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Mutual Coulomb scattering between a one-dimensional electron gas (1DEG) and an i-dimensional
electron gas (i = 1, 2, 3), separated by a finite distance E, or a one-dimensional hole gas is considered.
The gases can have the same or diferent statistics. The momentum and energy relaxation frequencies
are evaluated using a drifted Fermi-Dirac distribution function and taking into account dynamical
screening. For a degenerate 1DEG the main contribution to these frequencies comes from processes
involving small momentum changes and backscattering. The screening of the erst process can be
significant even for a weakly nonideal 1DEG. The contribution of backscattering vanishes at large
separations Z. The phase-space restrictions imposed by the conservation laws render the scattering
rate between two strongly degenerate 1DEG's exponentially small everywhere except for narrow
ranges of the concentrations. The dependences of the scattering rates on the temperature, the
carrier concentrations, and the distance 8 are evaluated analytically and numerically for a number
of realistic cases.

I. INTRODUCTION

It has been predicted that momentum and energy
transfer between spatially separated electron-gas layers,
mediated by the Coulomb interaction, influences the
transport properties of the individual layers. This has
been confirmed experimentally by the observation of a
contacttess current in a semibounded three-dimensional
(3D) layer induced from that driven through another
two-dimensional (2D) layer about 300 L apart and vice
versa. 4 Later on a similar experiment was carried out be-
tween two 2D gases but with no current allowed to flow in
the second layer. The experiment demonstrated con-
vincingly that an additional coupling mechanism, most
clearly seen at large distances between the layers, was
present.

Theoretical work pertinent to the first experiment was
published in Refs. 7 and 8. The results of the second
experiment have been explained theoretically in Ref. 9
by considering virtual-phonon exchange between the two
layers in addition to the direct (screened) Coulomb cou-
pling. Another work considered the coupling, due to
momentum transfer, between two one-dimensional (1D)
gases in the presence of a perpendicular magnetic field.

Basic to all theoretical treatments are the concepts of
energy and momentum transfer. To our knowledge both
aspects have been treated only for the 2D-3D (Refs. 3 and
7) and 2D-2D (Ref. 11) coupling. Given the importance
of quantum wires as potential devices, the importance
of the effect, and the attention both have attracted, we
feel that the coupling between separated electron gases
deserves further studies. The purpose of this paper is to
study the coupling between a 10 gas and a one-, two-,
or three-dimensional gas, with the same or diferent

statistics. The only pertinent work that we are aware of
is Ref. 12 for two 1D or 2D gases of the same statistics.
As expected and as will be shown the difFerence in di-

mensionality and statistics modifies considerably certain

aspects of the coupling. The latter will be assumed to
result only from the direct screened Coulomb interaction
between the gases and any phonon mediated coupling

between the gases will be left out of consideration. The
basic expressions for the relaxation frequencies are pre-
sented in Sec. II. In Sec. III they are evaluated analyt-

ically and in Sec. IV numerically. Remarks and conclu-

sions follow Sec. V and the Appendixes give details about
the relevant dielectric functions.

II. BASIC EXPRESSIONS

We consider a 1D electron gas (1DEG), along the
z axis, coupled by Coulomb interaction with an i
dimensional gas, i = 1, 2, 3, and from which is sep-
arated by a distance 8 as indicated in Fig. 1. In
all cases we assume that the 1DEG occupies the low-
est subband and that the thickness along the z axis is
zero. Finite thickness and multisubband occupation can
be taken into account in a straightforward manner.
The lattice dielectric constant is denoted by rL, . For
concreteness we further assume that the potential that
confines the 1DEG along the y direction is parabolic,
V(y) = mi~' y /2, and denote the effective width by A

given by A = h/min', with mi being the effective mass.
For i = 1 the geometry is shown in detail in Fig. 1(a).
Figure l(b) presents the case i = 2. It is assumed that
the 2DEG occupies the lowest subband and that it is in-
finitely thin. As for Fig. 1(c) it shows the geometry for
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i = 3 with the 3DEG occupying the half-space z ( —Z.
The scattering of one electron gas by another can be

characterized by the pertinent relaxation time or fre-
quency. In this paper we consider momentum vy and
energy v&; relaxation frequencies. For their definition we
introduce the drift velocities u;. Following Ref. 14 the
friction force between the two gases, R~, , and the power
transferred, per particle, from one gas to another, Pi;,
are given in the linear regime by

Ry. —myvt (u] —u ),

Pt; ——v&, (Ty —T, ). (2)

These expressions are valid for ~T1 —T,
~

&& T~ /h~, T1,
and hq(ut —u, ) « Tq, where q and u are the character-
istic values of momentum and energy transfer that occur
when one gas is scattered by the other, cf. Ref. 14.

