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With a view to some of the late developments in the thermodynamics of mesoscopic systems, we exam-
ine the problem of level correlations in moderately disorderd (diffusive) conductors. We briefly review
the thermodynamic relations, employed within perturbation theory. We calculate correlation functions
among single electron levels, and magnetic-field (magnetic-flux) derivatives thereof. Specifically, we
evaluate both single-level current and single-level curvature correlations, and use them to examine the
typical current, the paramagnetic susceptibility, and the energy “power spectrum” of Aharonov-Bohm
geometries, derived previously. We stress the role of spectral rigidity, and present comparison with sim-

ply connected systems subject to a magnetic field.

I. INTRODUCTION

Isolated mesoscopic systems are characterized by their
single-electron-level spectra and their related eigenstates.
In the absence of electron-electron interactions, the spec-
tra of the specific realizations forming a statistical ensem-
ble determine many of the physical properties, including
thermodynamical quantities.

Commonly, one is concerned with identifying and cal-
culating (or measuring) quantities that characterize the
entire ensemble rather than studying a particular member
of the ensemble. In this context, the recent observation
of persistent currents' * in isolated mesoscopic rings’
threaded by magnetic flux are particularly important.
These currents are calculated by taking the flux deriva-
tive of the total free energy. Within the independent-
electron picture they can be computed (excluding spin),
given the flux dependence of each energy level.

In a seminal work, Altshuler and Shklovskii® have
identified two important energies, namely the average lev-
el spacing (excluding spin) A, and the Thouless energy
E,=#D /L* (D being the diffusivity, L the relevant linear
system’s size) as relevant scales in the spectral correla-
tions. In particular they have calculated the fluctuation
in the number of levels within an energy window AE, and
showed that the results of random matrix theory hold for
energy scales between A and E,, while different types of
correlations are to be found on scales larger than E, (but
smaller than the inverse elastic mean-free time). The in-
troduction of magnetic field (or magnetic flux) tends to
make the spectrum more rigid.

In the present work we focus on a somewhat different
quantity, namely the correlations among flux derivatives
of single electron levels. The motivation for this study is
outlined below. We show that the (ensemble-averaged)
flux-dependent part of these correlations exhibits rigidity,
for AE > E,, much larger than the flux-independent part.
This provides an explanation for the rigidity (on large en-
ergy scales) of such quantities as the typical current.
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The outline of the present paper is as follows. In Sec.
IT we provide further motivation for calculating the sin-
gle level correlation functions. We also review certain re-
lations, originally derived by Imry,” for flux-dependent
correlations in the density of states. The typical current
and the energy “power spectrum” of the single-level
currents in a cylindrical geometry are discussed in Sec.
III. Correlations of single-level curvatures are studied in
Sec. IV for a cylindrical geometry, and are contrasted
with those of a singly connected geometry. Conclusions
and some caveats concerning our analysis are presented
in Sec. V.

II. FLUX-DEPENDENT CORRELATIONS
IN THE DENSITY OF STATES:
MAINLY A REVIEW

A. Motivation

For our present analysis we shall need to calculate
correlation functions between single electron energy lev-
els at various values of the magnetic flux, and derivatives
thereof. The reason for doing so lies in three rather re-
markable results that have been obtained over the past
few years.

1. Typical current

Single electron energy levels of an Aharonov-Bohm
cylinder (ring) are magnetic flux sensitive. Denoting the
Aharonov-Bohm flux threading the ring by ¢, the nth sin-
gle electron energy €,(4#) is a periodic function of ¢ with
a period ¢,=h /e. The latter is often referred to as a flux
quantum. The (persistent) current carried by the nth lev-
el,

dg,(¢)
o

measures the sensitivity of this level to variations in the

iy (¢)=— 2.1)

15 922 ©1992 The American Physical Society



46 ENERGY AND CURRENT CORRELATIONS IN MESOSCOPIC. ..

flux. These, by an appropriate gauge transformation,
may be related to changes in boundary conditions. At
zero temperature, the fotal current is given by summing
up all single-level current contributions up to the Fermi
energy €g:

=3 i, .

