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The dynamical response of a classical two-dimensional electron gas confined in a ring geometry
under a perpendicular magnetic field is analyzed. Within the hydrodynamical approach and in the
strong magnetic-field limit, a new set of antidot edge magnetoplasmons is obtained, corresponding to
density oscillations circulating along the inner boundary of the ring and whose frequency increases
with magnetic field. The associated self-induced distribution of densities and currents are presented,
together with an analysis of the size dependence of these perimeter waves.

A two-dimensional electron gas (2DEG) with con-
fining boundaries in a perpendicular magnetic field
exhibits low-frequency plasma oscillations associated
with the edge of the sample. These edge magne-
toplasmons (EMP's) in the 2DEG both on the sur-
face of liquid helium~ s and in etched semiconductor
heterojunctions4 s have received much attention in re-
cent years.

The theoretical studies to date ' have beeen re-
stricted to simply connected geometries (dots); we pro-
pose here that in more complicated geometries, like a
ring, a new EMP will arise, due to the propagation of
density fluctuations on the inner boundary of the sam-
ple.

Our model is a classical 2DEG confined in a ring of
inner radius a and outer radius b The ring. contains
a static positive and uniform background with density
per unit area enp (e ) 0) and a compressible electron
fluid with areal charge density —e(np + n), where n is
the self-induced density (n (( np). The system is un-
der a perpendicular magnetic field B along the z direc-
tion and surrounded by dielectric material with dielectric
constant et for z ) 0 and eq for z ( 0. In order to get
a closer resemblance to the actual experimental setup of
electrons on the surface of liquid helium, we also include
two grounded metallic electrodes above (z = h) and be-
low (z = —h) the 2DEG.

In this paper, we adopt the hydrodynamic approach~z
to study the magnetoplasma excitations of such electron
fluid confined to a ring; the same theoretical framework
has been used previously to study the EMP of dots, '

strips, and quite recently, the magnetoplasma excita-
tions of parabolic quantum wells. The starting points
of this frictionless, unretarded, and linearized hydrody-
namic model are the equations of continuity and the Eu-
ler equation,
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where P and v are the self-induced potential and velocity,
respectively, w, = eB/mc the cyclotron frequency, and s
is an efFective wave speed that arises from the compress-
ibility of the fluid. The symbol V is the two-dimensional
operator (8/Bp) P+ (8/p88) 8, with p and 8 the radial and
polar coordinates, respectively.

For z g 0, the self-induced potential satisfies Laplace's
equation, while at z = 0 it obeys the usual boundary con-
ditions that P be continuous and that its normal deriva-
tive should have the following discontinuity:
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where 6 is the Heaviside step function.
Finally, Eqs. (1)—(3) will be suplemented by the usual

hard-wall boundary conditions of many hydrodynamic
treatments of finite systems. These boundary conditions
require that there be no normal component of velocity at
the boundaries of the electron fluid; from (2), the math-
ematical expression of this condition is

( 8 ivJ, B) (, n e' —lls' ———4 l

\, Bp p 88] \, np m ) =,a
(4)

While hard-wall boundary conditions should apply for
filled wells with vertical sides, as is the case for electrons
on the surface of liquid helium, its applicability to the
case of electrons in etched semiconductor heterojunctions
is not obvious.

Rotational invariance around the z axis and transla-
tional invariance in time implies that all the unknown
quantities have an angular and time dependence of the
form e'('8 ), where t is an integer and cu the frequency
of the normal mode. En the fully screened limit h —+ 0,
the self-induced density and potential are related by a
local relation and the previous set of basic equations re-
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duces to the following two equations:

(' Bz 1 B lz
+ — ——+ ' inx =0,

(Bx x Bx xz 0 ~sz/az) (5)

renormalization of Ap) in what follows we will take s = 0.
Taking into account that the origin is excluded from

the region where solutions of (5) should be obtained, the
more general solution when cu & cu, is given by

+ '
in(x) =0,B (d.l l

Bx x) (6)

where (5) is the result of some manipulation with (1),
(2), and (3), (6) is the boundary condition (4), x = p/a,
and Ap ——4ze nph/ma (ei + sq) = c„/a, where c is
a screened plasmon velocity. At this stage the problem
has been reduced to the solution of an ordinary second-
order differential equation (5) with the mixed boundary
condition (6); a similar procedure was used in Ref. 2
to analyze the EMP of a disk. Considering the trivial
role played by the parameter s in Eq. (5) (it just gives a

I

2 2 pq2A2 (8)

which is similar to that for an infinite 2DEG, but with
the two-dimensional bulk plasma frequency replaced by
AAp, which is magnetic-field and ring size dependent.