The evaluation of the relaxation frequencies is carried
out using the same assumptions as in Ref. 14. Modeling
the diagonal part of the density operator with a Fermi-
Dirac function whose argument is shifted by mi o~, etc.
we obtain, in matrix notation, the following expression:

vms'

2

7r nt

d~ kgT, q'/m1 ~T, ~T,
dqg ImAe', ((u, q, ) II1;(~,q ).

o sinh(~T, ) sinh(~T

Here ~T, ——h~/2kzrTq, At't () is the equilibrium dielec-
tric function of a 1DEG, cf. Refs. 13 and 14. Dropping for
simplicity the argument (~, q ) we have for the scatter-
ing of a 1DEG by a different 1DEG, indicated by i = 1',
II» —ImAe&t, /(e&& ~; for the scattering of a 1DEG by
a 2DEG (i = 2) or by a 3DEG (i = 3) the corresponding

expression is Ilr; ——Ime, '
/~t. ,' + be&q~2. The dielectric

functions xiii, c, , and ~, are calculated in Appendixes(2) (3)

A, B, and C, respectively.
Equation (3) has been obtained from the kinetic

equation; the latter was derived under the assumption
that the electron gases are weakly nonideal and that the
interaction between the carriers could be treated by per-
turbation theory.

An analysis of the integrand in Eq. (3) shows that it
is exponentially small for wave vectors q and frequen-
cies ~ larger than the characteristic values q, and ~„
respectively, defined by the following expressions:

q, = min(kt, k;, / ', qA),

~, = min(kBT/h, q, vt, q, v;).
(4)

(5)

III. ANALYTICAL RESULTS

Here T = min(T1, T, ); k; = /2m, "W;/h and v,

hk;/m, ' are the thermal or Fermi wave vector and ve-

locity, respectively, and W; is the mean kinetic energy of
the one-, two-, or three-dimensional electron gas. Fur-

ther, qp = (er, /e )(mtW; + m,"Wr)/(m& + m,") is the
Landau wave vector and 1/qA is the distance where

the Coulomb interaction energy between the particles is

equal to the sum of their kinetic energies. It is introduced
artificiallyrss to allow for cases where perturbation the-

ory is not valid. The cutoff k~T/h is easily obtained from
the factor uT, /sinh(~z, . ). The other cutoffs can be ob-

tained from an analysis of the dielectric functions given

in the Appendixes.

In this section we present an approximate evaluation
of the relaxation frequencies as given by Eq. (3). As a
rule, the accuracy of the results is of order unity and
logarithmic factors are omitted.

A. Nondegenerate 1DEG

z z
J The dielectric function Ar~ of one 1DEG is given ap-

proximately by the sum of Eqs. (B5) and (B6) of Ref. 13.

1. Two nondegenerete 1DEG's

(c)

For the geometry of Fig. 1(a) we combine the results of
Appendix A with that for the dielectric function quoted
above and Eq. (3). We then obtain

FIG. 1. Geometry (a) Two 1D. EG's, (b) a 1DEG and a

2DEG, lc) a. 1DEG and a, semibounded 3DEG.

m 2 2
t-'» &v 'UT, qc

~l. vv', vT, Tt»' "T S(q )
(6)
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Here VT
—

vT + vT and the factor S(q, ) [e'l, , (q, ) +
c (ni/Tl+nl /Ti )] /tz describes screening. For weakly

nonideal gases the screening is negligible and with loga-
rithmic accuracy we have S(q, ) = 1.

In two particular cases the frequencies vz&', can be

evaluated more accurately. For E, qA » kT = (kT +
kT )

l/2 a more precise result is obtained from Eq. (6)
by replacing q, by kT and S(q, ) by x / [eL, /InkT(A +
)i 2)]2. The other case is that of large separations between

the 1DEG's. When I. ' « kT, qA, the cutofF q
t' is

essential; this results in replacing, in Eq. (6), q, /S(q, )
by I/zl/2&2~ii2

2. 1DEG scattered by a SDEG

The geometry is shown in Fig. 1(b). Two cases are
important: the first is that of a nondegenerate 2DEG,
at high temperatures, or a degenerate 2DEG in the limit
k~T && hvl2 min(E ', qA). Then the cutoff for the inte-
gration over ~ is ~, qvl2, where vl2 ——min(vT, , v2),
and the relaxation frequencies with the help of Appendix
B are given by

e n2v12
1

q2 i fvT, ~

er vT v2TlW2 qq ) ( 12) S'(q, )
'

(7)

The factor S'(q )
—{I+ (e nl/Ti)Re[1/e. (~„q,)]]

introduces screening by the 1DEG and (1 + q2, /q, )
that by the 2DEG.