<
€, _EF

(2.2)

There are numerical indications that I is a random
Gaussian variable.’ The average current is given by en-
semble averaging I. At the same time, one may calculate
the typical current. Defining the energy window AE as
the interval [ez—AE,er], one may evaluate the typical
current I ¥R within this energy window:

ItAyEE < 2 in 2> 172

, (2.3)
€, Elep—AE,ep]
where ( ) denotes ensemble averaging.
It has been found®® that the typical current of a short
two-dimensional cylinder is

~\/AE/A% , A<<AE «<E, ,
oA (2.4)
~\/EC/A7 , #/T>>AE>E, ,

where 7 is the elastic mean free time. Equation (2.4) im-
plies that the typical current increases with the number
of levels within the energy window, reaching saturation
as this number becomes equal to the effective number of
transverse channels, M s~E_/A~M(l/L), (M being the
number of occupied transverse modes and [ the elastic
mean free path).

Inspection of Eq. (2.3) reveals that the expression for
the typical current includes a summation over pairs of
single-level currents, (i,i, ). The fact that the sum in
Eq. (2.3) saturates at AE =E_ suggests strong correla-
tions that suppress the contribution of such current pairs
for |e, —¢,,| >>E,. An explicit derivation of this behav-
ior relying on a study of the energy spectrum is, evident-
ly, called for.

2. Enhanced orbital paramagnetism

In several recent works it has been argued that the
magnetic susceptibility of canonically averaged rings
(near ¢=0), arising from orbital contributions, is
paramagnetic in nature.'° ! The term “canonical” here
implies that the number of electrons within each ensem-
ble member is held flux independent. Similarly, simply
connected systems (quantum dots) may exhibit large or-
bital paramagnetic susceptibility at weak magnetic
fields,15:20.21

One appealing argument, due to Bouchiat and Mon-
tambaux,'""!? explaining this effect, assumes that single
electron levels at, e.g., zero field, occasionally appear in
pairs which are close in energy. These levels now tend to
repel each other as the magnetic flux is turned on (this is,
for example, a direct consequence of second-order pertur-
bation theory). This results in the levels having rather
large curvatures of opposite signs (the lower level of the
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pair is negatively curved, while the upper one is curved
upwards). Now, at zero temperature, each level is either
empty or occupied. When both levels are occupied (i.e.,
below the Fermi energy), their contribution to the total
susceptibility is small, as the respective contributions of
each level nearly cancel. (Evidently, when both levels are
empty, their contribution is zero.) If only one (the lower)
is occupied, the total contribution of this pair will give
rise to a large term of a paramagnetic sign. This picture,
evident in the limit of very weak disorder, is less trivial
when the amount of disorder is significant. It is desirable
to confirm the above picture, based on analysis of the
spectrum, and to demonstrate that consecutive levels
indeed tend to be anticorrelated in curvature.

3. Power spectrum of single-level currents

This point is somewhat technical and not so much re-
lated to an experiment as the two topics mentioned
above. In a recent study by Bouchiat, Montambaux, and
Sigeti,'® various aspects of a ring’s spectrum were investi-
gated, combining numerical computations with scaling
arguments. Defining

e (d)= 3 A, (n)cos(2mme/d,) , (2.5)
m=0
they have considered the Fourier transform
Amm= [ bu(fedf 2.6)

where f;, is of the order of A/er. The power spectrum
is defined as

B, (f)=(b,,(f)?*) .

Bouchiat, Montambaux, and Sigeti have found that the
“power spectrum” B, (f) presents a sharp cutoff
fm ~m?A/27E,, below which B,,(f)~0. On the other
hand, for f>>f,, B, (f) decays like a power law. In
particular, it was found for the power spectrum B (f) of
Ae, =¢e,(6/dy=0)—¢,(d/dy=1) varies as

1
f

for frequencies f>>A/E.. It is our purpose here to
derive analytically B,,(f) and B(f) from our spectral
analysis.

