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Third-harmonic generation in semicontinuous metal films
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The weak nonlinear electrical response of two-dimensional semicontinuous Ag and Au films was mea-
sured over three decades of sheet resistance. The third-harmonic component generated by the films, due
to local Joule heating, is interpreted as a measure of the fourth moment of the current distribution.
Higher harmonics corresponding to higher moments of the current distribution were also observed. Un-
der certain conditions, measurement of the third harmonic lends the same critical exponent as that of
1/f noise, which obeys a power-law dependence Sz & (p —p, ) ", where Sz is the mean square of resis-
tance fluctuations, p the surface coverage fraction, and p, its critical value where the metal-insulator
transition occurs. The film resistance obeys another power law R ~{p—p, ) ', hence Sz ~R with
m =x/t. We have found that w =1.2+0. 1 for Ag samples, which is somewhat higher, but close to the
lattice percolation value (random resistor network: 0.82 & w ( 1.05). For the Au samples,
w =1.65+0.15, which is higher than the lattice percolation exponent and lower than the Swiss-cheese-
model continuum percolation estimate (w )4.5). Comparison of our data on gold films with 1/f noise
measurements on similar samples suggests the equivalence of these two techniques in probing the micro-
geometry details.

INTRODUCTION

The exact microgeometry of a percolative film can be
probed by quantities whose critical behavior is
nonuniversal. This is the case for 1/f noise which mea-
sures the fourth moment of the current distribution.
Rammal et al. ' have introduced a new critical exponent
~ that describes the divergence of the noise power
Sz ~ (p —p, ) ", where p is the filling factor and p, the
critical filling factor (at the metal-insulator transition).
The resistance itself is described by another power law
R ~(p —p, ) '. Combining these two power laws yields

Sit ~ R ",where w =tc/t.
As in two-dimensional (2D) systems the resistance crit-

ical exponent t is practically universal, i.e., not sensitive
to the exact microgeometry, the measurement of Sz
provides the value of the noise exponent ~. The theoreti-
cal value for lattice percolation [random resistor network
(RRN)] is w =0.86 (Ref. 2), and the upper and lower
bounds are 1.05 and 0.82, respectively. Different values
are expected for continuum percolation. For the Swiss-
cheese model w is in the range of 4.7 to 6.2. Bergman
has calculated the sensitivity of this exponent to some de-
tails of the microgeometry, showing that experimental
values should not be smaller than that of the lattice per-
colation. For ion-milled gold films Koch et al. obtained
w =2.0+0.1. Measurements of Al, In, and Cr films
yielded w values in the range of 5 to 8. 1/f noise mea-
surements are rather delicate as the noise power is in-
versely proportional to the sample volume and should be
separated from other noise sources. This method is thus
limited to small samples and noisy systems. An alterna-
tive measurement of the fourth moment of the current
distribution, by Joule heating, was recently suggested by
Dubson et al. A finite temperature coefficient

P=(1/R)(dR/dT) results in the generation of higher
harmonics.

We have applied the third-harmonic-generation tech-
nique on semicontinuous Ag and Au films using low-
frequency electrical measurements. The third-harmonic
coefficient is found to scale with the film resistance R as
R x =3.2+0. 1 and x =3.65+0. 15 for the Ag and Au
films, respectively. Under certain conditions, which are
discussed below, x may be interpreted as the critical ex-
ponent of the fourth moment of the current distribution,
i.e., x =2+w. Assuming that this is the case in our films,
we find that w =1.2+0. 1 and w =1.65+0. 15 for the Ag
and Au films, respectively. The measured value of w for
the Au films is in fair agreement with previous 1/f noise
measurements. For the Ag films, w is higher than, but
close to the upper bound of the RRN model. The
harmonic-generation method allows a measurement of
the fourth moment down to relatively low sheet-
resistance films, for which the 1/f noise would be very
small, leading to a more accurate determination of the ex-
ponent w in a clearly metallic regime. Another advan-
tage of this method is that it is more general: while the
1/f noise measurement leads only the fourth moment of
the current distribution, higher moments can be obtained
through measurements of higher harmonics, which we
have indeed detected. However, if the Joule heat is
spread on relatively large areas, the third (and higher)
harmonics are not directly connected to the correspond-
ing moments of the current distribution, and the interpre-
tation of the data is much more complicated.

