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Phase-field model: Boundary layer, velocity of propagation, and the stability spectrum
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We present a study of a phase-field model for diffusion-limited growth. A boundary-layer approxima-
tion is used to show that for sharp interface, the first approximation to the phase-field model is the free
boundary model, which includes surface tension and a linear kinetic term. The velocity of propagation
and the stability spectrum are calculated for a steady-state flat interface. In the case where the phase
and the field have similar variation lengths, a stable growth regime is found above a critical value of driv-

ing force. %e discuss the application of phase-field-like models in the description of the ensemble-
average pattern.

I. INTRODUCTION

Interfacial pattern formation in diffusion-limited
growth has been the focus of extensive studies in the past
decade. ' At present, it is understood that the rich
variety of patterns observed in different systems, such as
solidification from supersaturated solution or from under-
cooled melt, is the reflection of a competition between a
macroscopic driving force, such as gradients of concen-
tration or gradients of temperature, on the one hand, and
microscopic interfacial effects, such as surface tension,
surface kinetics, and anisotropy, on the other hand. The
microscopic effects, although relatively small, were found
to be singular perturbations, playing a crucial role in the
selection of the growth pattern. Powerful mathematical
tools were developed in order to describe the interplay
between the competing effects, resulting in the formula-
tion of the microscopic solvability condition for dendritic
growth.

With the discovery of the microscopic solvability cri-
terion, the consensus was that the problem of dendritic
growth was finally solved. All the main results were ob-
tained from the study of the free boundary model of
solidification. This model approximates the system's dy-
namics by a single macroscopic diffusion field, whereas all
the relevant microscopic dynamics is embodied in phe-
nomenological boundary conditions at the interface. The
solvability criterion states that for any set of parameters,
provided that anisotropy is present, there exists only a
discrete set of needlelike steady-state solutions, among
which only the fastest is linearly stable. Therefore, it is
predicted to be the one observed. An open question is
how general these results are. Will the same selection
mechanism hold if the dynamics depends on more than
one field? Furthermore, what will happen if the phenom-
enological interfacial parameters are replaced by real mi-

croscopic kinetic rules? As mentioned above, even very
small changes in interfacial kinetics can have strong
effects on the dynamical behavior of the system, so that it
is crucial to clarify these issues. Even if such a general
selection mechanism exists, it is still necessary to con-
struct a more microscopic picture. The purpose of such a
picture is to understand how the microscopic kinetics
influences the macroscopic level and to determine the re-
lation between the parameters of the two levels.

A more profound problem is the fact that in numerical
simulations, as well as in experiments, dendrites are not
always observed, even if anisotropy is present. Instead,
for a certain regime of parameters, the front undergoes
repeated tip splitting. ' ' Thus, the solvability criterion
can clearly be only a part of the general picture, and a
more general principle is needed to select between
different growth forms. ' ' Moreover, the solvability
criterion is obtained by an asymptotic matching of the
steady-state solutions at infinity. However, in experi-
ments, the underlying needle crystal does not extend all
the way to infinity. When the growth conditions are lo-
cally changed, the dendrite's tip immediately selects a
new shape, independently of the matching to the remain-
ing part of the structure.

Next, there is the question of how to extend the theory
from describing the evolution of a single stem to the
description of the global structure of the entire morphol-
ogy. The microscopic solvability criterion refers only to
the tip of an isolated needle crystal. Real dendrites are
far from being just a needle crystal. They look more like
a "backbone" decorated with a complex of well-
developed sidebranches. ' In addition, the stable phase
forms many dendrites growing in a self-organized
manner, to form the global structure —the morphology.
Similarly, tip-splitting growth is only a basic element of
the growth process that leads to the formation of the
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dense-branching morphology.
One strategy towards answering these outstanding

questions is to study phase-field-like models. ' Such
models consist of a diffusion equation coupled to a time-
dependent Ginzburg-Landau equation for an order pa-
rameter (the phase) of the system. The phase-field ap-
proach can be considered a more detailed model than the
free boundary model, the latter being a limiting case for a
very sharp interface in the former. A study of the phase-
field model can show if a generalization of the microscop-
ic solvability criterion applies to a wider class of models.
It is not a priori obvious that a similar mechanism acts in
this case. In the free boundary model, the boundary con-
ditions are the refiection of a second field (the phase), so
that the singular nature of these conditions is natural. In
the case of a phase-field model, the situation is different.
For example, surface tension is inherent in the phase-field
model; hence, it has no meaning to refer to a model with
or without surface tension. On the other hand, the in-
clusion of anisotropy is easily understood to act as a
singular perturbation, as it is incorporated into the model
by replacing the Laplacian operator in the phase equation
by a higher-order operator.

The importance of the phase-field model, as a generali-
zation of the free boundary model, motivated a large
number of analytical and numerical studies. Collins and
Levine were the first to apply it in the description of
solidification from undercooled melt with a diffuse inter-
face. They showed the existence of a solvability condi-
tion for the steady-state velocity of a flat interface for a
continuous range of undercooling. This provided a first
link between the phase-field model and the free boundary
model with a kinetic term. Langer derived the relations
between the parameters of the two models using qualita-
tive arguments. The mathematical foundation of these
relations was given by Fife and Caginalp, who de-
rived the free boundary model from a phase-field model
in the limit of a sharp interface using a boundary-layer
approximation. Liu, Mondello, and Goldenfeld ' studied
a phase-field model for the time evolution of a supercon-
ductor following a quench from a normal state, where the
order parameter is a complex field. They showed the
analogy between this case and solidification from under-
cooled melt by approximating this problem by a free
boundary model and thus identifying the stabilizing and
destabilizing mechanisms at the interface.