(2.7)

B(f)~ (2.8)

B. The basic formalism: A terse review

Our analysis here is heavily based on a formulation
developed by Altshuler and Shklovskii® to study fluctua-
tions in mesoscopic systems. Later works®!#~2? have re-
lied on this seminal work. Some results of our analysis
have already appeared in recent papers.”!°~ 2

Let us define the density of states (as function of energy
€ and flux @) by n (g,4). Imry’s starting point’ was to ob-
serve that the total number of electrons (at zero tempera-
ture) was given by

By(8)
fo n(e,p)de=N , 2.9)
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where py(¢) is the flux-dependent chemical potential (at
zero temperature) corresponding to a flux-independent
number of electrons. In other words, puy(¢) is defined to
be the energy half way between the Nth and the N + 1st
level: this sample specific quantity may be written as

un(d)=py+ouy(e), (2.10)

where the overbar denotes averaging over flux. Invoking
the impurity averaging notation ( ), we may write

pn(@)=(Gy) +iy—fy) +uy(d)

=(ay) +80y+8uy(e), .11

with 871y =fiy — (fiy ). One may also write

n(e,¢)=(n(e,¢))+8n(e,¢), (2.12)
and define

_ [E

8N(E,¢)=fo n(e,¢)de . (2.13)
It can be shown that to leading order’

SN(upy(¢),d)+ny[8Fy+8uy(d)]=0, 2.14)
with

ny=n({fiy)), (2.15)
independent of the flux. It thus follows that
(BN({Fiy),$)ON((Tip ?,0'))

=nonY ([8fy+8hy(d)][0Fs +0up(4)]) . (2.16)

We shall assume that, to leading order, and as long as
|N —M| is not too large, ny~ng ~n° Moreover, the
right-hand side (rhs) of Eq. (2.16) may be replaced at zero
temperature, to leading order, by
() (en(Bler(¢) , (2.17)
where €y(¢4) denotes the (flux-dependent) Nth energy lev-
el. Thus, by evaluating the left-hand side (lhs) of Eq.
(2.16) we shall be able to obtain information concerning
correlations among energy levels and their derivatives
(currents, curvatures, etc.).
To this end we apply a zero-temperature Green’s-

Ms

(8N (g;,¢,)8N(g),¢,)) — (8N(g,,0)8N (g,,0)) =

m=1

with
w 2 24,2 |74
C,= 3 s2 exp— 8—_27/— cos larctan*5~
m=1TmMm Ec 2 Y

Com
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function technique, calculating contributions due to dou-
ble cooperon and double diffuson diagrams.® The coope-
ron term will depend on ¢+ =¢,+¢,, while the diffuson
part on ¢~ =¢,—¢,. Similarly we have inelastic rates y *
and ¥, which, in our analysis, are taken to be equal to
each other. In performing this analysis we recall some of
the limitations of perturbation theory:

() ley —ep| S#/7<<{fiy),{fy ). (When the first in-
equality breaks down, one may still employ perturbation
theory, but the form of the correlators will change.?’)

(ii) As |ey —e)| approaches A (the average level spac-
ing), other diagrams become important, leading to the
breakdown of this perturbation theory. On energy scales
close to A, y (if larger than A) takes over. We shall not
discuss here the nonperturbative regime!®%* y <A.

(iii) For y <<A the theory breaks down, for |¢
67| SdoV/A/E.. But for y > A one is allowed to con-
sider this “superweak” regime of the flux within pertur-
bation theory.

The correlation function of the fluctuations in particle
numbers is given in terms of the cooperon and diffuson
contributions:

+|’

(8N(e,,6,)8N (g, ¢,))
o ) c
= f,w f,wdeldsz[K (1,¢1;€2,9,)

+KD(81’¢1;52y¢2)] . (2.18)

Here we used the notation €, =NA, e,=MA, §=¢,—¢,.
Without loss of generality, we have set the Fermi energy
at 0. We have approximated the bottom of the Fermi
sea by — oo, anticipating minor contributions from ener-
gy intervals beyond #/7.

The geometrical setup is depicted in Fig. 1. Periodic
boundary conditions are imposed along the tangential
direction, denoted as x, while fixed boundary conditions
are imposed along the y and z directions. We thus use
Cartesian coordinates to describe our large aspect ratio
cylinder. L,, L,, and L, are the respective perimeter,
thickness, and length of the system.

We now expand the correlation function, Eq. (2.18), in
a Fourier series, and find after some algebra (see, e.g.,
Refs. 14, 15, 20, and 25),

+ —
cos2mm M +cos2mm M
0 éo
b g |1/4
lm lcos _aiz?’_ sin %arctan% lm } ,  (2.19)
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FIG. 1. Cylinder pierced by an Aharonov-Bohm flux.

where a flux-independent term (the zeroth harmonic) was
subtracted from the correlation function. Here s is the
spin degeneracy.