The film resistance probes the second moment of the
current distribution as can be easily seen from conserva-
tion of energy: I R =Xi r, where R is the film resis-
tance, I the total current, and i and r are the local
current and resistance, respectively. The relative resis-
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r =ro+5r cos(2cot +P),
where the correction of 5r to the first term was ignored
as 5r «ro, and P is the phase shift between the heat
production and the local temperature. The voltage
across the sample is given by

V =IR =IoRo cos(cot)+ —,'IobR cos(3cot +/) . (3)

This is the source of the third harmonic generated by the
sample. Substituting 5r and using I b,R =Xi 5r yields

V3f ~ IOER ~ Xi r~
.4 Z

0
(4)

or

V3f Xi r Xi r

IoR IoR (Xi r )

where we have assumed that h (co, T) is position indepen-
dent, i.e., does not depend on a. Assuming again r =r,
one finds

tance noise Sz = (5R ) /(R ) probes the fourth current
distribution moment' and is given by
Xi (5r )/(Xi r ), where 5r is the resistance fiuctua-
tions of r (assuming that 5r and 5r& are not correlated:
(5r 5rp) =5 p). If all the elementary resistors r are
identical and have the same value r, the above relation
reduces to 5r Xi /r (Xi ) . The relation between resis-
tance fluctuations and thermal response was first recog-
nized by Weissman and Dollinger. The local resistance
change, assuming a linear thermal response, is

5r =rPAT=Pi r h(co, T),
where h (co, T) defines the coupling between the local dis-
sipation and the local temperature change (including the
heat conduction, the specific heat, and the coolant and
substrate infiuence). For an ac current I =Iocos(cot), the
local resistance r can be written as

5"
&
="o[Ph (co, T)ro]

5r2 =ro[ph (co, T)ro]2i 4,

5r3 =ro[ph (co, T)ro]3i 6 .

(10a)

(10c)

EXPERIMENT

Using again I bR =Xi 5r and b, V =(1/I)Xi25r, o e
finds that the third harmonic is generated by 5r &, the fifth
by 5rz, the seventh by 5r3, and so on. The (2n +1) har-
monic is thus given by

V(2 +i)f:(1/I)( ) ro[PA (co T)ro) Xi

=I "+'( ,')"ro—[Ph(co,T)ro]"N "(R/Ro) ",
(1 1)

where N is the number of resistors in the RRN model,
Ro is the sheet resistance of a continuous film (p =1),
and a„is the critical exponent of the (2n +2) moment of
the current distribution.

In the above derivation we have assumed that the tem-
perature increase of each resistor r depends solely on i,
ignoring the heat flow between adjacent resistors. Typi-
cally, a link which carries high current density causes the
temperature increase of its surrounding links. The con-
tribution of these links to the total resistance change
AR =Xi 5r depends on their number and their current
densities. If hR is dominated by the high-current-
densities links, Eq. (11) is valid and the harmonic-
generation technique provides a direct measurement of
the corresponding moments of the current distribution.
In the opposite case (b,R is dominated by the heated
low-current-densities links), the harmonic-generation
method measures some kind of the autocorrelation func-
tion of the second moment of the current distribution,
where the exact form depends on the temperature profile.
A fuller analysis requires the solution of the heat flow in
such a system, which was not done yet as far as we know.

V3f

I
and V» should scale as

V3 ~ R 2+UP

Io

A more detailed calculation of 5r in (1) yields the produc-
tion of higher-order odd harmonics. If the zero current
resistance is ro then (1) can be written in the form

5r =roPh(co, T)i (ro+5r) .

Expanding 6r in a power series yields

Ph(co, T)roi
5r = =roX[Ph(co, T)ro]"i "

1 —Ph (co, T)roi

=5r, +5r2+5r3+

where

Thin semicontinuous Ag and Au percolating films were
evaporated under vacuum of 10 torr at a rate of 0.1

nm/s onto room-temperature glass substrates. Several
samples with different surface coverage values were
prepared simultaneously in each run. Their size was 4X 1

