, and
u =(1+U)' u is the phason velocity in the chain direc-
tion. The ratio Er(T)/Er(0) is evaluated numerically
for a few values of eo/b, u and is shown as a function of
T/T, in Fig. 8. The temperature dependence of the

threshold field increases clearly as cp increases. This
stronger temperature dependence comes mostly from the
stronger reduction' of f, for T) ,'T„ thou—gh both f,
and F(T,eo/b, ) become more temperature dependent for
small reduced temperatures as cp increases. In particular,
the experimental data ' of the threshold electric field in
SDW of quenched (TMTSF)zC104 appears to be de-
scribed if we choose eo/b. 0=0.8 and in the weak-pinning
limit. The value su/60 =0.80 for quenched
(TMTSF)zC10& is consistent with su= 17 K deduced from
Yamaji's model for relaxed (TMTSF)zC104 in order to de-

scribe the field-induced SD% phase transition. ' ' Since
relaxed (TMTSF)zC104 does not undergo the SDW tran-
sition, this implies that b,o 17 K or T,0=9 K (i.e., the
hypothetical SDW transition temperature in the limit of
perfect nesting su=0) for (TMTSF)zC104. Then the tran-
sition temperature T, of quenched (TMTSF)zC104 de-
pends on the quenching rate. * Therefore, it is, in prin-
ciple, possible to study systematically the effect of imper-
fect nesting; a slower quenching means lower T, and
larger imperfect nesting ep/5p.

So far, we are considered only with the threshold elec-
tric field in SDW. In principle, a parallel analysis is pos-
sible in CD%. However, due to the extra temperature
dependence of the threshold field most likely associated
with thermal fluctuation, a clear-cut comparison be-
tween theory and experiment is rather difficult in CDW.
Therefore, SD% appears to provide a unique possibility
to explore the effect of imperfect nesting through the
temperature dependence of the threshold field. A similar
test of theory may be carried out for (TMTSF)zPF6 under
pressure as we11.
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