In the limit E,, §>>y 2 A (implying arctgd/y = /2),
it is possible to write the correlation function of the mth
harmonic as a function of the variable m28/E,,

Fim , (2.20)

2.8
T°m E.

where

F(x)=exp(—V'x /2)cosVx /2 . .21

This asymptotic behavior contains information concern-
ing correlations over energy scales larger than the level
spacing. We shall use this result for our analysis of the
typical total current.

Equations (2.20) and (2.21) imply that the number of
effective harmonics contributing to the correlation func-
tion depends on the energy interval considered, &.
Within the present perturbation theory, & exceeds the
level spacing A. For X A the number of effective har-
monics is ~V/E./A~V'g, where g is the dimensionless
conductance.

III. TYPICAL CURRENT AND THE ENERGY
POWER SPECTRUM OF SINGLE-LEVEL
CURRENTS IN A CYLINDER

Equation (2.19) in conjunction with Egs. (2.17) and
(2.1) provides us also with the correlation function of the
flux-dependent part of the energy levels as well as the
correlations among single-level currents. At zero temper-
ature the fotal current carried by a ring containing N
electrons is given by summing up all the single-level con-
tributions of the first N levels,

N
I(N,¢)= 3 i,(¢). (3.1
n=1
The total typical value of I(N,¢) is given by
(IAN,$) =3 (i,i,) . (3.2)

n,p

The total typical current is thus directly related to the
correlations among the single-level currents. In the limit
N>>1 we employ a quasicontinuous description of the
spectrum, replacing Eq. (3.1) by [cf. Eq. (2.9)]

my(

1 ¢)
I(N,¢)=Xf0 i(E,$)dE . (3.3)
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When evaluating averaged quantities it is essential to
specify the type of statistical ensemble employed. For the
square of the current, the distinction between canonical
and grand canonical ensemble is not all that crucial, and
un(4) will be replaced by [cf. Egs. (2.10) and (2.11)]
(fy)=NA.

An alternative approach to relate the typical current to
the single-level correlations is to express the former in
terms of the “power spectrum” of the successive harmon-
ics of the flux-dependent part of the energy levels [cf.
(2.5) and (2.6)]

2
B,,,(f)=< T [T B g | ) G4
.

The rhs of Eq. (3.4) consists of the square of the
ensemble-averaged Fourier transform of A, (E), m denot-
ing the mth harmonic in flux. Employing Egs. (2.1), (2.5),
and (2.6), we may write for the mth harmonics of the
single-level current

(lim(E)P):(‘fAl/ ‘l-'m(f)eZIﬂf(E/A)df‘Z)
3

2

. 47*m 1
== I} ase, B (NS, 3.5
and by Eq. (3.3)
- _ 1 +
(llm(f)P)_z;EfT(hm(f)‘Z) , (3.6)
where we have used the fact that [cf. Eq. (2.6)]
Jaf b, (b, (f))=([by(N)S,, - 3.7

Hence the power spectrum of the mth harmonic of the
total current is

m?B,, (f)
45
Equations (3.5) and (3.6) demonstrate that the low-
frequency behavior of B,,(f), which controls the conver-
gence of the integral of B,,(f)/f?, is directly related to
the large-N dependence of the typical current. More
specifically, if lim;_ oB,,(f)~f'** with x <0, then the
mth harmonic of the total current limy I, (N elec-
trons) ~N ~*/2. On the other hand, if x >0, the typical
current for large N converges towards an N-independent
limit. We next show that B, (f) vanishes, as f —O0, faster

than linearly. From Egs. (2.1), (2.19), (3.4), and (3.7), it
follows that

A
B, (f)=—
mlf 472

(1N = (3.8)

+

C,,(8)e%m/(¥/8)qs | 3.9

where the large-energy limit of C,,(8) is given by Eqgs.
(2.20) and (2.21). Defining

_ Am?
™ 2mE, "’