mm . The samples were measured at room temperature,
liquid-nitrogen (77 K), and liquid-helium (4.2 K) temper-
atures. The third harmonic generated by the samples was
measured by an HP35660A two-channel dynamic signal
analyzer, where channel 3 was directly connected to a
resistive balance bridge and channel 8 to a series resistor
measuring the ac current. The HP35660A internal
source provided a monochromatic ac signal with max-
imum ratings of 3 V rms and 30 mA. The maximum
voltage applied on the sample was thus 1.5 V rms, due to
the bridge operation. Detection of the third harmonic
was normally measured at source voltages of 0.1-3 V
rms. This method provided a sensitivity of better than
—120 dB, which was suScient to measure the third har-
monic of an almost continuous metal film. Most of the
data were obtained at a frequency of 1.5 Hz and at room
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temperature. Measurements at other temperatures (77
and 4.2 K) and frequencies (within the range 0.1 —35 Hz)
were performed in order to verify the independence of the
critical exponent on those parameters. Resistance versus
temperature measurements showed a positive tempera-
ture coefficient (metallic conductivity). The I Vc-harac-
teristics of several samples at various temperatures show
a linear dependence (Ohmic behavior) at low enough
currents (the actual values are strongly sainple depen-
dent) and a weak resistance increase at higher currents
(for example, above 1 mA for a 1-K ft filin), due to Joule
heating of the entire sample. TEM micrographs of silver
[Fig. 1(a)] and gold [Fig. 1(b)] films show percolative
two-dimensional structures with an average channel

width of 30 and 20 nm, respectively. Qualitative exam-
ination of the microgeometry shows the existence of some
much narrower channels. They exist both in the Ag and
Au films, with no clear qualitative difference between
them [apart froin the different surface coverage parame-
ter, i.e., (p —p, ) in the Ag sample is larger than that of
the Au sample]. Identifying diff'erences between the two
microgeometries by investigating the TEM micrographs
would be a complicated task requiring sophisticated im-

age analysis. Moreover, differences in the exact micro-
geometry may result from the existence of photoresist or
carbon film on the substrate, thus the TEM micrographs
cannot always represent the precise structure.

RESULTS

(a)

] P r-
) I )

~ [s
We assume in our analysis that Eq. (11) is valid. Our

main empirical reason for believing so is the fact that the
average temperature rise of the film at a typical power
level that we use is orders of magnitude smaller than the
local temperature rise. The average temperature rise can
be obtained from the change in the measured macroscop-
ic resistance of the film. This is typically less than 0.1 K
(less than 0.01%%uo change in the macroscopic resistance;
see Fig. 3 for I (1 mA). On the other hand we show
below that the observation of third-harmonic generation
in liquid-helium-cooled Au films can only be explained by
local temperature rise of at least 10 K. This large
difference between average and local heating can only be
understood if the fraction of significantly heated links is
very small. Possible theoretical verifications for the va-
lidity of this assumption are discussed below.

The normalized third-harmonic amplitude
(8 V3f /I ) of the silver films versus the rooin-
temperature resistance R is shown in Fig. 2. The straight
line yields a power-law dependence 8 ~R +, giving a
critical exponent w =~/t =1.2+0. 1. Substituting t =1.3
yields a =1.55+0. 15. The measured value of w is higher
than, but close to the lattice percolation upper bound
0.82& w &1.05. The third-harmonic amplitude at 77 K
is almost twice that at room temperature and the critical
exponent is unchanged. Cooling to 77 K was done by ei-
ther direct contact with liquid nitrogen or with exchange
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FIG. 1. TEM micrographs of semicontinuous metal films. {a)

7.5-nm-thick Ag film. (b) 6.5-nm-thick Au film.

Resistance (kA)

FIG. 2. The scaling of B for Ag films, 2+ w =3.2+0. 1 (loga-
rithmic scales). The different symbols represent separate fabri-
cation runs with several samples fabricated in each run. The in-
set shows the frequency dependence of B for one of the Ag
61rns. The straight line represents V3f ~ co

