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Interference in reflected second-harmonic generation from thin nonlinear films
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We have observed interference in reflected second-harmonic generation from two adjoined nonlinear
slabs. Experimental results on ZnSe/GaAs(001) heterostructures are obtained and compared to
theoretical calculations of the phenomena. Together, the experiments and calculations enable us to
deduce the frequency-dependent bulk nonlinear susceptibility for ZnSe near the Eo transition.

I. INTRODUCTION

Although interference in reQection from thin multilay-
ered dielectric films is an important and well-understood
phenomenon in linear optics, the analogous problem in
nonlinear optics is not well studied. Nearly 30 years ago
Bloembergen and co-workers introduced electromagnetic
nonlinearities into Maxwell's equations and derived the
conditions for reflection and refraction at the surfaces
of nonlinear dielectrics. ~ They showed that the solution
of Maxwell's equations with the proper boundary condi-
tions leads to the production of harmonic waves in re-
Aection and transmission. The most widely studied in-
terference phenomenon in nonlinear optics was connected
with the generation of harmonics in transmission through
a single nonlinear slab. Under these conditions one ob-
serves Maker fringes. 34 These fringes arise because the
source polarization and the free wave generated by this
polarization have different phase velocities. Interference
in harmonic generation has also been observed in other
contexts. For example the phase shift between substrate
and adsorbate nonlinearities has been seen in several
systems, and interference between monolayers on oppo-
site sides of a single glass substrate has been observed in
harmonic generation as a function of slide orientation. s

In this paper we investigate a class of nonlinear optical
interference phenomena that is more akin to linear reflec-
tion from a dielectric mirror. In particular, we observe
interference in the production of second-harmonic (SH)
waves as a result of re8ection from two adjoined nonlinear
optical slabs. This problem is similar to the Maker fringe
phenomenon, since SH generation accompanies the trans-
mission of the fundamental field over large distances, but
we shall see that the second nonlinear slab introduces
further complexities.

Besides its intrinsic interest, interference in harmonic
generation from thin nonlinear films is important for
other reasons. For .example, the phenomenon provides
a methodology for measuring the second-order suscepti-

bility of thin overlayer materials. Since many unusual
crystalline materials can only be grown in very thin lay-
ers above other high-quality solids, the ability to mea-
sure nonlinearities in composite systems is valuable. In
addition, as the use of three-wave mixing to probe solid
interfaces grows, s ~2 it becomes essential to understand
fully how interference phenomena can affect the intensity
of these signals.

We have observed interference in reflected
second-harmonic generation (SHG) from a series of
ZnSe/GaAs(001) heterostructures with varying overlayer
thickness. A theoretical solution of the problem is pre-
sented, and used to analyze our measurements. Several
existing theoretical schemes can be applied to arrive at
a solution to this problem. ~s ~4 Our calculation combines
results from Ref. 2 with boundary conditions that arise
at the interface of two nonlinear media. We find that the
reflected SH intensity oscillates as a function of overlayer
thickness. In contrast to the simple Maker fringe result,
however, more than six Fourier components contribute
to the spatial dependence of this oscillation. Finally, we
use our interference data along with our theoretical solu-
tion to determine the frequency dependence of the bulk
second-order susceptibility of ZnSe.

The remainder of the paper is organized as follows. We
first describe the experimental apparatus and our sam-
ples. Then we present theoretical calculations of the non-
linear interference effect, and compare these calculations
with experiment. Finally, we present measurements of
the frequency dependence of the ZnSe and GaAs bulk
second-order nonlinearities as a function of the SH pho-
ton energy between 2.6 and 3.1 eV.

II. EXPERIMENT

Our heterostructure sample consists of an epitaxial
layer of undoped (n & 1 x 10~s cm s) ZnSe(001), with
thickness ranging from 50 A to 1 asm, grown on a 0.5-
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pm undoped (n ( 5 x 10 cm ) GaAs film terminated
with 2x4 surface reconstruction. The films were grown
by molecular-beam epitaxy (MBE) on an n+ silicon-
doped GaAs substrate in a dual MBE chamber, accord-
ing to procedures previously described. At present there
is substantial technological interest in the ZnSe/GaAs
heterostructure, because ZnSe has been demonstrated to
lase near its optical band-gap energy of 2.7 eV. As a
result of this interest our samples have been well charac-
terized morphologically, chemically, and to some extent
electrically. '

A schematic of the experimental apparatus is shown
in Fig. 1. The SHG spectra for each sample were ob-
tained by irradiating the sample with light from a Nd-
YAG (yttrium-aluminum-garnet) pumped tunable dye
laser, and the power of the reflected light at the second-
harmonic frequency was measured as a function of wave-

length. The incident light pulses were collimated to be
1.5 mm in diameter, had a temporal duration of 9 nsec,

and a fluence of 5 mJ/cm2. Typical SHG signals were

50 photons/pulse. An angle of incidence of 75' was
used in all experiments. At this angle ) 50%%uo of the fun-
damental light was transmitted into the ZnSe overlayer.

