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We have made an extensive study of the pseudobinary semiconductor compounds (A1—zBz)C,
which includes both the III-V and the II-VI alloys. We use a Kirkwood model with all parameters
derived from the elastic constants of the pure materials. It is shown that the mean lengths are linear
in the composition z if the force constants for the two pure materials AC and BC are the same. We
have derived analytic results for the mean lengths of AC and BC bonds and for their widths in the
preceding paper. We construct an effective-medium theory for cases in which there is disorder in
the force constants. This effective-medium theory is found to be in good agreement with the results
of computer simulations of the same models. Mean values for the next-nearest-neighbor lengths are
also given, and found to agree with extended x-ray-absorption fine-structure results.

I. INTRODUCTION

Structural information on semiconducting materials
is of fundamental importance in calculating, predict-
ing, and understanding their properties.!~% Extended x-
ray absorption fine structure (EXAFS) experiments have
found that pseudobinary semiconductor alloy systems
(A1_zB;)C exhibit a bimodal structure.?~® The first-
neighbor cation-anion distance remains closer to that in
the pure binary compound than to that of the average or
virtual crystal. This discovery inspired considerable the-
oretical interest.”~10 In this paper we apply the general
results for quaternaries found in the preceding paper,!!
henceforth referred to as paper I, to the case of pseudobi-
nary semiconducting alloys. Our statistical approach was
shown to be successful in I by comparison with computer
simulations. The model is also applicable to binary alloy
systems like Si;_,Ge, which will be studied in the fol-
lowing paper, paper III.12 QOur investigation provides a
better understanding of the theoretical assumptions be-
hind Végard’s law.! The layout of this paper is as follows.
We first discuss the valence force models in Sec. II. The
force constants of the models are fit from elastic mea-
surements for known pure binary crystals, and we give
extensive tables of these force constants. In Sec. III we
apply the analytic results from paper I to ideal pseu-
dobinary alloys (no force constant disorder). This result
demonstrates the importance of the topological rigidity
constants, which characterize the rigidity of the underly-
ing lattice system. We also discuss the importance of the
topological rigidity parameters in the construction of an
effective-medium theory for use when there is variation in
the force constants. In Sec. IV we study in considerable
detail all pseudobinary III-V and II-VI semiconductor
alloys using both effective-medium theory and computer
simulations. Results are presented in a form that can
be used for comparison with experimental data. We fo-
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cus particularly on the deviations from straight lines for
the mean lengths, caused by the force constant disorder.
This bowing is much smaller than might have been ex-
pected. In general we find satisfactory agreement with
experiment, where results are available.

II. VALENCE FORCE MODELS

Valence force models have been used to give a reason-
able overall description of the phonons in semiconduc-
tors. In the diamond and zinc-blende structures, nearest-
neighbor central force interactions alone lead to unstable
structures that can be sheared. In fact one-third of the
vibrational modes, which correspond to the transverse
accoustic modes, have zero frequency. At a minimum
some short-range angular interactions are needed to sta-
bilize the structure. The Kirkwood!® and Keating'4 po-
tentials contain second-neighbor interactions which are
sufficient to stabilize the zinc-blende structure. These
models are adequate for our purpose and little would be
gained by going to a more detailed force constant model.
There are some subtle differences between the Kirkwood
and the Keating models, although both can be regarded
as providing simple two-parameter fits to the phonon
dispersion relations in the pure binary materials. We
have a preference for the Kirkwood model as it separates
the angular forces from the bond-stretching forces in a
clean way. This makes it easier to construct an effective-
medium theory which is necessary if there is disorder in
the force constants together with the length mismatch.
We will only give the results from the Kirkwood model
in the main part of this paper. A comparison of results
from the Kirkwood amd Keating models is given in the
Appendix and Table I, where it is shown there that the
differences between these two models are quite small.