' ' (see Ref. 8).
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gas; in both cases the third-harmonic amplitude was the
same. This indicates that the heat Aow from the weak
links is primarily to the metallic clusters and that the
heated areas are very small indeed; thus a hot-spot pic-
ture is appropriate. At 4.2 K no third-harmonic com-
ponent was found using the same current range (the max-
imum current used in our measurements is reached by
applying 1.5 V rms on the sample). The resistance-
temperature coeScient was measured and found to be-
come very small (@&10 K ') at these temperatures,
thus local heating cannot change significantly the local
resistance and a nonlinear response is not expected: as
shown above, the third-harmonic amplitude is propor-
tional to the resistance-temperature coefficient P and is
thus suppressed. Above 30 K a linear temperature
dependence is found up to room temperature with a con-
stant slope P=(1/R)dR/dT=6. 4X10 K ', where R
is the resistance at room temperature. The frequency
dependence of B was also checked and is shown in the in-
set of Fig. 2, where again m is unchanged. This depen-
dence is dominated by the heat-transfer mechanism and
was discussed in Ref. 8. A power-law dependence
V3f s, resulting from a one-dimensional heat-Aow
picture (from the film into the substrate), is found only
for a limited frequency range. This is another indication
that the heat fiow through the metallic channels is not
negligible. An I-V characteristic of one of the Ag sam-
ples is shown in Fig. 3. The sample resistance increases
with the current, showing that the nonlinear response is
due to Joule heating. The resistance change is noticed
only at higher currents than those used in the ac mea-
surements (less than 1 mA in this case), showing that the
heating in the latter case is really a local effect. Fitting
the resistance change with a quadratic correction
V/I =R +BI yields 8 =10 V/A while for the third-
harmonic generation B =5.2 X 10 V/A at 1.5 Hz. Al-
though the observed frequency dependence of B does not
permit accurate extrapolation to co=0 (see the inset of
Fig. 2), it seems reasonable that the dc result would be re-
gained in that limit. Thus in the third-harmonic method
one also measures the onset of the nonlinear response.

The scaling of V3& as a function of R for gold films is
shown in Fig. 4. In this case the data are more noisy, but
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FIG. 3. I-V characteristic of one of the Ag films (serniloga-
rithmic scale). A deviation from Ohmic behavior is observed at
high currents due to Joule heating. The solid line represents the
fit V/I=R +BI,B =10 V/A .
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FIG. 4. The scaling of B for Au films, 2+w =3.65+0. 15
(logarithmic scale). The dift'erent symbols represent separate fa-
brication runs with several samples fabricated in each run.

a power law with critical exponent w =a/t =1.65+0. 15
is well defined up to R =10 K Q. In particular, the value
of w in this case is definitely larger than that of the silver
films. Substituting t =1.3 yields ~=2. 15+0.2, in close
agreement to the value obtained by Koch et al. using
1/f noise measurements on gold films. The micro-
geometry of Au films is thus different from that of Ag,
and is not well described either by lattice percolation or
by the Swiss-cheese model. Again no change in u was
found for different temperatures and frequencies. The
frequency dependence and the I-V characteristic of the
Au films are similar to those of the Ag films. The magni-
tude of the third-harmonic component was enhanced at
77 K, like the case of the silver films. At 4.2 K third-
harmonic generation was observed and the amplitude was
smaller than the amplitude measured at room tempera-
ture (unlike the silver films where third-harmonic genera-
tion was suppressed at 4.2 K). The resistance tempera-
ture coefficient of Au was measured and found to become
very small (P&10 K ') below 15 K. The observation
of a third harmonic at 4.2 K indicates that the tempera-
ture rise at the weak link is more than 10 K. Above 1S K
a linear temperature dependence is found with a constant
slope P=(1/R)dR/dT=6. 7X10 K ', where R is the
resistance at room temperature. For a 200-0 sample, this
behavior was measured up to 400 K (the highest tempera-
ture reached). On the contrary, a 100-K 0 sample
showed this behavior up to 320 K only; beyond that the
resistance-temperature coefficient changed sign and be-
came strongly temperature dependent. At 380 K,
P= —8 X 10 K ', i.e., a negative coefficient whose ab-
solute value is an order of magnitude larger than the me-
tallic value. The third-harmonic coefficient of samples
with resistances higher than 10 KQ seems to saturate
(unlike the case of the silver films). This saturation and
the anomalous resistance-temperature coefficient of
high-resistance films indicates that their conductivity is
not purely metallic. We interpret this behavior in the fol-
lowing way: when a high current is applied to a weak
link, the local temperature change is sufficient to excite
local hopping, reducing the current density in the weak
link and resulting in a weaker third-harmonic com-
ponent. Such a hopping mechanism could be expected in
a continuum percolation structure. For illustration, con-
sider two metallic disks just touching each other. The
point contact is a metallic weak link, while on both sides
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the separation between the two metallic disks is extreme-
ly narrow, and hopping will be excited at relatively low
temperatures.