(3.10)

we obtain (for f <A/y)
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We have thus recovered, according to Ref. 13, that the
energy power spectrum is nearly zero at small frequencies
compared to f,,, goes through a maximum at a frequency
close to f,,, and decays like a power law at high frequen-
cy; see Fig. 2. (The apparent disagreement between the
numerical value of the exponent of this power law, x =1,
and the analytical one, x =%, is discussed below.) Using
(3.8) and (3.9), the typical magnitude of the mth harmon-
ic of the total current is calculated from

(I2)=4n* [ (I, (fP)df ,

2 E
B, f)1= 555
2 m

(3.11)

(3.12)

0.4 —

©
w
L e e
AR

©
N

Energy power spectrum
=}

N

Energy power spectrum

o

PP RPN R R R
0 0.2 0.4 0.6 0.8 1
f

FIG. 2. Comparison between (a): the analytical expression of
the first-harmonic energy power spectrum B,(f), and (b) the
power spectrum of Ae, =¢,(¢/do—0)—¢,($/dy=1) calculated
numerically in Ref. 13 using the Anderson model on a cylinder
128X10X 10 and W/t =3. Note in both cases the low-
frequency cutoff, corresponding to f <<A/E,., and the high-
frequency power-law tail. Energy power spectrum is in arbi-
trary units.
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and is found to be

245°E?
(I2)=—3
m-é;

, (3.13)

in agreement with the results of Ref. (26) for the current
harmonics in a SNS junction (see also Ref. 19).

To conclude this section, we compare our results to the
numerical study of Refs. 12 and 13. The quantity evalu-
ated there was the power spectrum of

b o], [o_1
% b 2

where the index n runs over levels. This quantity may be
represented as a sum over the odd harmonics (2m +1) of
e, (d/¢y), cf. Eq. (2.5):

Ae, =23 AV .
m

Ae, =¢, —€, , (3.14)

(3.15)

By Eq. (2.7), and using the fact that upon ensemble
averaging different harmonics are uncorrelated [cf. Eq.
(3.7)], the power spectrum { [Ae(f)]?) is given by

([A(NH])=I By +1(f) . (3.16)
m

Considering f >>A/E,~1/M ., we may use for B the

analytic expression, Eq. (3.1), and replace the discrete

sum in Eq. (3.16) by an integral. The power spectrum

then reads

A? ) A?
Ae( )P = 32 m g ~ 2
([Ae()]») (Meff)”zf foe m G
(3.17)
In the low-f limit, fM 4 <<1,
([Ae(f)]*)~B,(f)=0 . (3.18)

We have thus recovered the 1/f high-“frequency” tail of
the “power spectrum” found numerically, as well as the
low-f vanishing of the “power spectrum,” reflecting the
spectral rigidity over large energies.

IV. CORRELATION OF THE LEVEL CURVATURES

A. Hollow cylinders

Single-level current-current correlations are easily de-
rived from Eq. (2.19) by taking the appropriate deriva-
tives with respect to ¢, and ¢,. In order to facilitate
comparison with correlation functions of simply connect-
ed geometries, it is useful to write down these correlation
functions in a compact form, summing over the Fourier
components that appear in Eq. (2.19) (cf. Ref. 20).

Employing Egs. (2.16), (2.17), and (2.19), we obtain the
single-level curvature-curvature correlation function.
Denoting the relevant energy interval §=(n —m)A, we

obtain
< [_ d%,(4,) 1 _ 3%, (¢,) ]>

C.p(d)= 1
AB i ap? 363

66,0
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where AB denotes Aharonov-Bohm geometry,

Cap(8)=a Re 2 3 |, @
sinh% sinh%
with
_is |7
=Xzt 43
z E, (4.3)
and
A2
a=4s2172-—4— . 4.4)
o
In the limit 8,y <<E_,
_ (yP=8E;
CAB(B)—480W ) 4.5)

CAp(8) is negative for 8> y. This result implies that the
zero-flux curvatures of consecutive energy levels tend to
be anticorrelated. On the other hand, in the limit where
A<y,E <,

172 172

Cap(8)=8a exp cos

2E 2E,

c

)

=84 F
*TE

(4.6)

4

[cf. Eq. (2.20)]. In this limit it is the first harmonic of the
energy-level correlation function [cf. Eq. 2.19)] which
contributes to C,5(5).

B. Comparison with simply connected geometries

It is interesting to compare the above calculations with
the corresponding correlation functions calculated for
simply connected geometries. Evidently there is no
Aharonov-Bohm flux periodicity to consider. Instead, we
study the correlations between the zero-flux curvatures of
single electron levels (referred to as “curvature-curvature
correlations”).