We use the Kirkwood model!? as in I,
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V= 3 Z(Lw’ — LY+ ng Z(COS Bij1 + 3)3, (1)

(i5) (i5l)

where the force constants « and 3 are the nearest neigh-
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TABLE I. The force constants a and 8 (in N/m) for the
Keating and Kirkwood models obtained from the elastic mod-
uli, as described in the text.

Kirkwood model Keating model

bor and the angular force constant, respectively, L;; is e A e p
the bond length between atoms 4 and j, L?; is the natu- AlP 65.03 14.19 60.30 14.19
ral (unstrained) bond length and 6;; is the angle between AlAs 44.18 8.94 41.20 8.94
nearest-neighbor bonds ¢j and il. The angular brackets AlSb 35.69 6.79 33.42 6.79
(---) under the summations exclude double counting. GaP 48.06 10.69 44.50 10.69
The potential (1) can be expanded for small length G248 44.34 9.25 41.25 9.25
mismatch. Denoting by L, the nearest-neighbor distance Ciaib 34.29 7.33 31.85 7.33
of the underlying (undistorted) crystal structure, and u; InA g;gg ggg gg?? ggg
the displacement vector of atom i from its crystalline IESS 31‘30 5'07 29.61 5'07
position, and expanding up to linear terms, 7nS 40.30 4.78 38.70 4.78
ZnSe 33.74 4.56 32.22 4.56
A ZnTe 31.06 4.66 29.51 4.66
Lij=Le+ 15 uy, @ cas 35.66 475 34.07 475
o ) _ _ CdSe 33.18 4.37 31.72 437
where F;; is a unit r.1ea.rest-ne1ghbor vector in the perfect  gTe 27.30 2.79 26.39 2.79
crystal structure pointing from atom ¢ to j. The potential HgTe 30.72 2.93 29.75 2.93
(1) can now be rewritten as
V= aQ 0 | s 2, B A N 14 - 2
=3 Z(Le = Lj; + Fi5 - uy5)" + 3 Z[rij Sug By Wy 4 5(Fg - wig + By coug)]t (3)
(i5) (il)
In the perfect system, there is no length mismatch and L, = L?j, so that
a N 2, B N A 1/a A 2
V=3 > (B uiy)® + 5 D [Big - ua + Ea o ug o+ §(Rg - wg + Baua)) (4)

(i3) (i5l)

Using the method of Keating,'4 the elastic constants
of the Kirkwood model are found to be

1
C11 == E[a + %/6]7

Ci2 = i[a - 34, (5)
Cus = 1 36a8 ]
47 4o |9a+ 166"

where a = L./ V3. The frequency of the optic phonon at
k=0is

wo = \/ﬁm 15, (6)

where u is the reduced mass.

The force constants in the models are chosen to fit
the elastic modulus C;; and the bulk modulus B =
1(C11 + 2C12).1° In Table I, we list the force constants
for different zinc-blende compounds. In the Appendix
and Table I we see that the angular force constants
are identical for both the Keating and Kirkwood models,
while the central force constants a are different. We em-
phasize that the main reason that we adopt the Kirkwood

-

model is its simplicity when there is size mismatch in the
system. As can be seen in Eq. (1), the length mismatch
comes only in the central force part of the potential and
not in the angular part.

The fitted force constants « and 3 shown in Table I
give the shear modulus Cy4 and the optic mode frequency
wo with errors smaller than 20% for most compounds
but up to around 40% for some other compounds when
compared with experiments.!®> Of course, it is possible
to choose different angular force constants for ABA and
BAB angles and this and other embellishments would
lead to better fits to the elastic constants and the optic
mode frequency. One could further consider the charge
transfer and deploy a shell model. However, it is not nec-
essary to fit every detail of the phonon dispersion curves,
as all the phonons are involved in the concentration waves
that lead to the structural distortions in the alloys. We
find that even large variations in the force constants in
the binaries at the two extreme compositions only lead
to a very small bowing in the mean lengths, which is un-
observable in most cases. Even in the most extreme case
Zn;_,Cd;Te, the bowing is only just observable experi-
mentally, as discussed in Sec. IV. This is why simple mod-
els like the Kirkwood and Keating models are adequate.
Other approaches, such as using an embedded-atom po-