In order to compensate for intensity fluctuations of the
input beam and systematics in our detection system, a
SH signal was simultaneously produced and measured
in transmission along a parallel (reference) optical path
containing a wedged quartz plate with 0.8' apex angle.
The maximum SH power of the reference at each fre-

quency was obtained by translating the wedged quartz
along a direction perpendicular to the laser-beam prop-
agation vector. Our sample intensities were normalized
using this reference SHG signal.

The bulk signals from the ZnSe/GaAs(001) samples
were separated from the interface signals by proper choice
of sample orientation and light polarization. i7 GaAs and
ZnSe are zinc-blende crystals with 43m symmetry. They
both have a single nonzero bulk second-order suscepti-

bility tensor element, y~(z)„is whose contribution to the
output radiation is highly anisotropic. For the p-in —s-
aut polarization configuration, the SHG output intensity
is proportional to cos (2P), where P is the angle between
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FIG. 2. Reflected SHG intensity at axed frequency from
the ZnSe/GaAs(001) crystal as a function of the rotation an-

gle []] (degrees). Here P is the angle between the [100)direction
and the plane of incidence. The input is p polarized and the
output is s polarized. The ratio of the peak signal to null

signal is & 5000. The solid line is a theoretical prediction for
this signal variation.

the [100] direction and the plane of incidence. The ori-
entation dependence of our SHG signal is illustrated in
Fig. 2. Frequency-dependent measurements were per-
formed using the p-in —s-out polarization configuration at
P = 0. Using this configuration we maximized our sensi-
tivity to the bulk nonlinearity. In analyzing our results
we have used the linear dielectric constants for GaAs and
ZnSe given in Refs. 19 and 20, respectively. These values
were checked against our own linear reflectivity measure-
ments and agreement was good.

III. THEORY

In this section we review the theoretical aspects of the
reflected SH from a semi-infinite medium, and then we
develop a full theoretical expression for the reflected SH
field of two adjoined nonlinear slabs. Because our exper-
iments utilized the p-in —s-out polarization configuration,
calculation for p-in —s-out polarization will be given in
detail. Calculation for the s-in —p-out and p-in —p-out po-
larization configurations are straightforward extensions
of the p-in —s-out results.

For all the expressions below, the subscripts "0," "1,"
and "2" refer to vacuum, first medium, and second
medium, respectively. The subscript "1" is also used for
the semi-infinite medium. The subscript "Birn" refers
to the reflected harmonic wave which is generated in
medium "t" and propagates through medium "rn." We
also assume that the second-order susceptibilities and di-
electric constants change discontinuously at all interfaces.

FIG. 1. Schematic of experimental setup: I, polarizer;
I", spectral filter; PMT, photomultiplier tube; M, monochro-
mator; BC, boxcar averager; WQP, wedged quartz plate; BS,
beam splitter; A-D, analog-to-digital converter.

A. Review of semi-infinite medium results

In the semi-infinite problem, solved by Bloembergen
and Pershan, a monochromatic plane wave with fre-
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where e(ur) is the u-dependent linear dielectric constant
of the semi-infinite medium, and the source polarization
is given by

P(2~) (2) . E(~)E(~) ~(&b ~-2~&)

Here y represents the second-order nonlinear suscepti-(2)

bility tensor of the crystal, and E, represents the trans-
mitted fundamental field with the wave vector k~, and
kg ——2k).