Generation of higher odd harmonics measures higher
moments of the current distribution, as discussed above.
We have detected fifth and seventh harmonics on several
high-resistance films, and verified that the normalized
quantities Vsf/I and V7f/I are constant, i.e., current
independent. As discussed by Bergman, these higher
moments are even more sensitive to the exact micro-
geometry and may be useful if such information is need-
ed. To observe these harmonics on more metallic films,
one would have to use a high-pass filter or a Fourier-
transform analyzer with a much larger dynamics range,
as the third-harmonic amplitude is much larger than the
higher harmonics. From the ratios between the third,
fifth, and seventh harmonics of one of the films, one may
estimate the critical exponents of these higher moments:

V,
„„

/I2" +

)
=

—,'[ph (co, T)ro]N (R/Ro) ", (12)
(2II —))f

where 5a„=a„—a„).The prefactor [Ph (co, T)ro]N
can be estimated from the regression of B versus R:
B =BpR +, where for Au films we obtain 2+w =3.65
and Bp=3X10 V/A . The basic sheet resistance Rp
and the basic link resistance rp are both of the order of
the sheet resistance of a continuous film, i.e., in the range
1 —10 0 for a 10-nm-thick film. The resistance-
temperature coefficient P was measured: P=6.7X10
K '. The value of N can be estimated by the ratio be-
tween the film size and the separation between two adja-
cent links, thus N=l mm/30 nm=3. 5X10. Using the
above values, the quantity h (co, T) of a hot spot can be es-
timated: h (co, T) = 10 K/W. We do not attempt to solve
the heat-transfer problem in this case to calculate
h(co, T); however, by estimating the heat transfer to the
glass substrate and the heat flow through the percolating
metal film we found that h (rI), T) is of the above order of
magnitude, and that the typical hot-spot size is of the or-
der of 100—1000 nm (see the Appendix). A uniform sam-
ple heating would yield h(co, T) smaller by several orders
of magnitude, as can be seen in the dc measurements. We
take this estimate as an indication for the existence of hot
spots in the ac measurements. The relatively large size of
the hot spots permits the assumption that h (co, T) is posi-
tion independent.

Close to the percolation threshold the infinite cluster is
rather ramified, hence most of the mass of a hot spot be-
longs to dangling bonds. The existence of a high current
density in one link suggests that it is connected to the
infinite cluster by rather strong links, i.e., with low
current densities. These arguments, together with the
large value of h (c), T) which indicates that the hot spots
cover a small portion of the film, suggest that the validity
of Eq. (11) is at least reasonable. The third harmonic
may thus be interpreted as a measure of the fourth mo-
ment of the current distribution, and the critical ex-
ponent as 2+ w.

A measurement of the fifth and seventh harmonics of a
7-KQ-resistance Au film is shown in Fig. 5. The ratio
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FIG. 5. Fourier spectrum of a 7-KQ-resistance Au film,

showing the odd harmonics generated by the film. The input
signal is at 1.5 Hz and the corresponding Fourier component is
the residual signal after the bridge. The applied current is 250
pA.

between the normalized harmonics (averaged for several
input currents) is (V7f/I )/(V»/I )=5X10 and
(V5f/I )/(V3f/I )=5X10 . Substituting the above
values in the prefactor [see Eq. (12)] one finds that the
difference between the critical exponents a„is 5a„=3.2
for Rp=1 0 and 3.5 for Rp =10 Q, for n =2 and n =3.
A factor of 2 in the prefactor corresponds to a change of
0.1 in 5a„,thus we conclude that 5a2 3 is in the range
3.7& 5a2 3& 3.0. The step between the second and third
moments of the current distribution is 5a&=2.65+0. 15.
These values are higher than the expected steps for lattice
percolation, ' ' which are of the order of 1.9 for 5a, and
2 for 5az and 5a3. However, it is in agreement with the
prediction that 5a) is smaller than 5a2 and 5a3. These
estimates of the critical exponents. show that for continu-
um percolation the moments of the current distribution
diverge much faster than that of lattice percolation, as
discussed by Bergman. Measurements of high moments
of the current distribution as well as computer simula-
tions are needed for further study of the critical ex-
ponents and their dependence on the microgeometry.

DISCUSSION

A comparison of our results on gold films with the 1/f
noise measurements obtained by Koch et al. shows that
in the metallic regime, where hopping is unimportant,
these two methods yield the same critical exponent, w. If
one excludes the last point in the 1/f noise measure-
ments of Ref. 7 (R & 10 0, i.e., the sample is very close
to the percolation threshold), the resulting exponent is
u) =1.6+0.2 (as we have estimated from the published
data), in excellent agreement with our result. For films
with sheet resistances higher than 10 0, hopping seems
to be more important and the 1/f noise is larger. On the
contrary, the third-harmonic signal is weaker in this re-
gime, as discussed above. These opposite trends can be
very useful in identifying the crossover between the pure-
ly metallic conductance and the hopping and tunneling
regime. The comparison with the 1/f noise rneasure-
ments also shows the advantages of the third-harmonic
method. While using a simpler experimental setup we
could measure samples with much lower sheet resis-
tances, and the scattering of different samples is much
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lower (in the 1/f noise measurements of Ref. 7 the criti-
cal exponent was measured on an ion-milled film; the
scattering of the data of different samples could not pro-
vide a reliable value).