46 LENGTH MISMATCH IN RANDOM ... . IL. ...

tential in metals, can only be studied using numerical
simulation.6

III. THEORY

A. Analytic results

The general results for the quaternary alloys
A1_:B;C,_yD, found in paper I are applicable to the
pseudobinary system (A;_,B,)C by either equating the
two chemical species C = D and/or setting the concen-
tration y = 0. From results presented in paper I, we have
expressions for the average distance and length fluctua-
tions for nearest neighbors, which now become

Xk

(L) =L = S-(e=1422)(Lo ~ L), (7)

(L2) — (Le)? = (a}* — a™*)2(1 — z) (Lo — Lho)?,
(8)
0

where L, = (1 —z)L% o+ 2Ly =79 +1& +z(ry —rd).
The additivity assumption (i.e., L% o = r4+r2) is unnec-
essary for the pseudobinary alloys as there are only two
natural lengths and a greater number (three) of atomic
radii. In the quaternary alloys there are four natural
bond lengths and an equal number (four) of atomic radii.
We use the convention that ¢ = +1 for A- and € = —1
for B-type atoms.

There are two different types of expressions for second-
nearest-neighbor distances, one with a C atom in the
center, and the other with a C atom at both ends. From
the general theory of paper I, these are

(LSS, = L3 — 3o (———61 T2 20t 1)

X (L%C - L%C)a

(9)

(L)GC = Lamn — 1, [2a* (e 4 22— 1)(LY0 — L30),

where the i, j are on A, B sublattices. The first of
these equations involves only the topological rigidity con-
stant b**, while the second only involves a**. The mean
next-nearest-neighbor distance (averaged over all chemi-
cal species on both sublattices) is L?™® = {/8/3L,. The
average angular distortion associated with different con-
figurations can be derived directly from the expressions
(7)(9).

If we write the nearest-neighbor mean distances and

fluctuations in terms of dimensionless variables d,!7-18
defined by

L—Lac
d= ——_ZAC 10
Lgc — Lac (10)

then the results (7) and (8) become
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(d) =z,
(dac) = z(1 —a**),
(11)
(dBc) =1—(1—1z)(1 —a™),
(d%4e) — (dac)® = (dhe) — (dBo)®

= z(1 — z)(a}* — a**?).

The compact form above arises because one sublat-
tice is always occupied by C-type atoms. The simple
expressions (11) also reveal the connections between dif-
ferent experimentally measurable quantities. The topo-
logical rigidity constants in (7)—(11) can be taken as pa-
rameters characterizing the EXAFS results and deter-
mined from experiment. For example, in the case of
Ga;j_.In; As, from the nearest-neighbor distance EXAFS
measurement, we can fit the value of a** to be 0.8, which
corresponds to 8/a = 0.12, which is smaller than the val-
ues for either GaAs or InAs as given in Table I. We then
use B/a = 0.12 to determine all the topological rigidity
parameters. The Kirkwood model gives the correspond-
ing a}* to be 0.57 and b** to be 0.40.1! In Fig. 1 we
plot the analytic results from our theory and results from
EXAFS experiments. The length distributions shown in
the right panel are approximately Gaussian, whose cen-
ters and widths are given by Eqs. (11). The agreement
shows that our model does grasp the main features of
the problem, and produces the characteristic Z plot with
two parallel lines for the mean AC and BC bond lengths.
Such a straight line Z plot arises if and only if the vari-
ation in the force constants can be neglected. We will
discuss how this applies to Ga;_,In;As in the next sec-
tion. In the perfectly floppy limit when the lattice has no
effect, a** = 0, and the two parallel lines in the Z plot
become flat and independent of composition z. In the