We choose the coordinate system so that the vacuum-
crystal boundary is at z = 0, and the plane of incidence

contains the z and z axis [Fig. 3(a)). If ™g is inde-
pendent of position inside the semi-infinite medium, the

(2to)
f0

gZ

quency ~ impinges from vacuum onto a crystal that
lacks inversion symmetry. The incident wave is refracted
into the crystal, and the transmitted field interacts with
the nonlinear medium to produce a second-harmonic
source polarization, P(2 ). The source polarization ra-
diates an electromagnetic wave with angular frequency
2~. The propagation of the radiated second-harmonic
electric field, E(2~), must obey the nonlinear wave equa-
tion,

p x~xE(' 'y ' E(' )= —— P(' )C(2M) l92 4~ t)2

cz Bt~ cz Ot~

exact solution to Eq. (1) is

E( ~) = E( ~) ~( y ~&)e

4z(4~. 2/c') P

f b

kb(kb P) j(kq r —2~t)
( )k2 )

f

where p is a unit vector in the direction of P(z ). The
first term of Eq. (3) is the free wave solution. This wave
propagates in the direction of kf, and its amplitude is
determined by boundary conditions. The second term is
a particular solution of the nonlinear wave equation. This
field is bound to the fundamental wave, and propagates
with wave vector kb. The magnitude of the free (bound)
wave vector in medium i is represented by kg; (kb;).

A harmonic wave ERl0 is also radiated into the vac-
uum. The wave vector of this reflected SH, kyo, has the
same direction as the reflected fundamental field. The
s-polarized compo nent of ERlo i Ei Rlo is propor(2' ) ~ (2' )

tional to the component of P along the y axis in medium
1, Pg l, i.e. ,

(2') 4&PL, 1 kf 1,s kbl, z

J,R10
Ebl nfl kf 1, kf0,

(4)

Here, k;z, is the z component of k;z and eb&(2u) = e~ (~),
cg& (2u) = b& (2u), and t& (u) is the w-dependent linear
dielectric constant of medium j. Conservation of k~~ at
all frequencies (Snell's law) enables one to determine the
components of each wave vector as a function of the in-
cident wave vector.

For zinc-blende crystals such as GaAs(001) and
ZnSe(001) in the p-in —s-out polarization configuration,
the second-order bulk polarization has the form

crystal
I
I

b1

k (2e)

(a)

ZnSe (slab 1)

ZnSe (slab 1)

GaAs (slab 2)

(b)

P ~ = ' '~2cos 2~ (~ Ek„
where t; (r,~

) is the Fresnel refraction (reflection) co-
eKcient for an a-polarized light beam with angular fre-
quency ~ propagating from medium i to medium j, and

E is the component of the incident p-polarized input
field parallel to the plane of incidence. k&l, and k&l are
the z and z wave vector components, respectively, of the
transmitted fundamental field in medium 1. Using Eqs.
(4) and (5) we have

(2~) (2) (~)2Ei,Rlo= & y. &E()

where

~t1,s ~tl, s 4+ Irf l, z ~bi, z (~)22cos 2P t
yi, i —yyo

GaAs (slab 2)
k( )

k (2m) Q b2

f2

(c)
FIG. 3. Simplified coordinate system that defines the

boundaries and the direction of the fundamental and second-
harmonic electric fields for the case of the semi-infinite slab
(a), and the two-slab problem (b) and (c). All angles between
the wave vectors and z axis are positive and less than 90'.

The coef5cient Y depends only on the linear properties of
the bulk medium and can be calculated. Using a calcu-
lated Y and measured lE(z &)io( we can determine ly(„,(.
In Fig. 4 we plot measured values of lE(& &)io[ and ~+y~v, l

for GaAs(001).
In some physical situations the magnitude of the

second-order susceptibility can vary as a function of po-
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sition within the semi-infinite medium. This can arise as
a result of local stresses or electric fields near the inter-
face. In Appendix A we give a solution for the special
case where the susceptibility decays exponentially with
distance from the vacuum-crystal interface.

B. Tmo adjoined nonlinear optical slabs

The second-harmonic field produced in reflection from
two nonlinear slabs is more complex. This complexity
arises as a result of the additional interface and the sec-
ond nonlinear medium. There are a number of existing
schemes that can be used to compute our result. ' The
matrix methodsis i4 are particularly useful for problems
with many layers, and can be applied here as well. We
will continue, however, to use the results of Ref. 2, in
combination with more conventional results from linear
optics. Loosely speaking, there are three fields which
contribute to the total reflected second-harmonic field in
the vacuum: (1) a reflected SH field generated from the
first slab, (2) a multiply reflected SH field produced as
a result of the propagation of the free and bound har-
monic waves in medium 1, and (3) a multiply reflected
SH field generated from the second slab. We will see that
the total reflected SH intensity in the vacuum oscillates
with respect to overlayer thickness at spatial frequencies
determined by kfi g kt, i g and kI, 2,

The first reflected SH field is produced in slab 1 and
propagates into the vacuum in the direction of the fun-
damental reflected field [Fig. 3(a)]. The solution for this

wave is given by Eq. (6) with values of y and Y ap-
propriate to medium 1, which in our case is ZnSe(001).