In summary, we have applied the new thermal-
response technique based on third-harmonic detection on
real materials and verified that local Joule heating is the
important mechanism. The results are interpreted under
the assumption that this is a direct measure of the fourth
moment of the current distribution. A fuller theory, in-
cluding the effect of the heat spread, is still lacking.
Higher harmonics were also observed, thus higher mo-
ments of the current distribution are accessible using the
same experimental setup. From the ratio between the
third, fifth, and seventh harmonic of one of the Au sam-
ples we could estimate the critical exponent step
3.7 & 5a2 3 & 3.0, which is higher than the lattice-
percolation value, and can be understood as due to the
continuum nature of the Au films. We found out that the
critical exponent depends only on the microgeometry and
not on temperature nor on frequency. For Au films we
obtained w =1.65+0. 15 in agreement with Koch et al. ,
measuring 1/f noise on similar samples. This agreement
verifies the validity of this technique to measure the
fourth current distribution moment. It also provides an
overall verification for the physical assumptions used in
the derivation of both the thermal response and the 1/f
noise expressions. The measured value of w shows that
Au films should be characterized by a continuum per-
colation description, but different from the Swiss-cheese
model. A more flexible model, allowing cutoff in the
minimum channel width, is required to describe the mi-
crogeometry of real materials. For Ag films, we found
w =1.2+0. 1 which is closer to the lattice-percolation
picture (0.82(w (1.05), indicating that the enhance-
ment of w due to the continuum nature is less important.
Silver films are thus preferable in measurements connect-
ed to lattice percolation and should be a better model sys-
tern for those purposes than the commonly used gold
films.
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APPENDIX

The issue of the heat flow from a hot spot is beyond the
scope of this work. However, from some general argu-
ments one may estimate h (co, T), the coupling coefficient
between the applied power and the temperature rise at a
hot spot. Two main contributions should be taken into
account: heat flow from the surfaces of the film, and heat

flow through the metallic channels. The size of the hot
spot depends on the efficiency of these two mechanisms,
and may thus be estimated by the condition that these
two contributions are equal.

The heat flow to the substrate of a hot spot of linear
size L, assuming only one interface (i.e., in vacuum), is
given by

J, =aL (T,„—T, ), (Al)

where a is the surface thermal conductance (given in
units of W/cm K), T„the average temperature of the
hot spot, and T, the substrate temperature (which is as-
sumed to be constant over the area of the hot spot).

The heat flow along a metallic channel of cross section
3 is given by

J = (T,„—T),
L

(A2)

where v is the thermal conductivity (given in units of
W/cm K), L the linear length of the metallic channel,
T,

„

the temperature at the center of the channel, and T,
the temperature of the metallic clusters surrounding the
hot spot. Note that far from the hot spot both the metal-
lic cluster and the substrate have the same temperature
Ts.

As suggested before, the hot-spot size may be estimat-
ed by equating these two contributions, hence

aL (T,„—T, )= (T,„—T, ) .
m

(A3)

The two temperatures T,„and T,„differ only by a nu-
merical factor of order unity, depending on the exact
temperature profile. One may thus assume
(T,„—T, )=(T,„—T, )=b T.

For a fractal, the actual metallic channel is much
longer than the linear size of the hot spot, and is given by
the anomalous diffusion length scale"

=ko«Co)'+' (A4)

where go is of the order of the grain size and 8=0.8 in
2D. Substituting L in (A3) yields

L —(g 1+0 g / )1/(4+8) (A5)

Typical values for the above parameters are a =2
W/cm K, 1~=3.5 W/cmK, go=20 nm, and A =10X10
nm . Using these values one finds L =100-1000nm. The
anomalous diffusion assumption holds in the regime
(»L »go, which is well satisfied in this case; hence the
above assumptions are fulfilled.

The estimation of h (co, T) is now straightforward: in
equilibrium, the injected power P should be equal to the
heat flow J, +J =2J, ; hence

1

2aL

Using the above parameters yields h = 10 K/W.
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