The second case pertains to a degenerate 2DEG in the
limit k1iT « hvl2 min(E, q~) and is opposite to the
6rst one. The cutoR' for the ~ integration is now u,
k1iT//'i and the frequencies are given by

(
8 n2VT,mX 4

v12) Er hv2&2

I/[(I+ q2. /q )'S'(q )]
kT /[(q» + ktiT/hv»)2S'(kgT/hv»)])

'

8. 1DEG scattered by a 8DEG

When min(q, vT, , qs, vT, , k&T/h) « ~z the main con-
tribution to the integral over ~ in Eq. (3) comes from the
frequencies ~ && uz Then using E. q. (C5) we obtain, for
arbitrary statistics of the 3DEG, the result

7r ns ~/qvT, /' q )

~~m*, v, W, S'(q) ~ /q VT, (q„)
x 1+ ln 1+ q, l

q38)

Here q = min(q„qs, ) and ~ = min(qvT, , kj3T/h) are,
respectively, the wave vector and frequency that give the
largest contributions to the integrals of Eq. (3).

In the opposite limit, ~„( min(qvT, , k1iT/fi), the
main contribution to the integral over ~ comes from fre-

B. A degenerate 1DEG

For the frequencies ur & k1iT/h, which give the largest
contribution to the integrals in Eq. (3), b,ei is not ex-

ponentially small in two regions. In region A we have

q~vFl and we can write ImEei(z) (2e q~/h)/i(u-

q vF l) in the numerator of the second line of Eq. (3) while
in the denominator we can use the estimate ~Eel(&)~

e mi/xh q . In region B we have q 2kF, and, corre-
spondingly, Image', (&) (m', e ~/hFl) b(q —2kF l ) and

lb'' ti ~
(e mi/ir fi nl)1n(Fl/k1iTl) Here, .kF,

xnl/2 and vF, = hkF, /mi are the Fermi wave vector
and Fermi velocity, respectively. Further details about
the dielectric function b, el can be found in Appendix B
of Ref. 13.

The total relaxation frequencies can be found by
adding the two contributions from regions A and B:
v T = v&z') + v&&'), the term (A) is related to small

changes in momentum and the term (B) to large mo-
mentum changes, i.e. , to backscattering of the 1DEG.

1. Scattering by a nondegenerate 1DEG (i =1')

The result for region A has the form

) (A)

I' T, ./m',

tr hvF vT, , Tl ( Fl/ml
2- (V ~1/'I/7, I ) qC

S(q.)
Here the screening function

S(q ) = [1+(e /eL, )(m', /sh q + nli/Tji)]'

and can be large for small q .
For region B we obtain

7g
fll

(&)

e4

[el l, (2kF, )] S(2kF, )vF, VT, , Fl Tl.

t' v2 k' 2T, F —(k~ /lT ) O(2k / )2 F1 A

quencies close to uz, cf. Eqs. (C3)—(C6). The result is

given again by Eq. (9) with u = uz and (q/qs, )4 replaced

by (q/qs, ) .

As can be seen from Eqs. (6)—(9) at large separa-
tions E between the gases the frequencies behave ap-
proximately as L' ~, S 3, and E 4 for scattering by a
one-, two-, and three-dimensional electron gas, respec-
tively. On the other hand, at high temperatures, pro-
vided that the 1DEG occupies the lowest subband, we

have vl,
' oc T s/2 for all values of i

Finally, we notice that the cutofF q, eliminates logarifh-
mic, first-order, and second-order divergencies at high q

for scattering by a 3DEG, 2DEG, and 1DEG, respec-
tively.
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Here ~, = min(kBT1 /h, 2k~, vz, , ) and S(q ) = (1 +
(e jer)[(mi/n h ni) ln(F1/Ti) + ni /Ti ]} . The func-
tion O(z) 1 for z (( 1 and is exponentially small for
z » 1. Notice that due to the term eii, (2kF, ) this con-
tribution is exponentially small for / » 1/2k~, , cf. Ap-
pendix A.

