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We show that the Fuchs-Kliewer slab model, as used for the description of the electron-phonon
Frohlich interaction in quantum wells and superlattices, can be reformulated in a simple way and it
becomes very close to the Huang and Zhu model, based on a lattice-dynamic approach. This simple
reformulation answers several questions which have been made over the past few years about the
dielectric continuum model, especially those about the existence of a half-wavelength mode of the
z component of the relative ionic displacement which has no counterpart in microscopic calculations.
We show that in fact this mode does not exist in the reformulated slab model.

The dielectric continuum model is an attractive
method to study scattering due to electron-phonon
(Frohlich) interactions in low-dimensional structures
such as semiconductor quantum wells and superlattices.
Several device properties such as mobilities, relaxation
rates, and phonon-assisted tunneling currents can be cal-
culated without too much effort in this way.

The first theory, originally developed for dielectric
slabs of relatively large dimensions (several ym), i 4 was

recently adapted for the use in quantum wells and is usu-
ally referred to as the Fuchs-Kliewer slab model or sim-

ply the slab model. Discrepancies between microscopic
lattice-dynamic calculations and these models gave ori-
gin to an intense debate about the validity of this the-
ory (for a review see Menhndezs and Cardonas). Some
authors" M proposed the use of difFerent boundary condi-
tions (hydrodynamic boundary conditions) arguing that
the continuity of the z component of the mechanical rela-
tive displacement has a greater importance than Che par-
allel component (which is proportional to the phonon po-
tential) due to the predominantly mechanical nature of
LO modes. ii This alternative description, frequently re-
ferred to as the guided modes model, results in smaller
scattering rates for intrasubband transitions and larger
scattering raCes for intersubband transitions. Recently,
Riicker, Molinari, and Luglii2 pointed out that the re-
sults of the guided modes model are inconsistent with
scattering raCes obtained from microscopic calculations,
therefore this model is being increasingly ruled out as a
valid alternative to the Fuchs-Kliewer slab model.

Huang and Zhuis proposed an ad hoc model based on
a lattice-dynamic calculation, which reproduces closely
their results of microscopic calculations. Comparing the
Huang and Zhu model with the slab model, as derived
by Fuchs and Kliewer, i it is found that a half-wavelength
mode of the z component of the relative ionic displace-
ment u„which is present in the Fuchs-Kliewer slab
model, is absent in the microscopic calculation and hence
in the Huang and Zhu model. Huang and Zhu argued
that this mode should correspond to an interface mode
obtained in the microscopic theory, when dispersion is

taken into account. is'i4 We will show in this Brief Re-
port that this half-wavelength mode of u, in fact does
not exist in the reformulated slab model.

The Huang and Zhu model has received a large ac-
ceptance and is believed to be the dielectric continuum
model (although ad hoc in nature) which currently best
describes the electron-phonon interaction in quasi-two-
dimensional systems.

The modes presentty obtained from the Fuchs-Kliewer
slab model are the result of a wrongly defined arbitrary
function. When a correctly defined arbitrary function is
used a different set of independent solutions is obtained
which are very close Co the phenornenological form pro-
posed by Huang and Zhu. is

We now present a brief description of the difFerential
equation which leads to the solutions of the relative ionic
displacements, essential for the derivation of the electron-
phonon interaction Hamiltonian, of the slab model. For
more details on this theory we refer the reader to Refs. 1
and 4.

For the case of a dielectric slab, the Maxwell equations
in the limit of no retardation will result in Che following
difFerential equation for the phonon potential:z 4

Note that at the bulk LO-phonon frequency the dielec-
tric function in the slab is zero e(uzb&") = 0, therefore
any arbitrary electric field satisfies Eq. (1). The only
constraint now is the electrodynamic boundary condi-
tion to be applied on the electric fields. Ouside the slab
[where e(u) g 0] Eq. (1) has as solutions exponential de-
caying functions. With the boundary conditions applied
on the electric field E and the displacement field D (Ref.
15) we obtain that the phonon potential outside the slab
has to vanish. 4

At frequencies lying within the limit of the bulk phonon
frequencies, i.e. , between ~I 0" and cuTo", the dielectric
function is not zero in the slab and the potenCial P(z)
must satisfy the differential equation [Eq. (1)]; thus the
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well-known interface phonons are obtained.
The interface phonons are now well understood from a

theoretical as well as from an experimental point of view.
Remaining disagreements concern mainly the confined
phonon modes. Let us study, for instance, the properties
of an arbitrary function f(x) expanded over a complete
set of orthogonal functions. The standard Fourier series
in the interval [

—x, m] is such a function,

I

=1( =3)

f(x) = —+ ) [a~ cos(jx) + b~ sin(jx)].
i=1

(2)
I )—n =3(n'=5)

In the dielectric continuum theory, as derived by Licari
and Evrard, 4 the phonon potential is zero outside the
slab, therefore we seek f(km) = 0 which enables us to
eliminate the coeflicient ac and obtain

f(x) = ) {a~ cos(jx) —(—1)~ + b~ sin(jx)).
3=1

1

2
1 1+ 2 2

We now perform a change of indexes in the following
way: j = k/2 for the cosine series and j = (k+ 1)/2 for
the sine series,

Ag cos(kx/2) —(—1)"~, k = 2, 4, 6, . . .
Bl, sin(k+1)x/2, k = 1, 3, 5, . . .