Substitution of (7) in (6) yields the equation which
determines the eigenfrequencies u,

ii(x) = ~Ji (Ax) + &Yi (Ax), (7)
where A and B are coefficients, J~ and Y~ are the Bessel
functions, i4 and A a parameter that should be chosen so
as to satisfy the boundary conditions. Replacing (7) in

(5) we obtain the dispersion relation
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In the regime ~ & ~„according to Eq. (8), A & 0, which means that we should replace A by iA in (9); using the
properties of the Bessel functions of imaginary argumentsi4 we obtain in the regime u & u, the eigenvalue equation
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where Ii and K~ are now the modified Bessel functions.
Equations (9) and (10) are the central result of our pa-
per; before proceeding with its numerical solution, we
will obtain some analytical results from them.

A first important point is that Eqs. (9) and (10) are
not invariant under the change l by l, if u, g —0; this
means that while the solutions corresponding to the nor-
mal modes with l and —l are degenerate if ur, = 0, as
soon as the magnetic field is turned on, a splitting arises
between both modes. In real samples, however, any devi-
ation from the cylindrical symmetry will give a coupling
between the l and —l modes, and consequently a splitting
even at u, = 0.

A second interesting question is how many EMP's have
a ring in the strong magnetic field regime u, /Ap » 1 for
a given l? The answer can be easily found from Eq.
(10) (by definition, the existence of EMP implies cu &
a, ) by making use of the asymtotic expansions of the
modi6ed Bessel functions, with the result that we found
two EMP's,

l & 0: u+((al /Ap » 1) ~ lAp + O(1/(d ),

l & 0: a (cd /Ap » 1) ~ —l —Ap + O(1/4) ),
b

(12)

which, remembering that Ap = c„/a, could be rewritten

I

in the transparent way u+ lc„/a, ur lc„/b, which—
shows that the positive l mode u~ (the antidot EMP) cor-
responds to a density perturbation that circulates around
the inner edge, in the counterclockwise sense, with the
screened plasmon velocity c, while the negative l mode

(the dot EMP), corresponds to a density perturbation
circulating along the outer boundary, in the clockwise
sense. This last mode is the one discussed extensively
in the literature both experimentally and theoretically,
and its main feature is that its frequency decreases as
the magnetic field increases, reaching asymptotically the
limiting value (12). No anomalous solution of (10) exist
for l = 0, which is consistent with the fact that for these
radial modes, the angular component of the velocity is
zero when (d, = 0 [see Eq. (15) below].

Turning now to the numerical results, we display in
Fig. 1 the antidot EMP frequencies u+ (dashed lines)
and the dot EMP frequencies u (full lines) for several
values of t; the dotted line corresponds to the cyclotron
frequency ~, and b/a = 2. It should be pointed out that
for a given l, Eqs. (9) and (10) have an infinite number
of solutions, corresponding to difFerent values of the ra-
dial quantum number; of all these solutions, only the one
corresponding to the lowest radial quantum number (no
nodes in the density in the radial direction) gives rise to
the EMP, and these are the only ones plotted in Fig. 1.
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FIG. 4. Self-induced angular current distributions associ-
ated with the dot EMP (full line) and antidot EMP (dashed
line), for several values of magnetic field; ~l~

= 1 and b/a = 2.

for several values of the magnetic field. From Eq. (2),
we obtain

js(z) Ap2 f to, 8 lto 11 n(2:)
8+fi(2'p) id —4J (Ap Bz Ap z) n(zp)

with n(z) /n(xp) as given by (15). The behavior of the an-
gular currents is similar to the charge density behavior:
with increasing magnetic field they tend to be concen-
trated on the corresponding edge, within a scale given by
A. For strong enough magnetic field, the angular current
of the antidot (dot) EMP tends asymptotically towards
the limiting value ec„n(1) [ec„n(2)j from above (below).

Turning now towards the question of the experimen-
tal situation, very recently Kern et alis have studied
the collective excitations of a periodic array of antidots
by far-infrared spectroscopy. They observed essentially a

high- and a low-frequency resonance; the low-frequency
branch starts approximately from ai, at small B and then
increases in frequency with magnetic field, as opossite to
the dot EMP, which decreases in frequency with mag-
netic field. The mode (at least for strong magnetic field)
was associated with an EMP which circulates around the
antidot.

While it is tempting to associate this behavior with
the similar results obtained for the l & 0 modes of Figs.
1 and 2, a comparison between theoretical and experi-
mental results is difficult as the antidot structures have
been prepared by etching arrays of holes in a 2DEG while
the calculations presented in this work should give a rea-
sonable description of electrons on the surface of liquid
helium; this is implicit in our assumption on the pres-
ence of grounded electrodes and the hard-wall boundary
condition.

In summary, using the hydrodynamic approach to de-
scribe the dynamic response of a classical 2DEG confined
by a ring, we have obtained ttpo edge magnetoplasmons.
One of them is associated to a charge density which cir-
culates around the outer perimeter of the ring and whose
frequency decreases when the magnetic field increases,
while the second one (the antidot EMP) represents a
charge density which circulates along the inner bound-
ary of the ring, with a frequency which is an increasing
function of the magnetic field. We hope that the present
results will stimulate the search for the experimental de-
tection of this new EMP for electrons on the surface of
liquid helium, where the first clear results were obtained
for the related dot geometry.
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