2. Scattering by a degenerate 1DEG (i =1')

where S (1 + (e /ir cL, h ni)[mi ln(F1/kBT1) +
mi, ln(F1 /kBT1 )]};S is of order unity for weakly non-
ideal gases.

8. Scatters'ing by a 8DEG

We consider a 2DEG of arbitrary statistics. Using the
results of Appendix B we obtain for region A the resultv„e n2 ( q2, kBT, 'j4 —2

1+
V12 jVj EEEVE V FE$Vjj22 ) ( +1 )

O I'
S'(q )

(14)

with q, = min(E, kq, kBT/hvF, , qA) The factors.
S'(q, ) —(1 + (e m', /xh q, )Re[1/c, (~„q,)]} and (1 +
q2, /q, ) describe the screening by the 1DEG and 2DEG,
respectively. The factor O(v~, /v2) indicates that the re-
laxation frequencies are exponentially small for vF, )) v~.

For the backscattering contribution we obtain

If the densities of the two gases n& and n&1 are very dif-
ferent, from each other, region A for one gas may overlap
with region B of the other. This situation is not real-
istic; we therefore consider only the case where regions
A of both gases are close to each other and assume the
same for regions B. If the regions are far from each other
we obtain v oc e ~ ~; these values are very small
for strongly degenerate gases.

The first case where the relaxation frequencies are not
exponentially small is when vF, v~, , Then the cutoffs
for the q and u integrals are q, = min(/ ', T/hv~, , qA)
and ~, = q, vF, , respectively. For T ~ 0 the maximum
contribution from regions A is

(
Pe kBT1/F, &

»') (A) ni" ~~11 (qcVF, , qc)~ J

(12)

where p = mimi, /(mi + mi, ) is the reduced mass
and cii is given by Eq. (Al) with ~A~;(q, v~„q, )~
e2m,'/vrh q, .

The second case occurs when kF, kF.. . i.e. , when
the two densities are approximately equal. We then have
maximal contribution from the regions 8, for T ~ 0,
given by

4jumimi, e T,f Fi
e

n41 1 kBT1

x o(2kF, /qA),

q2s1+
12 I jV) EES 172, FlV2'jj~72j ~j'V )

kBTnl ml

where

xO(2k';/k2) O(2k~, E)8(2k~, /q~), (15)

g. Scattering by a 9DEG

We consider a semibounded 3DEG, as indicated in
Fig 1(c.), of arbitrary statistics. With the help of Ap-
pendix C we find the result [cf. Eq. (9), we omitted for
simplicity the logarithmic factor]

( EV)j,Vj
7'2& (2)~EVE'jj'2 ( ' ) (22. ) '

where q = min(qs, , E ', aij/vF, , kBT/hv&, , qA) is the
wave vector that gives the largest contribution to the
integral in Eq. (3).

As for the contribution of region B we obtain

13
(v13) (g)

4«'» h~kBT1/F, '
e~&S'(q)mi v3W3 (h~/Fl)

2k~,
'

/2kF, I
qs. & q ) (17)

Here the frequency that gives the main contribution to
the integral in Eq. (3) is ~ = min(kBT/h, ~&, 2k~, vs).

The analysis given above shows that for a degener-
ate 1DEG the conservation laws impose strong restric-
tions on the scattering of the carriers. As a result for
small temperatures we have the two distinct regions: A
for small momentum changes and B for backscattering,
i.e. , large momentum changes. For the coupling between
two 1DEG's the corresponding contributions to the fre-
quencies will be nonzero if certain relations hold, namely
ni/mi ni /mi, or ni ni . For the coupling of a
1DEG with a 2DEG the contribution vga g survives only

if v2 ) v~, . These restrictions can be relaxed by consid-
ering three-particle interaction, i.e. , fourth-order pertur-
bation theory for the scattering.

For large separations between the gases the backscat-
tering contribution is exponentially small and the S de-

pendence of the frequencies is specified by v& (& . Specif-

ically we have vis' jx t', v12' jx E (provided
v2 & v~, ). For the coupling between a degenerate
1DEG and a nondegenerate 1DEG we have vii oc

and for two degenerate 1DEG's v»', oc / provided
ny mi ~ nil mii.

(1+ (e n1/F1) ln(F1/kBT1)

xRe[1/c( 1(kBT/h, 2k~, )]} .