For convenience, and in order to facilitate comparison
between correlations over large energy intervals (6 >E,)
and small energy intervals (8§ <<E_), we consider here an
anisotropic rectangular box of linear dimensions L,, L,
and L,, as shown in Fig. 3. There is a magnetic field H in
the z direction, with the corresponding vector potential

A(0, —Hx,0) . 4.7)

We evaluate the following correlation function (the
subscript SC stands for simply connected):

. azen(Hl) _ azsm(Hz)
Technically speaking, we consider the H? corrections

Ce(8)= 1
cl®)=, im

dH?> dH?2
(4.8)
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FIG. 3. An anisotropic rectangular geometry with a perpen-
dicular magnetic field.

of the diffusion and cooperon contributions to Cgc(8).
The z modes of the cooperon (or diffuson) are unaffected
by the presence of weak field directed along the z axis.
For L, <<L, one is left with magnetic-field corrections
that depend only on the quantum number of the x mode
[the dependence of the O (H?) correction on the quantum
number of the y mode is down by a factor of (L, /L, )2].
If we further assume

E

__ #D
= _1:7 >y, 4.9)

X
v being the relevant inelastic broadening, we may include
only the zeroth mode in the x direction (that is, replace
Dg? in the diffuson pole by 0, cf. Refs. 6 and 20).
We are now in a position to treat various scenarios, de-
pending on the inequalities among v, Ecy EﬁD/Lyz,

E, =#D/L? and 8. To make our point, it is sufficient to
restrict ourselves to one specific case, e.g., L, >>L,, and

E ,E >V . (4.10)
One may easily extend and modify the present treatment
to include other inequalities. In evaluating the diffuson
and cooperon contributions to the correlation function,
Eq. (4.8), we may now sum over the y modes, considering
the zeroth modes only in both the x and z directions. Un-
der these assumptions it is possible to account for the
weak magnetic-field shift of the relevant cooperon
(diffuson) eigenvalues by considering the shift of the
zeroth mode (i.e., the product of the zeroth modes in the
x, y, and z directions). This shift for the cooperon
(diffuson) is a(H, + H,)* [a(H, —H,)?]. We obtain

65> 1 1
Csc=——0a? + ,
s¢ T’E? z%inh%z  z3tanhz
¥y
—is 1172 (4.11)
,= |Xt0
Ecy

Let us now discuss the following limiting cases:
(i) A<<y, 8 <<E, . Straightforward evaluation of the
y

correlation function yields
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_ 1257, y?—8?

mAT T (p2+87)?
It should be noted that an identical expression (but with a
different value for a) is obtained for a simply connected,
cylindrically shaped system (with the field oriented along
the cylinder’s axis). In this weak-field small-energy inter-
val regime this expression is also equal—up to a geo-
metrical factor—to the corresponding correlation func-
tion calculated for an Aharonov-Bohm cylinder. We
note that for 8>y > A level curvatures tend to be an-
ticorrelated, providing an explanation for the weak-field
anomalous paramagnetic behavior of mesoscopic conduc-
tors (cf. Refs. 15, 20, and 25).

(i) y << Ecy <d< E. . We obtain

372

Csc(8) (4.12)

V2 &
T A% (E, )?
Y

4

E
y

Csc(S)z— 5

(4.13)

For E, <6 <<E_ we expect a different power-law be-

havior. This monotonic power-law decay of the correla-
tions comes in sharp contrast with the exponentially at-
tenuated oscillations, found in the case of an Aharonov-
Bohm system [cf. Eq. (4.6) and Fig. 4]. This difference is
a direct consequence of the fact that a typical diffusing
trajectory which is flux sensitive (i.e., winds around the
cylinder at least once) is associated with long times
(>#/E,), i.e., small energies. For large energy intervals
the distinction between simply connected geometries and

Ll I e B s M e IR L I

MR

1 -+ — 107
. L )
c
g L 1L
Q
g 0.5+ — 5x107°
o L )
o L 1L
[e] 4
2
5 L )
2 (0] o - 0
~ 4
o]
8 L
o L L
=-0.5 —+ —5x107®
E L 4} J
1 &
5 1L
Z, L 1L
-1 - —10°%
d o otond aobad sbad saabed o A TSR B | 10