Numerical simulations of the phase-field equations
were performed by Fix and Lin, Lin, and more recent-
ly by Kobayashi, who also performed three-dimensional
(3D) simulations. These simulations gave results in
qualitative agreement with simulations of the free bound-
ary model. Frahm, Ullah, and Dorsey simulated the
normal to superconducting transition with a complex or-
der parameter and obtained tip-splitting growth.

We have it in mind to use the phase-field approach in a
different context, motivated by recent results, ' show-
ing that for both dendritic morphology and for the
dense-branching morphology, growth is within a well-
defined shape-preserving envelope, in agreement with
previous predictions. ' ' ' ' A natural approach is to
describe the propagation of this envelope as the penetra-

tion of a "stable phase, " that is, the solid-liquid mixture,
into a metastable one —the solution. Noting that the two
characteristic length scales, the diffusion length and the
thickness of the envelope, may be of the same order of
magnitude, it seems that a phase-field-like model would
be a more appropriate way to describe the dynamics of
the envelope (this issue will be discussed in detail in Sec.
II) than a free boundary model with a sharp interface. It
is still not completely clear, yet, what the relevant fields
and the effective parameters which govern the growth of
the envelope are. However, before performing such a
modeling, a fundamental question has to be set: Can the
same model describe for one regime of parameters a
solid-liquid interface in which interfacial instabilities de-
velop complex patterns, whereas for another regime of
parameters it produces a stable and shape-preserving pat-
tern.

In Sec. III we present the phase-field model. We write
the final equations in a dimensionless form, where the
length and time units depend on a characteristic velocity
in the phase equation. The model includes three dimen-
sionless parameters. In Sec. IV we derive the free bound-
ary model which contains surface tension and surface ki-
netics as a leading-order approximation to the solution of
the phase-field model. To this end, we introduce a scal-
ing parameter, which depends on a characteristic velocity
of the problem which we identify. This analysis gives an
additional insight into the role of surface tension and sur-
face kinetics as singular perturbations. Specifically, it is
found that although surface tension scales like the small
parameter of the asymptotic expansion, it appears in the
leading-order term of the reduced model. This analysis
differs from that of Refs. 28 —30 in the fact that, there,
the boundary terms appear only in the second term of the
expansion, whereas the first term satisfies the Stefan prob-
lem. Thus, the patterns formed by the leading-order term
can be very different from these formed by the second
term. It follows that the effects of surface tension and
linear surface kinetic corrections are scaled by the expan-
sion parameter and become negligible in the asymptotic
limit, contrary to the numerically and experimentally ob-
served evidence, In Sec. V we review, for completeness,
the one-dimensional steady-state problem, which corre-
sponds to the expansion of a flat interface in higher di-
mensions. We write a solvability condition for the
steady-state velocity and compare the results to the pre-
dictions of the free boundary model in the appropriate
limit. In Sec. VI we study the linear stability of the
steady-state solution of a flat interface. For the case of
sharp interface, we retrieve the stability spectrum of the
free boundary model. The wavelength of the marginally
stable mode is found to be shorter the sharper the inter-
face is; hence, the interface develops instabilities with
very large curvatures. It explains why the product of sur-
face tension, which is proportional to the thickness of the
interface, and the curvature of the interface remains a
quantity of order 1, even in the limit of vanishing surface
tension. In this limit, the interface is linearly unstable for
all values of driving force. In the opposite limit, where
the two fieIds have similar characteristic lengths, above a
critical value of driving force, the interface becomes
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stable against perturbations of all wavelengths. Finally,
in Sec. VII we summarize the results and suggest their
applications to future studies.

II. MOTIVATION: SHAPE-PRESERVING
ENVELOPE OF ENSEMBLE AVERAGING

In this section we review recent results of morphology
transitions in diffusion-limited growth, in systems de-
scribed by a conserved order parameter such as the con-
centration field in solidification from a supersaturated
solution. ' ' ' ' ' These results provide the main
motivation for studying the phase-field model as a means
for describing envelope growth. The study ' was based
on a new numerical scheme, the diffusion-transition
scheme, which is a hybridization of a continuous and an
atomistic approach. It allowed us to study the different
morphologies, to characterize them by the geometrical
properties of their envelope, and to study the nature of
morphology transitions.

For both dendritic morphology and the dense-
branching morphology (DBM) it was found that the late-
stage spatial dimension of the growing patterns was d =2.
The ensemble-averaged envelope is shape preserving, and
propagates at constant velocity. For both morphologies,
the envelope shows a pronounced fourfold symmetry,
convex for DBM and concave (at 45' of the main growth
directions) for dendritic growth (Fig. l).

These results suggest the possibility of considering the
propagation of the ensemble-averaged envelope as the
propagation of an interface with an effective diffusion dy-
namics, surface tension, surface kinetics, and anisotropy
(see Fig. 2). Here, the stable phase is not pure solid but
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FIG. 2. Three-dimensional plot of the ensemble-averaged

density of solid. The envelope is defined to be the 0.5 contour
line. The higher averaged concentration at the center reflects
the initial conditions, and the transient to steady state.

rather a mixture of solid and solution. This phase is not
in equilibrium, but all the relaxation processes, due to
surface tension, occur on a much longer time scale than
the propagation of the front. Since the velocity of the en-
velope is constant, growth is not limited by diffusion from
parts away from the interface. It implies that each reali-
zation grows with an average density of matter equal to
the solution concentration far from the solid, which cor-
responds to unit supersaturation in solidification.

Additional insight into the morphology dynamics is
gained by considering Fig. 3. At the top it shows tip-
splitting growth in a channel geometry. Below are the
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FIG. 1. (a) Typical realization of dense-branching growth.
(b) Typical realization of dendritic growth. (c) Time sequence of
an ensemble-averaged envelope of dense-branching growth over
30 different realizations. The envelope is shape preserving, con-
vex, and shows a pronounced fourfold symmetry. (d) Time se-
quence of an ensemble-averaged envelope of dendritic growth.
In this case, the envelope is concave.