T T T T T T
— Ga;_,In,As x = 0.20
= «
26 - .
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FIG. 1. The left panel compares the experimental results of
Mikkelson and Boyce (Ref. 2) (open symbols) for Ga1—zInz As
with simulation results using the Kirkwood potential with
a** = 0.8 corresponding to 8/a = 0.12 (solid symbols) and
straight lines from the theory given by Eq. (7). The right
panel shows our computer simulation results on an 8000-atom
sample, with periodic boundary conditions, for the length
probability distribution of nearest-neighbor Ga-As and In-As
bonds for £ = 0.2. The solid curves are Gaussians with cen-
ters, widths, and weights determined from Egs. (7) and (8)
in the text. Force constant disorder is ignored.
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FIG. 2. The distance for

next-nearest-neighbor
Gai_zInzAs with ¢** = 0.8 and b™* = 0.4 using the Kirk-
wood potential with 3/a = 0.12 in Eq. (9). The experimental
points are from Ref. 2. Force constant disorder is ignored.

perfectly rigid limit, which is unobtainable in practice,
a** =1, and all three lines collapse onto the single line
that characterizes Vegard’s law. In these cases the mean
length obeys Végard’s law, which arises because there is
no variation in the force constants from site to site. In-
deed even if clustering occurs, we still obtain Végard’s
law if the force constants are the same.!® An extreme
example of such clustering would be phase separation,
where the law of mixtures obviously holds. Figure 2
shows the various mean next-nearest-neighbor distances
calculated using Eq. (9) and compared to experiment.
The new topological parameter needed, b** = 0.40, is
obtained from paper I, again using the ratio 8/a = 0.12
that is needed to give a** = 0.80. Therefore there are no
new parameters introduced to obtain the lines shown in
Fig. 2. The results shown in Figs. 1 and 2 are obtained
with the input of three quantities, the lattice parameters
for GaAs and InAs and a single value of 3/a or equiva-
lently a**. The three parallel lines in Fig. 2 for the mean
second-neighbor distances Ga-As-Ga, Ga-As-In, and In-
As-In are controlled by the single parameter b** in Eq.
(9). The two parallel lines for the mean As-Ga-As and
As-In-As distances are controlled by the parameter a**
in Eq. (9). The ratio of the slopes of these two sequences
of parallel straight lines is (1 — a**)/(1 — 3b**) = 3.50.
These sets of parallel straight lines are a very striking
feature of Fig. 2. Note that the ratio of the slopes of the
two parallel lines in Fig. 2 for the next-nearest neighbors
to the two parallel lines in Fig. 1 for the nearest neigbors

is \/—%— , just the scale factor between the mean nearest-

and next-nearest-neighbor distances. The ratio of the
vertical spacing adjacent parallel lines in the set of three
]

(d%4c) — (dac)? = (dbe) — (dBc)®
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to the vertical spacing between the two parallel lines is
8a**/3b** = 5.33, which is a universal constant within
the Kirkwood model. We clearly get good agreement be-
tween theory and experiment in Figs. 1 and 2, and the
approach used here clearly identifies the general model-
independent features in the mean nearest-neighbor and
next-nearest-neighbor distances. An unsatisfactory fea-
ture of the approach used in this section is the necessity
to obtain the single parameter a** from EXAFS experi-
ments.

B. Effective-medium approximation

When there is disorder not only in the atomic sizes,
but also in the force constants, an analytic solution of
the model is not possible. However, we will see that force
constant disorder produces extremely small effects, like
bowing, that are hard to observe experimentally. The
effective-medium approximation (EMA) we use here has
been applied by Thorpe and co-workers!’~19 to other
similar problems. The essential idea is to replace the
particular environment around an atom with an average
or effective environment that is obtained self-consistently.
This kind of approximation becomes exact in the dilute
limits, when either = or (1 — z) is small. In this scheme,
the rigidity and correlation information are contained in
the topological rigidity constants which control the quan-
tities of interest.