107 10° 10! 10?
6/A

10% 10° 10*
é6/A

FIG. 4. Comparison between the correlation function of the
level curvatures for the cylinder and the quantum dot, normal-
ized at 1 for 8=0. The parameters are E.=FE. =50A and

¥y

v=5A. Note that these functions are identical in the low-
energy limit § < E, but strongly differ in the large-energy limit
8>>E.. The upper curve corresponds to the case of the
cylinder, the lower curve corresponds to the case of the rec-
tangular quantum dot.
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multiply connected ones becomes apparent. This is also
responsible for the fact that the average susceptibility,
say, is suppressed exponentially with the inelastic rate (or
temperature) in the case of a hollow cylinder'*~!” (for
temperatures larger than E_), while it is attenuated as a
power law for simply connected systems.?*?*

There are other limiting cases that may be discussed
here. For example, for Ecy, 8 <<y (macroscopic regime)

one obtains again a power-law decay
3/2

‘y

Y

_ 6s> o’
¢ A (E, )
y

(4.14)

The inelastic broadening y gives rise to contributions
from the correlation of a level with itself, deeming the
correlation function positive.

The above analysis demonstrates that the flux-
dependent part of the spectrum is much less rigid on
large energy scales in the case of simply connected sys-
tems than it is for an Aharonov-Bohm flux. For the
latter we have shown how it is possible to evaluate the
averaged square current (the total typical current) or, for
this purpose, the total typical susceptibility,’*~?° by dou-
ble integrating over single-level contributions up to the
Fermi energy. In principle this procedure could be re-
peated when considering a simply connected system. But
in that case, and due to the lesser rigidity of the spec-
trum, it is crucial to account for correlations over dis-
tances larger than #/7. The introduction of a cutoff
W <#/7 in the energy integrations involved is, at the
present case, not quite satisfactory.

V. SUMMARY AND DISCUSSION

We have revisited some of the outstanding issues in the
study of magnetic-field-dependent, noninteracting meso-
scopic systems. It is convenient to express various quan-
tities of interest in terms of the single-electron-level
correlations. In particular, we have analyzed the flux-
dependent part of these correlations in Aharonov-Bohm
cylinders, and compared them with the related correla-
tions in simply connected systems subject to weak mag-
netic fields.

For Aharonov-Bohm geometries, the correlation func-
tion is periodic in the flux. Any given harmonic is energy
dependent, and fluctuates as function of energy. On large
energy scales the correlation function of the mth harmon-
ic in the energy direction consists of exponentially at-
tenuated oscillations of the variable m1/8 /E,., where & is
the energy difference at hand and E, is the Thouless ener-
gy. The fact that the typical value of the total current is
proportional to E,, and is independent of the total num-
ber of electrons in the ring, is a direct consequence of the
rigidity of the flux-dependent spectral correlations on
large energy scales (and is directly associated with the
fact that the correlation function in the energy direction
falls off stretched exponentially rather than exponential-
ly). The rigidity is also reflected in the analysis of the
“power spectrum” of the single-level currents.

In contrast, for simply connected systems, the large en-
ergy correlation falls off power law, exhibiting no oscilla-
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tions. The difference between the two geometries can be
traced back to the fact that for energies larger than E.
(corresponding to time scales shorter than the transversal
time across the system), only an exponentially small frac-
tion of the electron’s semiclassical trajectories will go at
least once around the Aharonov-Bohm cylinder, giving
rise to flux sensitivity. In contrast, for simply connected
geometries, even relatively short trajectories may be flux
(or field) sensitive.

On smaller energy scales (8§ <<E,) the correlation
functions are similar for hollow cylinders and simply con-
nected geometries. The curvature-curvature correlation
function is negative for 6 > A, corroborating the fact that
subsequent levels tend to be anticorrelated in their curva-
ture, in agreement with the Bouchiat-Montambaux pic-
ture.

We note that throughout this work we have not ac-
counted in detail for correlations over energy scales

15 929

larger than #/7. This, of course, require further
justification.?> For this purpose, the existence of certain
sum rules that govern the spectral rigidity over large en-
ergy scales may be essential.
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