FIG. 3. Simulation results of the diffusion-transition scheme
for growth in a channel. Top: Tip-splitting growth of fingers.
Bottom: The average over the y-direction concentration of (a)
solid and (b) liquid. The concentration of matter in the mixed
phase is approximately equal to the liquid concentration at the
right boundary. The decay lengths of both averaged solid and
liquid concentrations is of the same order of magnitude.
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averaged solid and liquid densities across the channel,
which are similar to the ensemble averaging (for a
sufficiently wide channel). The total concentration of
matter behind the propagating front, is equal to the con-
centration in the liquid phase. Note that the two fields
have decay lengths of the same order of magnitude, so
that the interface is not sharp. Figures 2 and 3 suggest
that a more appropriate description for the evolution of
the ensemble-averaged envelope would be a phase-field-
like model with an interface of finite width rather than a
free boundary model, where the thickness of the interface
is infinitely sharp. Such an approach was recently ap-
plied successfully for the description of an ensemble-
averaged diffusion-limited aggregation (DLA) growth.
At present, it is not clear which physical quantities corre-
spond to the phase and to the field. We expect that these
fields are not merely the averaged concentrations of solid
and liquid (as in mean-field DLA), but rather contain
more information, such as the characteristic widths of in-
dividual branches, the spacing between them, local orien-
tation, etc.

The present paper provides the necessary infrastruc-
ture towards the development of a phase-field model to
describe the ensemble dynamics. To this end, we first
have to calculate the interface velocity and its stability
spectrum as functions of the model's parameters. The
next step will be to compare the results with those ob-
tained in numerical simulations of the diffusion-transition
scheme. Note that the simulations consider a conserved
field, whereas the phase-field model describes a noncon-
served order parameter.

III. DESCRIPTION OF THE MODEL

In this section we present the phase-field model for a
stable phase penetrating a metastable one. We consider
the case where the phase of the system can be described
by a single-component real order parameter P. The rela-
tive stability of the two phases varies as a function of a
second parameter, u. For a given value of u, we denote
the thermodynamical locally stable states of the system
by P (u ) (the "ordered" state) and P+(u ) (the "disor-
dered" state). The intermediate states that lie in between
are outside the scope of thermodynamics, so that the in-
troduction of the concept of an order parameter is neces-
sary for the analytical continuation of the thermodynami-
cal quantities between the two stable states. For exam-
ple, considering the liquid-solid transition in a pure sub-
stance, the order parameter can be identified with the
specific entropy s, whereas u corresponds to the tempera-
ture field. For fixed temperature, the system has two lo-
cal equilibrium states, solid and liquid, which differ in
their specific entropies. The order parameter is a quanti-
ty which assumes values between the two equilibrium
values of s.

Next, a free energy for homogeneous systems, F(P, u ),
is introduced. The function I' is also an extension of the
equilibrium free energy and, as such, cannot be derived
from any fundamental principles. However, as shown
below, most of our results are not affected significantly by
the exact functional form of I'. For historical reasons,

the canonical choice for F is the P Ginzburg-Landau po-
tential

F(g, u ) =(P —1) —
A,uP, (3.1)

where A. is a positive coupling constant. Another com-
mon choice which was found to be convenient for numer-
ical simulations is

F(P, u ) =in[cosh(P) ]—A, u (()

(Ref. 46). The piecewise parabolic potential

F(P, u ) = —,
' [P—sgn(P ) ] —Au P

(3.2}

(3.3}

(Ref. 40) was found to be convenient for analytical treat-
ment and is used here. In this case, the local equilibrium
states of the system, for a given u, are given by

(u)= —1+Au, $+(u)=I+Au . (3.4)

ay vv[4]'
at 5y(x) ' (3.6)

where 5 denotes a functional derivative and ~ is the
characteristic relaxation time of the order parameter.
Note that ~ is not derived from the free energy, unless the
fluctuation-dissipation principle is assumed. Combin-
ing Eqs. (3.3), (3.5), and (3.6},the phase equation

' =g V P+f(P, u)2 2

at

is obtained, where

f(P, u )=—— ' = —P+sgn(P)+A, u .aF(, u )

a

(3.7)

I,3.8)

The field u is assumed to satisfy a diffusion equation.
The coupling between the dynamics of u and the dynam-
ics of P is expressed by a source term in the diffusion

equation. In solidification, this term corresponds to la-

tent heat, which is the change in the specific entropy dur-

ing the transition. The strength of the source is taken to
be the time derivative of the order parameter,

au , 1 ay=DV u ——
3t 2 alt

(3.9)

We are interested in nonhomogeneous situations where
the value of the order parameter is spatially variable. It
is assumed that the total free energy of the system in-

cludes additional terms related to these spatial variations.
If P(x) is a smooth function, the lowest-order derivatives
dominate the free energy. For an isotropic system, a
free-energy functional of the following form is pro-
posed:

V[/]= f dx[ ,'g ~VP~ +—F(g,u)], (3.&)

where g is the characteristic variation length of P.
To study the time dependence of P, its dynamics has to

be specified. In general, it is assumed that macroscopic
systems undergo an overdamped motion towards equilib-
rium, that is, the free energy is monotonically decreasing
in time. A simple equation satisfying this condition is the
time-dependent Ginzburg-Landau equation
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D~
k (3.10)

is a characteristic scale for the kinetics-limited diffusion
length. Note that lk is always shorter than l.

For convenience we define the following dimensionless
coordinates: Length is measured in units of the diffusion
length lk and time in units of the corresponding diffusion
time lk/D, that is,

t~(lk/D)t, x~lkx . (3.11)

With these variables the dimensionless phase-field model
is given by

where D is the diffusion coefficient, which is assumed
symmetric on both sides. An additional parameter in the
problem is the value of u in the rnetastable phase, which
is a measure of the driving force in the process. We con-
sider the case where the disordered phase is the rnetasta-
ble one and denote by —b the value of u in this phase far
from the interface.