We give the main results and leave the derivation,
which closely follows previous work on central force net-
works, to interested readers.!”’~19 For compactness the
results are given in the reduced variables d defined in
Eq. (10), and « denotes the force constant of the effec-
tive medium, with a, = a/a** and o, = a. — o,

(d) =z +z(1 — z)Fy,
T 0L BC

z(1 — z){leacapcal]/le(al + aac)?(a; + apo)l}?

— a*?/(a* — a?) + [(a - aac)(a - ao)l/((al + aac) (et + aso)]’

2 _ 2(1 =~ ){[eacasced/la(e, + aac) (o + asc)l}?ai*/(af* — a*?)

d = ,
(dac) a(at + aac)(e, +ape)
(12)
(1 - z)aeclaac
d =1- £ ,
{dso) a(al + aac)(al + ase)
£= %,/aAcch z(1 — ) (LYo — LYo)%Fe,
where
acal(apc — a
= Xe “(asc : AC) (13)
o(al + aac)(al + ape)
and
F. = Fayoacasc (14)
QaBc — GLAC
The fluctuations are given by
(15)

(d?) — (d)

- a**z/(a{* — a**2) + (@ — aac)(a — ape)]/(c, + aac) (ol + apc)) ’
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In the above equations, all the quantities have been pre-
viously defined except for the strain energy per site ¢,
which is the expectation value of the potential (1). In
the limit of no force constant disorder Eq. (12) gives the
exact result

e = L/aacasc z(1 — z)(Lye — Lc)*(1 —a™).  (16)

Indeed all the quantities in the EMA results (12)-(15)
give back the previously found exact results in the limit of
no force constant disorder. The force constants a and 3
are chosen from Table I, with 3 for the ACB angle taken
to be the arithmetic mean of the values for the ACA
and BCB bonds. The 3 force constants for the ACA
and C AC bonds are set equal and also for the BCB and
CBC angles, and obtained from Table I. As the EMA
results are also exact in the dilute limits of small con-
centrations z or (1 — z), we have considerable confidence
that the EMA provides a good overall description. Al-
though the force constants 3 do not explicitly appear in
the EMA, they are needed to evaluate the topological
rigidity parameters, for which purpose we make a virtual
crystal approximation for both a and 8. The results are
not sensitive to this as can be seen by the good agreement
between the simulation results and the EMA in Figs. 3
and 4, where we have plotted the EMA against results ob-
tained from computer simulations. The agreement with
the simulations is seen to be excellent, and the variation
in force constants produces a bowing of the curves, al-
though this effect is quite small even for Zn;_,Cd,Te
which has a large difference in the angular force con-
stants especially as can be seen from Table I. We com-
pare the results for Ga;_.In,;As and Zn;_,Cd,Te with
experimental EXAFS and x-ray diffraction data in Figs.
3 and 4. The agreement is very good for Zn;_,Cd,Te
but less good for Ga;_.In,As, where a better agreement
is obtained in Fig. 1 with the more empirical approach
used in the previous section, with the variation in force
constants ignored. Nevertheless, the overall agreement
with experiment in Figs. 1-4 is rather satisfactory. Our
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FIG. 3. The Z plot for Ga;—zInzAs. Solid lines are from
the effective-medium approximation. Solid symbols are from
computer simulation using the Kirkwood potential with pa-
rameters taken from Table I. The open symbols with error
bars are experimental EXAFS results (Ref. 2).
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FIG. 4. The Z plot for Zn;_Cd;Te. Solid lines are from
the effective-medium approximation. Solid symbols are from
computer simulation using the Kirkwood potential with pa-
rameters taken from Table I. Open symbols with error bars
are experimental EXAFS results (Ref. 5).

main point is the insensitivity to the actual values of the
various force constants, and the dominant role played by
the topological rigidity parameters, whose value is largely
determined by geometry. We note that Végard’s law is
not obeyed when the force constants a and (3 are differ-
ent for AC and BC bonds in the pure binary systems, as
seen by (12).