The second field [depicted in Fig. 3(b)] is produced
when both free and bound waves generated in medium 1

propagate to the buried interface at z = —d. Their prop-
agation obeys Eq. (3). In general, both bound and free
waves are reflected from the interface. The exact bound-
ary conditions used to determine these fields are given in
Appendix B. The reflection of the bound wave depends
primarily on the linear reflection of the fundamental wave
at the buried interface. If the reflection amplitude for
the fundamental field is small, the reflected bound wave
is also small and our solution simplifies. This is the case
for the ZnSe/GaAs(001) interface in our measured energy
range. The reflected fundamental intensity is at least 20
times smaller than the incident fundamental intensity,
and we safely use the simpler result to find that

(2~) (2~) -2ida„„
&Rii —" ~ i2 f~ ~

~bl, s ~f 2,S 4&pl, l id(ky &, z+&Sl, s)
kgb, + kgb,

1.
2.60 2.70 2.80 2.90 3.00

two-photon energy (eV)

FIG. 4. (a) Normalized bulk SHG intensity of GaAs(001)
as a function of one- and two-photon energy. The error bars
represent the full range of values obtained from several mea-

suremeuts. (b) ~X „,~
as a function of one- aud two-photon

energy for GaAs derived from the data in (a) using Eq. (7).
The Eq and Eo peaks correspond to two- and one-photon res-

onances at 2.96 and 1.4 eV, respectively. The solid line is

only a guide for the eye. In order to deduce the second-order
susceptibility of our sample, the SH output power of the ref-

erence wedged quartz was measured, and the effects of the
Rnite beam waist in the quartz crystal were included in the
calculation to determine ~~y „),~.

This field propagates to the first boundary at z = 0
where some harmonic light is transmitted into the vac-
uum. Multiple reflections change the amplitude of the
transmitted field by a factor of

(2' ) (2' ) —2i dkg 1"~ iO "~ i2~

The effects of multiple reflections are important for thin
overlayers, and must be included to ensure that radiation
from medium 1 reduces to zero as the first slab thickness
approaches zero.

A third SH field is depicted in Fig. 3(c), and discussed
in detail in Appendix B. It arises when the fundamental



46 INTERFERENCE IN REFLECTED SECOND-HARMONIC. . . 1607

field is transmitted through medium 1 into medium 2. In
medium 2 the field interacts to produce a nonlinear po-
larization, P& 2 . This polarization radiates a field back

into medium 1 given by Eq. (6). In our case we must

insert values of )((y), and Y appropriate to GaAs(001)
and the ZnSe/GaAs(001) interface. The reflected second-

harmonic wave due to the second slab E& &2l ls(2&v) ~

E(2tat) 4&pi, 2 &f2,z —&b2, z jg(&f 1 a+Qb2, a)
Cb2 Cf2 I('fl, z + I(:f2,z.

This field propagates to the first interface at z = 0 where

again some light at 2u is transmitted into the vacuum.
Multiple reflections also change the amplitude of this field

by a factor of g. The total reflected field is the sum of all
harmonic fields in the vacuum. This field can be written
in a fairly simple form that clearly delineates the linear
and nonlinear contribution of the two layers,

(24 ) (2) (2) (~)2
J,tot. (Yl +zyz-1 + Y2 ~zyz-2) E[[

(10) Here,

(2&@) (2&u) ~ +f0» +bl z ' 2idb-yt, t kbl z ~f2» ' id(b&t, ebb~, ) ( bl z fl z(k
kkfl, z kj'0, » J kkf1)z + kf2, »~ gt~~ l)0 kkf0, » kg 1,» II .

y g( )2 g(2 ) f2, b2, 'd(Jg, +y, )k —k2=g ))l2 J 10 2
f2, z + fl,z.

4~~(")'
tj, z tjz 2

Cbg Efg k]~
(14)

and the detected harmonic intensity I(, ) is

I( ) (E( )
( (15)

The Y; depend on overlayer thickness d, incidence angle,
and various constants that are derived from the linear
properties of the media. This function is a complex ex-
ponential and is responsible for the oscillation of the in-
tensity of the total reflected SH field and the decay of the
SH power with increasing overlayer thickness.