The 8 functions indicate that the result is exponentially
small for large separations 8, Landau length q&, and de
Broglie length of the 2DEG kz
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As for the temperature dependence we have the follow-

ing results for low temPeratures: viz&&) oc vis&&& oc Tz s

viz'&z& oc T, and vis&&) oc T '; the first exponent in

T is for momentum and the second one for temperature
relaxation. Thus, for moderate separations (when the
contribution of region B is not negligible) and low tem-
peratures the main contribution is due to backscattering.
We also notice that the inequality v~ & v+ is possible
for degenerate gases: it means that the temperature (not
energy) relaxation is more rapid than the momentum re-
laxation.

10

10»—

10xo

I

OJe 109—

g W

1O'—

IV. NUMERICAL CALCULATIONS

To support our analytical results we have performed
numerical calculations of relaxation frequencies in several
interesting cases of coupling between degenerate electron
gases of the same or different dimensionality as well as
between a 1DEG and a 1D hole gas. We used Eq.(3)
together with the results of Appendixes A, 8, and C.
For the imaginary part of 6~i"(u, q, ) we took the exact
expression (83) of Ref. 13 valid for arbitrary statistics of
the 1DEG. As for the real part of 6eiq(u, q ) and the
dielectric functions of the 2DEG and 3DEG we used the
results for the strongly degenerate limit, see Refs. 11 and

For the sake of concreteness, we have chosen the con-
fining potential in y direction to be parabolic with an
effective width A = 90 jt, while the thickness in the z
direction was taken to be zero. It should be mentioned
that for one subband occupation (as in this paper) the
form of the confining potential affects the result very lit-
tle and only quantitatively. We also chose parameters
pertinent to a GaAs/Al Gai, As heterostructure: di-
electric constant eL,

—13; efFective mass: m', = 0.067mo
for electrons and m& ——0.37mo for holes.

In Figs. 2, 3, and 4 we present the results of calcu-
lations for mutual scattering between a degenerate 1D
electron and a 1D hole gas. As was stated in Sec. III 8 at
suf5ciently low temperature due to the strong restrictions
imposed on the scattering, in one dimension, by the mo-
mentum and energy conservation laws as well as by the
Pauli principle, only two sorts of processes are allowed.

One of them is backscattering, i.e. , the large change of
carrier momentum equal to hq 2hk~, or region B in
the ~-q plane. For mutual scattering of strongly degen-
erate 1D gases the contribution of backscattering to the
relaxation frequencies is not exponentially small if the
concentrations of the gases are approximately equal [see
Eq. (13)]. Figure 2 illustrates this statement for scat-
tering between degenerate electron-and-hole gases. The
hole concentration is nI, ——10 cm, the distance be-
tween the gases is taken to be zero. At T = 1 K the peak
at n, = nI, is clearly seen; at higher temperatures it is
smeared out. The increase of v, &' with decreasing n,
at T = 10 K is related to the weakening of degeneracy
and the increase in the number of allowed transitions in
k space.

The second possible scattering process in strongly de-
generate 1DEG's is small momentum change, namely

10

6 -j,
n, (10 cm )

1.5

FIG. 2. Momentum (solid line) and temperature (dashed)
relaxation frequencies vs electron concentration for a 1DEG
scattered by a 10 hole gas. Separation between gases E = 0;
hole concentration nI, = 10 cm; temperature T = 1,4.2, 10
K. The maximum occurs at n, nq.

10&o

1O'—

10

I
U
4i 10~—

g~

105—

1O'
I

1.5

5 -1(10 cm )

I

2.5

FIG. 3. The same as in Fig. 2. Temperature T = 0.5, 1, 2
K. The maximum occurs at v~, e~q.

hq h~/vF (( 2hk~ (region A). As follows from the
analysis in Sec. III 8 [see Eq. (12)], at sufficiently low
temperatures the contribution of processes with small
momentum change to scattering between two 1D gases
is not exponentially small if their Fermi velocities are
equal. This is illustrated in Fig. 3. The parameters
are the same as in Fig. 2. For T ( 1 K the peak at
n, num, /ma 1.7x10 cm (i.e. , vy, v~a) is seen
clearly; at higher temperatures it is smeared out.

We should mention that when backscattering processes
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1012 1011
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1010
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1010
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109—
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[

200 300 100
106

100
I

200 300

FIG, 4. 1D electron gas scattered by 1D hole gas. Momen-
tum (solid) a,ud temperature (dashed) relaxation frequencies
vs distance between the gases. Temperature T = 1, 4.2, 10 K;
concentrations n, = nh ——10 cm

FIG. 5. 1DEG sca.ttered by 2DEG. Momentum (solid)
and temperature (dashed) relaxation frequencies vs distance
between the gases. Concentrations nq ——8 x 10 cm
n2 ——5 x 10 cm; temperature T = 4.2, 10 K.

dominate (Fig. 2) the temperature relaxation frequency
(dashed lines) is smaller than the momentum relaxation
frequency (solid lines); the reverse holds when region A
dominates, cf. Fig. 3. The reason is that at backscatter-
ing the momentum change is large (hq —2hk~), while
the change in energy (h~ kBT && F) is relatively small.
The processes with small change of momentum still have
strong influence on the form of the distribution function
at k kkF. Thus, in the degenerate case the rate of
temperature relaxation can be much larger than that of
energy relaxation.