FIG, 1. Parallel components of the confined-phonon rel-
ative ionic displacements u~~ [proportional to the phonon po-
tential P(z)] for the reformulated slab model (full curves) and
for the Huang and Zhu model (dashed curves).

(4)

i.e. , labeling the even-parity modes [fg(x) = fg( —x)]
with even indexes and odd-parity modes [fl, (x)
—f~(—x)] with odd indexes, without loss of generality.
Within the framework of the dielectric continuum model
(we follow closely the delevopment of Sec. III of the work
by Licari and Evrard4), we can then derive a phonon
potential function for the confined phonons,

a„sin[(n + 1)zn /L], n = 1,3, 5, . . .
b„cos(nzn /L) —(—1)"iz, n = 2, 4, 6, . . .

(5)

where a„and b„are constants. Note that the phonon
potential P(z) is proportional to the parallel component
of the relative ionic displacement u~~ (z), and its derivative
is proportional to the z component u, (z).

Note that the even modes in Eq. (5) are exactLy the
same as in the Huang and Zhu model, is

a„sin(p„vrz/L) + C„Iz/L, n' = 3, 5, 7, . . .
b„cos(n'z7r/L) —(—1)"i, n' = 2, 4, 3, . . .

(6)

where we have used the label n' to distinguish from the
labeling used in Eq. (5).

In order to compare Eqs. (5) and (6) directly we use
n' = n+ 2 for odd modes and n' = n for even modes.
At a first glance the odd modes in the reformulated slab
model and in the Huang and Zhu model seem to be very
difFerent. Yet at a closer inspection it becomes evident
that this is not the case as Fig. 1 illustrates.

If we compare the reformulated slab model with the

original Fuchs-Kliewer model we notice that only the
even-parity modes have changed in the reformulation,
the odd-parity modes remain unaltered. This may not
be immediately clear due to the difFerent labeling used in
this reformulation. Although it is generally agreeds that
the labeling in the slab model is arbitrary due to the de-
generacy of the modes, it is nevertheless convenient that
the labeling refiects the parity of the phonon potential
function.

Figure 2 shows the z component of the relative ionic
displacement for the reformulated slab model and the
Huang and Zhu model. The half-wavelength mode,
present in the original slab model, is absent in the re-
formulated slab model.

It is now clear, from the discussion above and from
Fig. 2, that the absent n' = 1 mode in the Huang and
Zhu model is not a half-wavelength confined mode which
has become an interface mode under given circumstances
(hybridization), because this mode simply does not ex-
ist. As Eq. (5) is a complete set of solutions it is un-
likely that there is any important mode missing from
the model of Huang and Zhu. It is not surprising, there-
fore, that the scattering rates obtained for the odd-parity
modes are almost indistinguishable from those calculated
for the Fuchs-Kliewer slab model even when a uniform
longitudinal electric Geld is applied. Rudin and Rei-
necke initially found significant differences in the scat-
tering ratesis between the Fuchs-Kliewer slab model and
the Huang and Zhu model, but corrected their calcu-
lation afterwardsis and now also show that this difFer-
ence is very small indeed. It would be expected that the
absence of a fundamental mode should result in impor-
tant changes in scattering rates, which has not been the
case. Notice that we are not ruling out the mixing of
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FIG. 2. z component of the confined-phonon relative ionic
displacement u, for the reformulated slab model (full curves)
and for the Huang and Zhu model (dashed curves). Note
u, is proportional to the first derivative of the parallel com-
ponent ull, shown in Fig.1.

confined and interface modes (hybridization) which is a
completely different issue.

Recently, Zianni, Butcher, and Dharssi2o introduced a
parabolic bulk phonon-dispersion relation into the phe-
nomenological equations of Born and Huang~~ in order
to obtain confined-phonon potentials. In the dispersion-

less limit they found confined-phonon potential functions
similar to the Huang and Zhu model. One should expect
to obtain, in the dispersionless limit, the potential func-
tions of the original Fuchs-Kliewer slab model, which is
not the case as shown in Ref. 20. This can be regarded
as additional evidence of the correctness of our reformu-
lation.

We have shown, using a very simple Fourier-series anal-
ysis, that the con6ned modes in the slab model take a
different form from the one initially assumed by Fuchs
and Kliewer. ~ Once reformulated, the slab model turns
out to be very similar to the Huang and Zhu model, and
recent works by other groupszo seem to provide further
evidence of the correctness of our results. In particular,
we found that it is unlikely that there is any mode absent
from the Huang and Zhu model; the only major problem
of this model seems to be the nonorthogonality of the
phonon potentials. This issue was recently treated by
Haupt and Wendler2I who orthonormalized the phonon
modes of the Huang and Zhu model. Our reformulation
also explains the striking similarity of intersubband scat-
tering rates obtained by this model and the Huang and
Zhu model. s~

In conclusion, our simple reformulation provides an an-
swer to many questions raised about the original slab
model since its first publications by Fuchs and Kliewer
27 years ago. We believe that the slab model has now
been shifted into a coherent picture.
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