In most semiconductor alloys, the difference in the ra-
tio of force constants, 8/a, is modest as seen from Table
I. This leads to very small deviations from Végard’s law
in the experimental data. But in general, Végard’s law
is not obeyed, and the question is always how large the
deviations are.

IV. APPLICATIONS

Out of the 36 possible pseudobinary alloys that could
be formed from Zn, Cd, Hg, P, As, Sb, and Al, Ga, In,
Si, Ge, Sn, we study 29 of them (see Table II), for which
force constants can be extracted from experimental data.
We use the Kirkwood model in the effective-medium ap-
proximation described in the previous section.

It is easy to solve the effective-medium equations in
the previous section using the interpolation formula for
a** given in paper I. As an example, we plot the Z curves
for GayIn;_,As in Fig. 3 and Zn;_,Cd,Te in Fig. 4. All
the curves are straight lines plus a small bowing, as in
the following description,

L=zp + (1 —x)p2 +z(1 — z)ps, (7)

where p; is the length at z =1, and p; at z =0, and ps3
denotes the bowing of the curve. Values of p;, p2, and p3
are given in Table II, from the EMA.

We can also derive analytic values for these three pa-
rameters from the EMA equations, assuming the bow-
ing to be small. Denote @ = (aac + asc)/2, and
B = (Bac + Bsc)/2. For an AC-type bond,
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TABLE II. Length parameters (in A) for (41— B;)C or C(A1--B.) for use in expression (17) for the mean lengths.

(Lac) (Lsc) (L)

p1 P2 p3 P1 p2 p3 p1 P2 p3
AlP;_;As, 2.3846 2.3658 0.0051 2.4509 2.4171 0.0046 2.4509 2.3658 —0.0101
AlP;_.Sb; 2.4175 2.3658 0.0271 2.6559 2.5257 0.0225 2.6559 2.3658 —0.0537
AlAs;_;Sb, 2.5005 2.4509 0.0077 2.6559 2.5859 0.0074 2.6559 2.4509 —0.0127
GaPi1-;As, 2.3851 2.3601 0.0019 2.4479 2.4189 0.0019 2.4479 2.3601 —0.0022
GaP1-;Sb; 2.4268 2.3601 0.0133 2.6396 2.5308 0.0120 2.6396 2.3601 —0.0294
GaAsi—zSbg 2.4965 2.4479 0.0051 2.6396 2.5711 0.0048 2.6396 2.4479 —0.0150
InPi_;As; 2.5597 2.5412 0.0012 2.6233 2.5999 0.0013 2.6233 2.5412 —0.0036
InP1-.Sb, 2.5952 2.5412 0.0082 2.8056 2.7240 0.0084 2.8056 2.5412 —0.0193
InAs;—zSby 2.6660 2.6233 0.0030 2.8056 2.7546 0.0030 2.8056 2.6233 —0.0054
Gai-zAlP 2.3623 2.3601 —0.0002 2.3658 2.3643 —0.0002 2.3658 2.3601 0.0005
Gaj—gAl;As 2.4488 2.4479 0.0000 2.4509 2.4500 0.0000 2.4509 2.4479 0.0000
Ga1-zAl:Sb 2.6446 2.6396 0.0003 2.6567 2.6517 0.0003 2.6567 2.6396 0.0002
Al;_zIn;P 2.3968 2.3658 0.0194 2.5412 2.4692 0.0171 2.5412 2.3658 —0.0228
Al_zInzAs 2.4881 2.4509 0.0115 2.6233 2.5638 0.0108 2.6233 2.4509 —0.0111
Al;_;In;Sb 2.6911 2.6567 0.0068 2.8056 2.7594 0.0065 2.8056 2.6567 —0.0053
Gaj—zIn P 2.4009 2.3601 0.0149 2.5412 2.4790 0.0133 2.5412 2.3601 —0.0073
Gaj_zInzAs 2.4857 2.4479 0.0128 2.6233 2.5616 0.0119 2.6233 2.4479 —0.0116
Gai—¢InzSb 2.6791 2.6396 0.0106 2.8056 2.7517 0.0097 2.8056 2.6396 —0.0043
ZnS;-zSe, 2.3645 2.3427 0.0002 2.4541 2.4279 0.0002 2.4541 2.3427 —0.0043
ZnSi_;Tey 2.4021 2.3427 —0.0014 2.6430 2.5678 —0.0018 2.6430 2.3427 —0.0174
ZnSe; -zTe; 2.4971 2.4541 —0.0013 2.6430 2.5977 —0.0014 2.6430 2.4541 —0.0036
CdSi1-.Se; 2.5404 2.5193 0.0011 2.6206 2.5967 0.0011 2.6206 2.5193 —0.0016
CdS;1-zTe; 2.5608 2.5193 0.0211 2.8085 2.7297 0.0216 2.8085 2.5193 —0.0159
CdSe;1-.Tez 2.6493 2.6206 0.0120 2.8085 2.7604 0.0120 2.8085 2.6206 —0.0075
Zn;_Cd;S 2.3784 2.3427 —0.0005 2.5193 2.4795 —0.0006 2.5193 2.3427 —0.0046
Zn;-Cd,Se 2.4904 2.4541 0.0010 2.6206 2.5827 0.0010 2.6206 2.4541 —0.0006
Zn;_oCd.Te 2.6697 2.6430 0.0133 2.8085 2.7644 0.0124 2.8085 2.6430 —0.0046
Zn,_oHg,Te 2.6692 2.6430 0.0113 2.7955 2.7583 0.0101 2.7955 2.6430 —0.0004
Hg:--Cd;Te 2.7976 2.7955 0.0001 2.8085 2.8060 0.0001 2.8085 2.7955 —0.0003
_ 10 (L%e — L%e) parallelism and the bowing are not identical as there are
p1=Lac + 1+ [(a** — 1)aac)/la**apc]’ differences between the Kirkwood model and the Keating
-0 (18) model at this level of sophistication, and we regard nei-
P2 sl ther as being very reliable. Comparison between results
for the Keating model?® and the Kirkwood model in this
pa = [ (1—a*)? (OtBC — aAC) paper, for any particular compound, gives a sense of how