Notice that in accordance with Eqs. (12) and (13) the
difference between v'" and v is larger for lower tem-
peratures. In fact, Eq. (13) implies vtBl/vtBl oc F/kBT
for the contribution of backscattering, and Eq. (1'2) gives

v&z&/vg& cx F/k~T for small momentum changes.
Figure 4 illustrates the dependence of the relaxation

frequencies on the distance between the gases. The
concentrations of electron-and-hole gases are equal, and
therefore the backscattering contribution dominates. We
see that the relaxation frequencies decrease exponentially
with E when the separation between the gases is greater
than the inverse de Broglie length k& 60 A [cf. factor
e "e' in Eq. (13)]. For T = 20 K and E & 300 A the
contribution of processes other than backscattering be-
comes essential.

In Figs. 5 and 6 we present the results of numeri-
cal calculations for a 1D electron gas scattered by a 2D
electron gas. In Fig. 5 we plot the momentum and en-

ergy relaxation frequencies v13' versus distance 8 be-
tween the gases; the 1D and 2D carrier concentrations
are, respectively, n1 ——8 x 10 cm and n-z ——5 x 10

'9

cm . At small 8' the momen, turn relaxation frequencies
are specified mainly by backscattering processes, and the
scattering rate decreases exponentially with E' in accor-

1011

1010
10 K

10'—

I

Q
(n

f CV

10

10

10

10

104

6 —1
nl (10 cm )

I

1.2

FIG. 6. 1DEG scattered by 2DEG. Momentum (solid)
and temperature (dashed) relaxation frequencies vs 1DEG
concentration. Distance between the gases t.' = 300 A; 2DEG
concentration n2 ——5 x 10 cm; temperature T = 4.2, 10
K.

dance with Eq. (15). At larger separations between the
gases the contribution of region A dominates and for

hvF, /k&T the relaxation frequencies depend very
weakly on P, cf. Eq.. (14). As for the temperature relax-
ation frequency, the contribution of region B is always
small in comparison with that of A, and the dependence
on 8 is weak.

Figure 6 shows the relaxation frequencies as a func-
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io" see that v /v kBTq/Fq in accordance with Eqs. (12),
(14), and (16).

io'—
V. DISCUSSION

I
U
Q
m ]O7

g cn

&o'—

106—

~p4

/
/

/
/

/
/

/
/

/
/

/
/

/
/

I

10 lop

'J' (K)

FIG. 7. A 1DEG scattered by a semibounded 3DEG. Mo-
mentum (solid) and temperature (dashed) relaxation frequen-
cies vs temperature. The IDEG concentration is nq ——10
cm . Curves 1: E = 300 A, n3 ——10 cm; curves 2:
l = 300 A, n3 ——3x10 cm; curves 3: E = 600 A, n3 = 10
cm

tion of the 1DEG concentration; the distance between
the gases E = 300 A, the concentration of 2DEG is n2 ——

8 x 10~1 cm 2. Since the separation between the gases
is much larger than the inverse de Broglie length, the
contribution of backscattering is negligible [cf. the factor
e(2kF, E) in Eq. (14)] and the relaxation is determined
by the contribution of region A. In accordance with the
factor e(vF, /v2) in Eq. (14), a sharp decrease in coupling
between the gases occurs at nq & +8n2/n' 1.13 x 10
cm ', i.e. , for v~, & vF, . The reason is that in the de-

generate limit and for large separations between the gases
only transitions with ~ q~v~, can occur in the 1DEG,
while- for the 2D carriers the processes with u & q vF,
are allowed. Thus, for vF, & vF, the coupling between
the gases becomes exponentially small.