The phase equation (3.7) defines a characteristic length
scale g and a characteristic time scale w. In the field
equation (3.9) they are combined in the diffusion constant
D. To obtain the characteristic decay length of u, the
diffusion length, we note that the source term in the field
equation is proportional to the normal velocity of the in-
terface v, so that the diffusion length is given by I =D /v.
The ratio g/w is a characteristic velocity which is related
to the kinetics of phase transition at the interface; hence,

el. The latter includes the Gibbs-Thompson relation as
well as a linear kinetic term. In particular, we recover
the relations between the macroscopic interfacial parame-
ters, the capillary length and the kinetic coefficient, and
the "microscopic" parameters g and r

The range of values of the product A,h is restricted by
physical considerations. Small values of A,A correspond
to very small growth rates, which lead to equilibrium
shapes. On the other hand, large values of A,h, relative to
the height of the barrier, do not describe a regime of two
coexisting phases. Thus, only the range e«A.6&1 is
considered.

It is assumed that the dynamical process generates and
preserves a boundary layer of thickness 0(e) in which the
phase P varies sharply. This boundary layer is located
along the interface, which is defined to be the contour
line )=0. The purpose of the boundary-layer approxi-
mation is to obtain a reduced problem for the rnacroscop-
ic field u, with boundary conditions at the moving inter-
face determined by the microscopic dynamics. The
domain is separated into an inner region, a strip of thick-
ness 5i(e) along the interface, and an outer region, the
complement region on both sides of the interface. In the
inner region, a local set of coordinates is used: The arc-
length s along the interface and a stretched coordinate

p = r/e, where r is the distance from the interface chosen
positive in the disordered phase and negative in the or-
dered phase. Note that both s and r are functions of
(x,y, t ) and satisfy the following relations:

and

Bu 1 BP
at+2 at

='" (3.12)
Br

lim = v(s, t )—,r~p r}t

lim V r=«(s, t),
r~0

(4.1)

(4.2}

e =e V P+g(P)+Au,a =»
Bt

(3.13) and

with the boundary conditions u ~—b, and P~P+( —b, )

as ~x ~
~00 and given initial conditions u(x, O), P(X,O).

Here, g(P) =f($,0), and the parameter
2

(3.14)D~ lk

Bs
lim = ds'«(s', t )v(s', t ),
r~p dt p

(4.3)

where a is the local curvature of the interface.
Let U(p, s, t)=u(ep, s, t) and 4(p, s, t)=P(ep, s, t)

denote the fields in the inner region. The transformed
phase-field equations in this region are

is the ratio of the characteristic decay lengths of u and P,
respectively. It is also the ratio of the diffusion
coefficients in (3.7) and (3.9). Note that the height of the
potential barrier can be normalized to 1 by an appropri-
ate rescaling of the fields.

IV. THE LIMIT OF A SHARP INTERFACE:
THE Ek 1'ECTIVE SURFACE TENSION

AND SURFACE KINETICS

In many physical applications the characteristic scales
of the two fields differ by several orders of magnitude.
For example, in solidification from undercooled melt, the
thickness of the interface is only a few atomic layers
wide, whereas the thermal diffusion length is typically of
the order of microns. In this section we demonstrate by
means of a boundary-layer approximation that in the case
e«1, a sharp interface develops and the phase-field
model reduces asymptotically to the free boundary mod-

B~U
( )

BU+ 1 84 +0( g) (4.4)

a e+ ae+g(~)+„U +~ «ae ae
ap ap

' "
ap at at as

+0(e )=0 . (4.5)

u(x, y, t ) =up(x, y, t }+oui(x,y, t )

+6 u2(x, y, t)+
P(x &y t )=Pp(x &y t }+Efi(x,y, t )

+e $2(x,y, t)+ .

(4.6)

(4.7)

The central assumption of the boundary-layer approxi-
mation is that the solutions can be expanded in a regular
power series of e,
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U(p, s, t)= Uo(p, s, t)+eUi(p, s, t)

+E U2(p, s, t)+
@(p s, t)=No(p, s, t)+a@,(p, s, t)

+e 42(p, s, t)+

(4.8)

(4.9)

»o 1 ~No

Bt 2 Bt
(4.17)

there is a continual feedback between the macroscopic
and the microscopic levels. For the leading term we ob-
tain the equations

Since the location and the shape of the interface are
determined by the phase variable P, the dynamical func-
tions v(s, t ) and a(s, .t ) must be expanded in power series
as well. The velocity is by definition of order 1; thus

g(yo)+duo=0,

a'U, aU,
+]co =0,

Bp p

(4.18)

(4.19)

v(s, t)=vo(s, t)+ev, (s, t)+e v2(s, t)+ (4. 10)

The appropriate expansion for the curvature cannot be
identified directly from the equations. The choice of the
leading order is motivated by results of numerical simula-
tions of the model. It was seen that as @~0, the dynami-
cal process generates patterns which become more
"decorated" as e decreases, resulting in very large values
of the curvature. The lower bound for the radius of cur-
vature is the thickness of the interface; therefore, ~ can be
comparable to e '. Thus, the asymptotic expansion of ~
is assumed to be

eo eeO
+(vo+a.o) +g(4o)+A, Uo=0 . (4.20)

3

From Eq. (4.18) it follows that Po is the equilibrium value

everywhere, i.e.,

P+(uo(x, y, t)) for r(x,y, t) &0

(uo(x, y, t)) for r(x,y, t)(0. (4.21)

It follows that u 0 satisfies the diffusion equation

K(s, t ) =6 Ko(s, t ) +Ki(s, t )+EK2(s, t ) + (4.11)
1 ~}4o ~ ol+— =V uo.
2 Bu Bt

(4.22)

Note that the expansion of a in Refs. 28 —30 corresponds
to I~o=0, so that (4.11) is a generalization.