a stable the results for the bowing of the Z curves are.

3 5 5 For the overall mean average length,
BC — Pac
+5(a** —ai’) (‘“—B—') (Lsc — Lic)- 1 = L%e,

D2 = L&Ca (19)

In the expression for p;, the topological rigidity pa-
rameter is evalulated at apc and Bpc, while in the ex-
pression for p3, the topological rigidity parameters are
evaluated at @ and (. For BC-type bonds, the parame-
ter ps takes the same form, but z and (1 — z) are inter-
changed and AC and BC are switched in Egs. (17) and
(18). Similar results and parametrization has recently
been used by Schabel and Martins,?® who have produced
extensive results for the pseudobinary alloys using the
Keating potential. Their results and ours for both the
nearest-neighbor and next-nearest-neighbor lengths are
in general agreement. They also obtain sets of nearly
parallel lines for the mean lengths from their computer
simulation results. Our work explains the underlying ori-
gin of these sets of parallel lines. The deviations from

«x\ [ ®BC — CAC
= -a) (225240 (14 - 19),

where the argument of a** involves @ and 3. It is inter-
esting to analyze the approximate expressions above. We
can see that the bowing of the curves for AC and BC are
in the same sense and depend on both the differences of o
and (3 for the two binary components in (18). However,
the bowing of the overall average length only depends on
the difference of central forces o in (19). For most semi-
conductor alloys, the bowing of the overall length average
(lattice parameter) and the AC and BC length averages
go in opposite directions, i.e., the angular force difference
dominates the bowing in the mean AC and BC length
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FIG. 5. The nearest-neighbor length distribution for Zn-Te
and Cd-Te bonds in Zng.5Cdo.5Te from computer simulation
using the Kirkwood potential with parameters taken from Ta-
ble I.

averages, as in Fig. 4 for Zn;_,Cd;Te.