Figure 7 shows the results for scattering of a 1DEG
by a semibounded 3DEG. The relaxation frequencies are
plotted as function of the temperature for different val-
ues of I. and ns (see caption); the 1DEG concentra-
tion is nq — 10 cm '. For distances 8 = 300 and
600 A used in the calculations only the contribution of re-
gion A is essential. At T ( 30 K we have approximately
vPs oc Ts and v&Ts oc T~ in accordance with Eq. (16)
with q = kBT/hvF, & e m~/n. h eI, . At higher tempera-
tures (provided that the gases are degenerate) the cutoff
q E is essential and we have v&& oc T, v&z oc T
take place. Notice that the relaxation frequencies for
ns ——3 x 10 cm (curves 2) are larger than those for
ns —10 cm (curves 1) due to the stronger screening
in the 3DEG when the concentration is higher.

We should mention that in Figs. 3—7, where the contri-
bution of small momentum changes dominates, one can

In this article we made analytical evaluations and nu-

merical calculations of the momentum and temperature
relaxation frequencies for a 1DEG scattered by (a) an-
other 1DEG or a 1D hole gas, (b) a 2DEG, and (c)
a semibounded 3DEG. The calculations were based on
Eq. (3) derived previously~4 with the relevant dielectric
functions presented in the Appendixes. The gases are
separated by a distance E and have the same or different
statistics; moreover, dynamic screening has been taken
into account.

We found that for nondegenera/e gases the cutoff q

q, [cf. Eq. (4)] eliminates logarithmic, first-, and second-
order divergencies in the integration over q for a 1DEG
scattered by 3D, 2D, and 1D carriers, respectively. It
should be compared to the elimination of the logarithmic
divergence for scattering of a 3DEG by a 3DEG (Ref. 15)
or a 2DEG (Ref. 11) and first-order divergence for mutual
scattering of two 2D gases. At large distance 8 between
the gases, as follows from Eqs. (6)—(9), the relaxation fre-
quencies are proportional to E ' ' for a 1DEG scattered
by an i-dimensional electron gas (i = 1, 2, 3). At high

temperatures we have v&,.
' oc T 3~ for all dimensional-

ities.
For strongly degenerate 1DEG's the restrictions im-

posed on the scattering by the conservation laws and
the Pauli principle forbid all transitions in k~ space ex-
cept two types: one with small momentum changes, q

~/vF, « kF, (region A), and one due to backscattering,
q 2k~, (region B) The cont. ribution of backscatter-
ing is exponentially small for small cutoff wave vector q, ;
therefore at large separations 8 between the gases only
the contribution of region A is essential.

As for the scattering of two strongly degenerate 1D
gases the coupling is not exponentially small only if the
regions 8 or A of both gases overlap, that is if n~
nt~ or vF, vF, , (cf. Figs. 2 and 3). Moreover, the
scattering of a 1DEG by a 2DEG is not small if v~, &
v2 (cf. Fig. 6). The restrictions due to the conservation
laws can be relaxed by taking into account three-particle
interactions in higher orders of perturbation theory.

We should mention that when the contribution of small
momentum changes to the relaxation frequencies is dom-
inant, temperature (not energy) relaxation in degenerate
gases is faster than that of momentum. In fact, as follows
from Eqs. (12), (14), and (16) vga/v&&l klsTq/Fq for
all dimensionalities of the gases.

It is worth noticing that the screening by carriers of a
nondegenerate 1DEG cannot be strong provided that the
gas is weakly nonideal (an implicit assumption usually
made in derivations of kinetic equations); the same situ-
ation occurs for scattering of a 1DEG of arbitrary statis-
tics by a static potential. This statement is no longer
valid for the screening of a degenerate 1DEG interacting
with another electron gas. When q, & e m&/xh eL, and

q, v~, (e.g. , at large distances between the gases)
the screening by the 1DEG can be essential.
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The function P(u, k), specified by the boundary condi-
tion on the electrostatic potential at z = —E', is given by
Eq. (29) of Ref. 13.

Matching the solutions of Poisson s equation in all re-

gions of Fig. 1(b) we obtain, for an infinitely thin 2DEG,

APPENDIX A
Pt 1(~, k) =

eL, + 24&2(~, k)
(B3)

The screening function for interaction between 1DEG's
is given by Eq. ('25) of Ref. 14. For two sorts of carriers
occupying the lowest subband it takes the form

'H

11' = Eyyi 1+ +
E ) i E')I iI

+6eiAei)
~

1
s s (Al)

where we have dropped the argument (u, q ) for sim-

plicity. The dielectric functions of the external system,
indicated by the superscript s, are specified by the geom-
etry of the latter and the wave functions of the carriers
in the transverse direction, cf. Eq. (21) of Ref. 14.