The inner and outer expansions are matched at the in-
terface in the following way: In a boundary layer near
the interface, 5,(e)~p~6z(e), the fields U(p, s, t) and

4(p, s, t) must be identical to the fields u(Ep, s, t) and
P(Ep, s, t), respectively (for a more rigorous treatment of
this point, see Ref. 30). This requirement leads to the
matching conditions

O(1):

Uo(p, s, t ) =Ci(s, t ), (4.23)

where C, (s, t) is the integration constant. Substituting
(4.23) into Eq. (4.20), it is found that 4o is the solution of

For the case (3.3), BP+/Bu =OP /Bu =k, so that (4.22)
is a linear symmetric diffusion equation. Integrating Eq.
(4.19) once and using the fact that Uo must be a bounded
function of p, it is found that

lim Uo = lim uo .
p~+ oo gp~+0

O(e):

(4.12)
a'e, a~,

+ [vo(s, t )+go(s, t ) ] = —g(4o) —
A, Ci(s, t ),

Qp2 Qp

(4.24)

aU, au,
lim = lim

p~+ oo BP gp~+0 Br
(4.13)

subject to the boundary conditions

lim 4o(p, s, t)=P+[C, (s, t)] .
p~+ 00

(4.25)

Bup
lim U& = lim u&+p

p ~+ Qo pp ~+0 Br

O(e ):

8U2
lim = lim

p —++ oo ()P gp~+0

u) 8 uo
+p

Br

au,
lim U2 = lim u2+ p +—p

p +~ ep +0 Br 2 Qr

(4.14)

(4.15)

Equation (4.24), together with the boundary conditions
(4.25}, forms a nonlinear eigenvalue problem, which
determines a relation between C, and (vo+&o). It is use-

ful to consider the following mechanical analogy.
Equation (4.24} can also be viewed as the equation of
motion of a particle, where 40 plays the role of position
and p corresponds to time. The particle moves in a po-
tential field

V(@o)= —Ig(4o)d 4o —A.C,@o,
(4.16)

and so on.
The power series (4.6)—(4.11) are substituted into Eqs.

(3.12) and (3.13) and Eqs. (4.4) and (4.5), respectively,
subject to the matching conditions (4.12)—(4.16). The
problem is then solved recursively. Since the inner and
outer expansions are coupled by the matching conditions,

with a dissipation constant (vo+Ko). This potential field

has the form of an in, uerted nonsymmetric double-well po-
tential [see Fig. 4(a)]. The trajectory starts at "time"
p= —~ at the maximum "point" 4=/ (C, ) and ends

at time p= ~ at the second maximum point @=/+(C, ).
This trajectory corresponds to a homoclinic line in phase
space [Fig. 4(b)]. In this analogous picture, it is clear that
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s I s I Substituting into Eqs. (4.27) and (4.28), we obtain

0.5

E
0

1

2i (4.31)

-1 -(a)
s s s s I s s

—2 —1

s s
I

s

- (c)

s s I
I

s s s s
I

s

s s I s s s s I s s s

0 1 2
4o

B—

sl s s ~

0.5 1

s s
I

s ~ ~ s
I

s s s s
)

s s

0-A

—0.5—
- (b)

s s I s s s s I ~ s s s I s s-05 0
4o

In dimensional units, dp=g/2A, and P=r/2A(. For the
case of the Ginzburg-Landau potential,
g(sI)) = —

—,'(P —P), we find dp =g/3)(, and P=r/3Ag.
Equation (4.22) together with boundary condition

(4.29) are not a complete set of equations for up. An ad-
ditional boundary condition is obtained by considering
the O(e') terms and applying matching conditions (4.13),
yielding

0.5—

0—
Bup Bup

up(s, —t) .
Br p+ t)r

(4.32)

-0.5—

s s I s s s s I s s s s I s

0 5
P

I s s s s I s s-5 0 5
P

Thus the free boundary model is a first approximation to
the phase-field model in contrast to Refs. 28 —30, where it
is a second approximation, the first one being the Stefan
problem.

there is a unique "dissipation coefficient, " for which such
a trajectory exists. For kc, &1,

Kp(Ss t)
C, (s, t) ——dp Pup(s, t), —

E

where

(4.26)

dp=
&& f dp(4'(p)]' (4.27)

FIG. 4. The pro51e of the interface seen as an instanton. (a)
The particle moves in the potential field, V(s})}, starting its tra-
jectory at A and ending it at B. (b) The homoclinic line in phase
sPace sPp(sPp}. (c) The equilibrium Profile P(P } in real sPace. (d)
The derivative of the profile, f'(p }.

V. THE STEADY-STATE VELOCITY
OF A FLAT INTERFACE:

THE SOLVABILITY ANALYSIS

Bu+ 1 t)P t)u 1 BP+at+a at "az+Z az+

e =e '()'2(()+ev —
(t +sgn(P)+A, u,

dt Bz

(5.1)

(5.2)

In this section we study the steady-state solution of a
flat interface advancing with constant velocity. Such a
solution was shown to exist in the free boundary model;
therefore, its existence is expected in this model as well.
In a moving frame of reference, Eqs. (3.12) and (3.13)
take the form

and

(4.28)

where z=x —Ut and U is the velocity of the interface
which is determined below from a solvability condition.
The stationary solutions Pp(z ), up(z ) satisfy the equations

The function P(p) is the solution of Eq. (4.24) with C, =0
and is thus the equilibrium profile of the interface. The
matching conditions of up, together with Eq. (4.26), im-

ply that

s.p(s, t )
lim u p

= —d p Pv p(s, t ) . —
ep~kp E'

(4.29)

The boundary condition (4.29) is exactly the one used
in the free boundary model, where it was introduced as
an ad hoc correction. Here it appears as a rigorous
reduction of microscopic dynamics. The capillary length
dp is the surface energy of the equilibrium profile of the
interface, i.e., surface tension. In the mechanical analo-
gy, dp is the action of the trajectory or the integral of the
kinetic energy along the trajectory. The constant p is the
so-called surface kinetic coefficient and is simply propor-
tional to surface tension p=dp/e.