The intensity of Eg t&&t &
without multiple reflec-

tions, contains six oscillatory terms of the form
sin (d(kgl, z+kp, ,)/2) and sin (d(kbl, —kb2, )/2), where

P = bl, b2, and fl This is t.o be contrasted with the
Maker fringe result, which has only one oscillatory term
when multiple reflections are omitted, i.e. , sin (d(kgl, z
—kbl, ,)/2). The number of oscillatory terms increaaes
when multiple reflections are included. None of the differ-
ences discussed above arise unless the second-order sus-
ceptibility in the second slab is nonzero.

IV. RESULTS

We have measured the SHG spectra of nine
ZnSe/GaAs(001) samples with different overlayer thick-
nesses (Fig. 5). In this way we determined the thickness
dependence of the reflected SH intensity at various pho-
ton energies. The result at 2.67 eV is shown in Fig. 6.
The intensity shows a strong oscillation with respect to
the thickness of the overlayer. For large values of the
thickness, d, the intensity approaches the SH intensity of
a semi-infinite slab of ZnSe. We have observed this two-

slab interference effect for SH photon energies between
2.6 and 3.1 eV.

The second-order susceptibility of GaAs(001) deduced
from our separate SHG measurements, along with litera-
ture values for the dielectric constants of ZnSe and GaAs,
were used to fit each set of interference data to Eqs. (11)-
(15). The solid line in Fig. 6 is a theoretical fit to our
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FIG. 5. Normalized SH intensity signals from the bulk
of our ZnSe/GaAs(001) sample as a function of two-photon
energy. The ZnSe overlayer thickness was 250 A.. The error
bars represent the full range of values obtained from several
measurements.
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The broad peak at 2.96 eV in Fig. 4 corresponds to the
E1 transition of GaAs.

V. CONCLUSION
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We have reported the observation of a class of inter-
ference phenomena that arises in reflected SHG from two
physically adjoined nonlinear slabs. A theoretical expres-
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FIG, 6. Variation of the normalized SH intensity reflected
from ZnSe/GaAs(001) as a function of the overlayer thickness
at 2.67 eV. The solid line is a theoretical fit using Eqs. (11)-
(15). The lower portion of the figure is a reproduction of the
overlayer data for a smaller range of thicknesses.
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experimental data. The agreement is good. It lends sup-
port for our assumption that the second-order bulk sus-
ceptibility of our samples is independent of position in
each medium within the sample, and it corroborates our
primary theoretical results.

The magnitude of the second-order susceptibility of
~(2)ZnSe, and its relative phase with respect to y „,of GaAs,

were the only two free parameters in our fitting routine.
Thus we are able to use our interference data to deduce
the frequency-dependent magnitude of the second-order

susceptibility of ZnSe. Our deduced ~g „,~

for ZnSe are~(2)

shown in Fig. 7(a). This susceptibility exhibits a rel-
atively sharp resonance at 2.67 eV. This peak corre-
sponds to the E0 transition of ZnSe. In addition, we
see that the phase between the ZnSe and GaAs suscep-
tibilities changes by 180' near this resonance [Fig. 7(b)].
The E0 transition of GaAs is also responsible for the
small peak at 1.4 eV shown in Fig. 4. The GaAs peak is
less pronounced than the ZnSe because the joint density
of states (ZDOS) at the I' point in GaAs is 20 times

smaller than in ZnSe. Previous measurements of g &,
21 ~(2)

in GaAs (Refs. 22—25) did not exhibit the Eo transition
of this semiconductor. This may have been a result of

150—

U)
Q)—100

CI

50—

. . . I. . . ,

2.60 2.70 2.80 2.90 3.00
two-photon energy (ev}

FIG. 7. (a) Magnitude of the second-order susceptibility
of the bulk of ZnSe(001) for energies between 2.6 and 3.1 eV.
(b) The relative phase of ZnSe susceptibility with respect to

of GaAs. The error bars were derived from the Sts byXQZ

standard statistical methods. Uncertainties in the second-
order susceptibility of GaAs introduced a small additional
uncertainty in the reported. ZnSe susceptibility and phase, but
this uncertainty was much smaller than the errors reported
above. The solid lines are only a guide for the eye.
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sion for this phenomenon was derived and used to fit the
data. This interference phenomenon was then used to de-
duce the frequency-dependent second o-rder bulk suscep-

tibility of the overlayer slab. The ~™g,
~
of ZnSe exhibits

a sharp resonance at 2.67 eV which we have assigned to
the Ee transition in ZnSe. The frequency dependence

of g~~z~,
~

in GaAs was also measured in the same spec-
tral region, and the Ee and Ei transitions of GaAs were
observed.
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APPENDIX A: SOLUTION
OF THE NONLINEAR WAVE EQUATION