For the geometry of Fig. 1(a), with a parabolic con-
finement in the y direction and zero thickness, Eqs. (11),
(19), and (27) of Ref. 13 yield

1 l= —'"'*'" I''. ((Aq /2)'j
2

EL

1 2 2 2

cos(q„E) e

q +qy2 2

Here 2A~ = A~ + A'~ and Iso(z) is the modified Bessel
function. The expression for I/ei, i, can be obtained from

Eq. (A2) with 1 and A replaced by 1' and A', respectively.
An important limit of the last two expressions is ob-

tained for q A (& 1 (notice that for a 1DEG occu-

pying the lowest subband we always have q A & 1).
Then 1/c» (2/eL, ) ln(1/Aq ). As for I/e», it is

equal to ( /I~ L)ln[q (A + E ) 'j if q E (& 1 and to

(I/er, )+27r/q I e t* for q E» 1.
For finite thickness (along the z axis) and a square-

confining potential in the y direction the corresponding
expressions can easily be worked out with the help of
Eqs. (16)—(20), (22), (30), and (32) of Ref. 13.

APPENDIX C

Below we calculate the dielectric function I/c, (u, q~)
pertinent to the geometry of Fig. 1(c). It is given

by Eqs. (Bl) and (B2) after specifying the function
Pt I(u), q ) for the SDEG.

Assuming specular reAection of the carriers at the
boundary z = Land a h—omogeneous SDEG for z & E

the function PI ~ is given by Eqs. (AS)—(A9) of Ref. 3.
For an approximate calculation we split this function in a
plasmon contribution P&~ and a regular contribution P„,s.
The first one is nonzero only for q (& q3, where q3, is the
screening wave vector of an unbounded 3DEG. Its value

is

~,'i' = ~'/((~ —~. + i0)(~ + ~. + s0)1 (Cl)

where ~~ = /47resns/eL, ms is the plasma frequency. As
for the regular contribution we obtain

From the previous three equations and the func-
tion Acz(u, k), defined in Refs. 3 and 11, we can esti-
mate, with accuracy of the order of unity, the function

I/c, (~, q ). Its real part is equal to I/cl. everywhere
except for qg, « q (& I/E in which case it is equal
to q2s/qzEI. , where qzs ——27re nq/cI. W2 is the screening
wave vector of the 2DEG and Wq ——min(T2, F2) is the
thermal or Fermi velocity.

For the imaginary part the result is

1 ~q„G e-'&-'
Im

eLv2 (qs + q2s) 1+ Qqs(E+ A)

xO(q vz/u) O(kq/q ).

We have G = 1 when the 2DEG is degenerate and G =
sinh(h~/2k~T2)/(h~/2kBT2) when it is nondegenerate.

APPENDIX B

2
(3) qV3 (d(d qV3—2

u) + cup + qvs ~4 + cu4 + (qvs) t
(C2)

g2~2/g"(,q )

~
—A k /2dI

Es (cd) k) Qk
(Bl)

where k = (q, q„); the dielectric function c,(~, k) is de-

fined by Eq. (28) of Ref. 13. For an infinitely thin layer
of 1DEG we obtain

Below we evaluate the dielectric function pertinent to
the geometry of Fig. 1(b). Using Eqs. ('27) and (19) of
Ref. 13 we can write

U»ng Eqs. (Bl), (B2), and (C2) we can estimate the

function I/c, . Its real part is everywhere approximately
equal to I/cL, except in the following two cases: (i) for

q & &( 1, and q3, 4 )& 1 it is much smaller

than I/~1. , (ii) for ~ = ~„/~2, q (( q3, it is about

~~/(~ —~~/~2)
As for the imaginary part we split it in plasmon and

regular parts. The first part is nonzero only for q (& q3„.
it is given by

P(~, k) tanh(kl) + 1'

2 P(~, k) + tanh(kE)
(B2)

1
Im

t )
-- ~p b(~ —~p/v2)A,

s, pl

(CS)
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where A = e& e 2& O(q /qs, )/[I + gq E+ q A].
For the regular part we have the following asymptotic

results:

1
Im = (~„vs/~ ) min[(E+ A) ', u)/vs]A,

&~,reg

1

{3)
&3,reg

1

{3)
&3,reg

4)q~ V3

24)p

"A(d

3 )
q~V3

u, q~v3 up,

4) 4)p q~ v3,

(C4)

(C5)

~p, q vs «~. (C6)

All expressions of this appendix are valid for a classical
description of a 3DEG. To allow for a quantum descrip-
tion the last four expressions must be multiplied by a
factor e(q /ks).
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