For the free energy (3.3), g(P }=sgn(s)) ) —P, we find

up'+uup+ —,'vip=0,

Pp +Eufp 'Pp+sgn((tsp)+s(, up =0
(5.3)

(5 4)

(all derivatives are with respect to z), subject to the
boundary conditions

and

up( ~ ) = —b, Pp( ~ ) = (()+( —b )= 1 —s(.b (5.5)

up( —ao )=—5, si)p(
—ca }=/ ( —5)= —1 —

A,5, (5.6}

where 5 and 6 are the values of u in the ordered and
disordered phases, respectively, far from the interface.
These are the most general boundary conditions provid-
ing that there are opposite phases on each side of the in-
terface (see Fig. 5). As this problem has no explicit
dependence on the z coordinate, the solution is invariant
under translations along the z axis. The origin is set arbi-
trarily at

f(p) =sgn(p) I 1 —exp[ —sgn(p }]] . (4.30) Pp(0}=0 . (5.7)
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X

$0'(0+) —$0'(0 )= ——, ,
6

(5.15)

the discontinuity of the second derivative resulting from
5(z). The solution to the homogeneous problem is a
linear combination of exponential terms exp(q, z), where

q; ( i = 1,2, 3) are the solutions of the cubic equation

e q +e(a+1) uq +(ev —1)q —v/5, =0 . (5.16)

ordered
phase

disordered
phase

We distinguish now between the two following cases:
Case I. Re(q, )&0, Re(q2)&0, and Re(q3)&0. The

solution of Eq. (5.11) is

—(1+i%)+A exp(q, z)+B exp(q~z) if z (0
1 —

A, (5+5, )+C exp(q3z ) if z )0 .rh (z)= '

(5.17)

FIG. 5. Steady-state profiles of P(x) and u(x).
Substituting the matching conditions (5. 13)—(5. 15), the
solvability condition

Integration of Eq. (5.3) results in

Qp+UQO+ ~UPO=Ci (5.8)

1 —A. /2
'q'+q' q'q' 1+./2

2—q)q~(1+A5)= —
~

(5.18)
Substitute the boundary conditions (5.5) and (5.6) into
Eq. (5.8), the integration constant is determined as

C, = u [ —,
' —b ( 1+A /2 ) ],

is obtained.
Case II. Re(q&) &0, Re(qz) &0, and Re(q3)(0. The

solution of Eq. (5.11) is

and

1

1+k/2
(5.9)

Referring again to the example of a thermal field during
solidification, this constraint is nothing but global energy
conservation. It states that the amount of heat needed to
raise the temperature from u = —b, to u = —5 is equal to
the amount of latent heat released during solidification.
The driving force for which the ordered phase forms at
equilibrium is defined as

—(1+A5)+D exp(q, z ) if z & 0

$0(z)= 1 —A(5+6., )+E exp(qzz)+F exp(q3z),

if z)0

and the solvability condition is

1 —A/2 2
(q, —

q2
—q, )q, (1+A5)+q2q3 5A

(5.19)

1

1+A, /2
(5.10)

e' '(()0 +e(E+1)UPO+(ev 1)40 VNO
C

(it corresponds to b, = 1 in solidification).
Combining Eqs. (5.4) and (5.8), a third-order equation

is obtained:

(5.20)

In order to find v(5), we calculate the roots q; from Eq.
(5.16) for each u )0; then, according to the case, we ex-
tract 5 out of Eq. (5.18) or Eq. (5.20).

To check this result, we consider the limit of a sharp
interface (e « 1) and show that it reduces to the result of
the free boundary model. Expand v, q;, and 5 as power
series of e,

= —25(z) —v sgn(z)+ A, v —+1 6
2

with boundary conditions expressed in terms of 6 as

(5.11)
V =Vi j+EV~ I+

&=,—~&tol+&t~)+. . .

~=~to)+,~i i+. . .

(5.21)

(5.22)

(5.23)

40( ao )= 1 ~5, $0(ao )=1—&(5+&, ) . (5.12) The three roots of Eq. (5.16) are

Equation (5.11) is solved piecewise, imposing matching
conditions at z =0, q, =

I [(u }) +4]' —u( ]+O(l),1

2c

and

$0(0+ ) =$0(0 )=0,
$0(0+ ) =$0(0 ),

(5.13)

(5.14)

'
I
[(v(0))'+4]'"+v(0)j+O(1),

2c
[O]

+O(E) .
C

(5.24)
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P(z,y, t ) =go(z}+r)P,(z)exp(iky +tot },
u (z,y, t ) =u v(z)+ rtu, (z)exp(iky +cot ),

(6.1)

1.5
where g((1. Physically, we are interested only in per-
turbations which are initially localized near the interface.
Thus, we require that P, (z) and u, (z) decay as z~+ oo.

We substitute Eq. (6.1) into the time-dependent equations
(5.1) and (5.2) and linearize with respect to g, yielding

u", +vu', +—,'vP', (co—+k }u, ,'—cog—i=0, (6.2)

0.5

P'i'+'evP'i (ceo—+e k +1)P i+Au i= —25(go(z))gi .