The nearest-neighbor length distribution is approxi-
mately Gaussian as can be seen in Fig. 1. Figure
5 shows the distribution of nearest-neighbor lengths in
Zng 5Cdo.sTe. There is barely any overlap between the
two peaks, contrary to the situation in metal alloys.!®
This is mainly due to the low nearest-neighbor coordi-
nation (4 compared to 12 in the fcc lattice), where the
different distributions often overlap. The widths of AC
and BC length distributions is not exactly the same be-
cause of the difference in force constants. We should
point it out that our EMA does not give good results for
the width of the distribution when there is clustering in
the alloy.

V. CONCLUSIONS

We have studied the structure of the pseudobinary
(A1-zB;)C semiconducting alloys by applying the ex-

Qe B e R N .
Viirkwood = 5 D (i ug)? + 3 D lBi v+ fawig + (g + B -oua))?

(i) (isl)
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act solution for the quaternary system found in paper I,
with no variation in the force constants. An effective-
medium theory has been developed and applied to these
pseudobinary compounds, when there is variation in the
force constants. All our theoretical results have been
checked against computer simulations. We find sets of
straight lines, whose slopes are determined by the topo-
logical rigidity parameters, when there is no disorder in
the force constants. These topological rigidity parame-
ters are only weakly dependent on the atomic force con-
stants. Force constant disorder produces only a slight
bowing that is just discernable experimentally in a few
pseudobinaries like Zn;_,Cd,;Te. Our results show that
detailed model calculations are not required (if the small
bowing is neglected) and the single topological rigidity
parameter (a** = 2b** in the region of physical interest)
can be obtained from experiment.
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APPENDIX

In this appendix we examine the Kirkwood model'3
and the Keating model4 together in a unified notation.
Recall the form of the elastic energy for the Kirkwood
model (3)

(A1)

where the notation is explained in the main text. The Keating model is written

a N ) .
Vkeating = 3 Z(rij cug;)? + -g' Z(rij cuy + Fyougg)?

(i5) (i5l)

(A2)

It can be seen that these two models are very similar except there are extra terms in the Kirkwood model. We can

combine them in a single potential

a A Jé] . . AL A
Vai=5D (b uy)® +5 D By ua+fa-uyg + 3 (B uy + g ua)|

(i3) (igl)

2
(A3)



15 886

where A = 0 gives the Keating model and A = 1 gives the
Kirkwood model.

The elastic modulus of the combined A model can be
found in the similar way to that used in Keating’s original
paper.1 The results are

1 208 BA?
011—4a[a+3ﬁ— 3 +T],
1 203 BA?
012 = 1a [a 3 + 3 :| P (A4)
1 228 A
Cy = 1a a+p 3 + 9

{a—p[L - (A/3>212}]
a+B(1+2/3)2 |

where a = L./+/3. The frequency of the optical phonon

atk=0is
A 2
a+ﬂ<1+§) ]

The force constants in the models are chosen to fit
the elastic modulus C;; and the bulk modulus B =
3(C11+2Cy2).'5 We list in Table I the force constants for
different semiconductor compounds which have the zinc-
blende structure. We have also computed the topological
rigidity parameters a**, b** and their derivatives for the

(AS)

4
Wo = -
U
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FIG. 6. A comparison of the topological rigidity constants
a*, a} and a**, a7* computed as lattice integrals for the Kirk-
wood and Keating models. The topological rigidity parame-
ters a* and a are used in paper IIIL

Keating model, using the lattice integrals given in Eq.
(33) of paper I. The results are shown in Fig. 6. It can
be seen that the topological rigidity parameters are very
similar for these two models. We have also computed b**
and it is clear that a** # b**/2 for the Keating model,
although it is still approximately true.
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