WITH POSITION-DEPENDENT y

Localized electric fields or deformation potentials can
make y position dependent. If the second-order sus-

ceptibility tensor y decays exponentially in the direc-

tion of z with decay constant n, we can write the position-
dependent polarization P(2 ) as

p p -a(z+d) (A1)

where Pe is the polarization at the interface z = —d.
Then, assuming the linear dielectric constant is still in-
dependent of position, the nonlinear wave equation (1)
has a solution of the form (3), but with a modified kb,

ky = 2k) y ini.
This leads to a new form for es(2~),

(A2)

cz t' .
~s(2~) = e(~) +

I
4caki z —n

4 '& (A3)

Thus the polarization decay indirectly affects the free
wave propagation through the boundary conditions, and
of course, it directly affects the bound wave amplitude in
the z direction.

APPENDIX B: EXACT BOUNDARY
CONDITIONS AT BURIED INTERFACE

To solve the general problem of reflection at the bound-
ary between two nonlinear media, we look for solutions
on both sides of the interface in the form of Eq. (3). The
general boundary conditions in the p-in —s-out polariza-
tion configuration at the buried interface, which include
the nonlinearity of both slabs, can be written as follows:

(a) Continuity of E~~~,

E elk&I ro + eskbz ro + E eik f rI 'Fo4mPJ 1
f1 fr

bl 6f1

4+PJ 1 ' ~ ~ 4' PJ. 2akb~I ro z, eskf2 l'o ikb2 ro.
b 1 t-'f 1 b2 &f2

(B1)

(b) continuity of Hll,

ikyg ro ) J- 1 g gkbq go z( g ikygro L, 1 L ikbs q roEf1kf1 z e + kb1, e —Efpkf1, z e kbl, z e
Nfl Eb1 Cf 1

= E zk z, e'"I" + '
ksz, , e'""' (B2)

4xPJ 2

Here the rejected bound wave amplitude is proportional to PJ &, and
7

nI „(~)2n
J- 1

II 12 PJ,1. (B3)

kg„i and kq„i are wave vectors of the reflected free and bound wave in medium 1, respectively, and ro is the position
vector at the interface. E~„(Ey)is ithe amplitude of the reflected (refracted) free wave at 2u. The relation between
Ef„and the reflected SH fields in the main text, i.e. , EJ ~11 and EJ ~21, is further clarified below.

Equations (Bl)—(B3) lead to the determination of Ey„.

(2u E —2idkyI, , bl, z f2,z J,1 f2,z & bl, z (co)2 i2dkbx, z -&d(&yi, z+&bI, z)
k —k 4~P k + k

f —"J,12 f1 e
kf1 z + kf2 z &bl &f1 kf2 z kbl z

4&P-L, 2 kf 2,z kb2, z —id(k Jl s+~b2 z)
&f2 kf1,z + kf2, z

(B4)
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The reflected SH field, E~ Ri~, arises from the first and
second terms of (B4). The third term in (B4) gives
rise to E~ R2~ of the main text. We can see how these
terms arise by building up our solution from two sepa-
rate boundary value problems. In the first problem we
suppress the nonlinearity of the second slab. In this case
Pi 2 ——0 in Eq. (B4), and all harmonic waves originate
from the first slab. In the second problem we ignore the
harmonic waves generated in the first slab and study the
effect of the nonlinearity of the second slab. In this case
Ef & and P~ ~ are zero in Eq. (B4). The total solution is,
of course, a superposition of these resulting fields.

The solution to the boundary conditions is alge-
braically simpler if the reflection of the fundamental field
at the buried interface is small, i.e. ,

(B5)

Under these circumstances we can ignore both the re-

flected bound wave and the eHect of this field on the
reflected free wave, Ef„.This leads to the following sim-

plifications for E& &», Pz „andE~ Rqq.

E(2~) J., 2 f 2„z bz, s jd(ky, , -kw, )4+P '

k —k
J,R21

f l, s bQ, s

E52 —ff2 kf1,g + &f2,s.

The condition (B5) exists for our ZnSe/GaAs(001) sam-

ples, and the small correction is not included in the re-
sults presented in the main text. The expressions (B6)
—(B8) can also be derived from a more general N layer-
result presented in Ref. 13. In order to obtain (B6)—
(B8) it is necessary to convert the general expression in

Ref. 13 to the p-in —s-out polarization configuration, and

then apply the boundary conditions (Bl) and (B2) with

P& &
——0 to the general solutions.
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