(6.3)

The 5 function can be rewritten as

00 0.2
x(a-a, )

0.4 0.6

pi(0)
25(go(z ) )P, =2, 5(z),

while from Eqs. (5.17) and (5.19), it follows that

(6.4)

FIG. 6. Plots of v vs A.(h —5, ) for (a) a=0.01 and A, =O. 1, (b)
a=0.01 and A, =0.3, (c) a=1.0 and A, =0.1, and (d) a=1.0 and
X=0.3. ly,'(0)

i
—=g=

1 —
A, /2

1+A, /2
in case I

J

~qi(1+5k, )~ in case II . (6.5)

For small e, this corresponds to case II. Substituting
Eqs. (5.23) and (5.24) in Eq. (5.20), we obtain

v(ol[[(v(oJ)&+4]&~2 v(o}]= un(o}
(5.25)I+XS('} '

which for small A,5 (and consequently, small v) reduces to

This problem is a nonlinear eigenvalue problem for co

(which is complex), as a function of the wave number k.
For a given k, there is at most a discrete set of values of
co, for which a solution exists.

Similarly to the method used in Sec. V, the homogene-
ous equations are solved in the two domains; then co(k) is
found by imposing the matching conditions

v "}=un"' . (5.26}

Comparing to Eq. (4.31), we identify the prefactor 2A, as
the inverse of the kinetic coefficient P . We thus re-
trieve the result of the free boundary model,

Pi(0+ )
—pi(0 )=0,

u, (0+ )—ui(0 ) =0,
2$, (0)

E

(6.6)

(6.7)

(6.&)

1v= —(5—5, } . (5.27) and

In Fig. 6 the plot v[A.(b —6, )] is given for different
values of e and A, . For @=0.01, it is found that the veloc-
ity is mainly a function of the product A(h —5, ), but for
fixed 5—b,, depends only weakly on A, , in agreement with
Eq. (5.27). The dependence is approximately linear for
sufficiently small values of ( b, —b,, ). For
A, (b —b,, )~ 1 —

A, b,„ the velocity grows sharply to
infinity. This is due to the fact that for XA & 1, the poten-
tial is no longer a double well; thus, bistability is des-
troyed. This range of parameters is therefore of no in-
terest for our purposes.

u i
(0+ ) —u i (0 )=0 . (6.9)

4

Pi(z)= g B;exp(Q;z) (6.10)

and

4

u, (z)= g m;B;exp(Q;z), (6.11)

where

The solution of Eqs. (6.2) and (6.3) is a linear combina-
tion of four exponential terms:

VI. LINEAR STABILITY SPECTRUM
OF A FLAT INTERFACE

m;= — [e Q; +—~vQ; —(@co+@k +1)]1
(6.12)

In this section we develop the linear stability analysis
of the steady-state solution of a Hat interface, obtained in
Sec. V. We study the time evolution of a small periodic
perturbation added to the stationary solutions Po(z) and
uo(z} of the form

+ I v[2Eco+E(a+1}k—+ I+A/2]]Q

+[(co+k )(eco+E k +I }+A,co 2/]=0 . (6.13)

and the roots Q; are the solutions of the quartic equation

e Q [+e( el+) )Qv+[ev e(@+1)co—2e —k —1]Q
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Given a value of k, the corresponding co is found in the
complex plane. For any co, the four roots Q; are calculat-
ed out from Eq. (6.13); then the following three cases are
considered:

Case I. Re(g, ) &0, Re(Q2) &0, Re(Q3) &0, and
Re( Q4 ) & 0. Substituting the boundary and the matching
conditions, a homogeneous set of linear equations is ob-
tained; thus the following determinant must vanish:

.015

(&)

.01

.005

3

0

I
[

I I I I
t

I I l I
I

i

72

n2Q2

(6.14)

7T
1 JT3 7T4

=0.
~angl n3Q, n4Q4

Qi —2«'0 Q2
—~«'0 Q3 Q4

—.005

0 1
f / I I I I I ~ & ~ ~ & I

0 0.5 1 1.5

Case II. Re(g& ) &0, Re(Q2) &0, Re(Q3) &0, and
Re(Q4) & 0. The vanishing determinant is

00/ / I I I

t
I I I I

j
I

(b)

Dtr(~)=
TT ] TT2 773 774

~lg 1 ~2Q2 ~3Q3 ~4Q4

Q & Q2 Q3 Q4
—2«'0

=0. (6.15)
. 001

3
0

Case III Re(g, .) &0, Re(Q2) &0, Re(Q3) &0, and
Re(Q4) &0. In this case, the vanishing determinant is

—.001

IT 1 7T2 773 7T4

Dttt(~)= =0.n. ,g, n2Q2 a3Q3 2r4Q4

Qi —2«'g Q2 Q2 Q4

(6.16)
.0020 0.05 0. 1 0. 15

If the real parts are either a11 nonpositive or all non-
negative, there is no solution to the problem. Thus, the
solvability condition is that the mismatch function

D, (co) in case I

Dn(co) in case II
M(co)= '

Dnt(co) in case III
undefined otherwise

(6.17)

has to vanish. The stability spectrum is then found nu-
merically.

As a first check of these results, the stability spectrum
obtained by this procedure is compared to the stability
spectrum calculated by the free boundary model (see the
Appendix). The parameter do and I3 needed for the latter
are evaluated using Eq. (4.31). In Fig. 7(a) (e=0.01), the
correspondence between the two results is excellent. In
Fig. 7(b) ( e = l.0), where the approximation of the
phase-field model by the free boundary model is expected
to break, the correspondence between the two models is
still very good. For example, the marginally stable mode
deviates by only 5%, as seen in Fig. 7(b).

Next, the marginally stable mode k Ms is calculated as a
function of the velocity (Fig. 8). For e=0.01, kMs is an
increasing function of the driving force. The correspon-
dence between the two models is excellent and breaks
down only close to the degree of driving force where bi-

FIG. 7. Comparison between the stability spectrum obtained
from the phase-field model (solid lines) and the free boundary
model (dots). The parameters for the phase-field equations are
X=0.2, U =0.1, and (a) @=0.01, (b) a=1.0.

stability is destroyed. For @=1.0, the result is completely
different. It is found that kMs attains a maximum before
decreasing to zero. Above a critical driving force, there
is no marginally stable mode, meaning that the interface
is linearly stable with respect to perturbations of all

wavelengths. The transition to the stable regime appears
to occur when D /U becomes of order g. This behavior
was pointed out for the free boundary model in Ref. 48.
In this case the transition occurs when D/v becomes of
the order of the capillary length do.

and

Bu 1 BP
at+2 at

=g V P+ sgn(P ) P+ A,u, —a
dr

(7.1)

(7.2)

VII. SUMMARY

We presented an analysis of a phase-field model defined

by
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FIG. 8. The marginally stable mode kMs as a function of the
driving force 5—6,. Comparison between the phase-field mod-
el (solid line) and the free boundary model (dashed line). The
parameters are A, =0.2 and (a) a=0.01; (b) e= 1.0.

(1+—'A, ) =DU u,2 at
(7.3)

with boundary conditions given on the moving interface,

with boundary conditions at x
~

~ ao, u —+ —b„and
P —+P+( —b ). In the limit e=g /D, ((1, a sharp inter-
face develops and the model reduces to leading order in e
to the two-sided free boundary model given by

turbation and are therefore negligible. The ansatz
a.=0 ( 1 ) is unrealistic because solutions of the Stefan
problem with x =0(1) are unstable and evolve in time to
solutions with unbounded curvatures. In contrast, the
ansatz x=O(1/e) is self-consistent and holds for all
times.

We presented a linear stability analysis about the
steady-state solution of a planar interface. For e «1 the
stability spectrum is in excellent agreement with the sta-
bility spectrum calculated for the free boundary model.
For e-1, the stability spectrum for both models is still in
good agreement. In this limit, the interface becomes
completely stable for driving forces above a critical value.
The existence of a stable regime provides additional sup-
port to the hypothesis that the same dynamics can de-
scribe both the unstable growth of single realizations and
stable growth of the ensemble averaged envelope. The
stable growth regime is for the two fields having similar
decay lengths, which is consistent with the observation in
computer simulations of envelope dynamics.

Additional investigation of the phase-field model is re-
quired towards the modeling of the ensemble dynamics.
In a subsequent article, we will extend the study to in-
clude surface anisotropy and show how anisotropy mani-
fests as a singular effect when performing the boundary-
layer approximation. Another issue for further study is
the phase-field model for a conserved order parameter. It
is still unclear whether the ensemble dynamics of single
realizations described by a nonconserved field should be
described by a conserved or nonconserved order parame-
ter.

Note added in proof. After the submission of this pa-
per, we became aware of closely related work by M. N.
Barber and D. Singleton (unpublished).
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and

D(V„u+ —V„u )=—v (7.4) APPENDIX: LINEAR STABILITY SPECTRUM
FOR THE SYMMETRIC FREE BOUNDARY MODEL

u;= doK pu (7.5)

The interfacial parameters are related to the parameters
of the phase-field model by

In this appendix we derive the linear stability analysis
for a steady-state planar interface for the free boundary
model. In a frame of reference, moving with the inter-
face at velocity Up, the symmetric free boundary model is
given by the system

dp
2A,g

(7.6) BQ 2 BQ—V Q+Vpat az
(Al)

These results are essentially different from those present-
ed in Refs. 28 —30, where a different ansatz about the size
of the curvature leads to an approximation of the inter-
face by that of the Stefan problem. The effects of surface
tension and surface kinetics enter as a second-order per-

(uo+u„)= —(V„u+ —V„u ),
u„=—6, u( —~)= —5,
u, = —dox —P(vo+u„),

(A2)

(A3)

(A4)
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where z =x —upt. The stationary solution of a flat inter-
face located at z =0, is

Pvo, z &0

To perform the linear stability analysis, we perturb the
location of the interface in the z direction, denoted by
«(y, t ). We consider the small periodic perturbation

uo(z)= ' —6+(4—Pvo)exp( —voz), z )0 . (A5)
r(y, t ) = r exp(iky + tot ), (A7)

1vo= —(b, —1) . (A6)

Substituting into Eq. (A2), we obtain the relation between
the velocity and the driving force 5, where r &(1, and calculate the ampli6cation rate ~ as a

function of k. The correction to u, due to perturbation of
the interface, has the following form:

—P vo+u exp(iky+tot)exp(q z), z &0
u(z, y, t)= ' —b, +(b —Pvo) exp( —voz)+u+exp(iky+tot) exp( —q+z), z) 0

(A8)

where u and u+ are of order r. Substituting into Eqs.
(Al) —(A4) and linearizing with respect to the small pa-
rameters, we obtain

co= —k +q +u q

co= —k +q+ upq+

(A9)

(A10)

voq
—dok (2q+vo)
I+P(2q + vc )

(A12)

co=q+( —dok —Pco+vo) —vo —
q (dok +Pto) . (All)

By subtracting Eq. (A10) from Eq. (A9), one finds that
q:—q =q+ —vo; thus, we get co(k) in an implicit form:

kMS
up

6fp
(A13)

where p =updp is the ratio of the capillary length dp and
the diffusion length I/vo. As p —+ I, this expression van-

ishes. For p ) 1, there is no real solution; hence, to(k) is
nonpositive for all values of k. Thus, the interface is
stable against perturbations of all wavelengths.

I

Next, we look for the marginally stable mode kz at
which the amplification rate vanishes (besides k =0,
which is always a solution, the system being invariant un-

der longitudinal translations). Substituting to=0 in Eq.
(A12), we find

1/2
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