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We have made an extensive study of the pseudobinary semiconductor compounds (Ai B )C,
which includes both the III-V and the II-VI alloys. We use a Kirkwood model with all parameters
derived from the elastic constants of the pure materials. It is shown that the mean lengths are hnear
in the composition x if the force constants for the two pure materials AC and BC are the same. We
have derived analytic results for the mean lengths of AC and BC bonds and for their widths in the
preceding paper. We construct an efFective-medium theory for cases in which there is disorder in
the force constants. This effective-medium theory is found to be in good agreement with the results
of computer simulations of the same models. Mean values for the next-nearest-neighbor lengths are
also given, and found to agree with extended x-ray-absorption fine-structure results.

I. INTRODUCTION

Structural information on semiconducting materials
is of fundamental importance in calculating, predict-
ing, and understanding their properties. i s Extended x-
ray absorption fine structure (EXAFS) experiments have
found that pseudobinary semiconductor alloy systems
(Ai B~)C exhibit a bimodal structure. s s The first-
neighbor cation-anion distance remains closer to that in
the pure binary compound than to that of the average or
virtual crystal. This discovery inspired considerable the-
oretical interest. r io In this paper we apply the general
results for quaternaries found in the preceding paper, i

henceforth referred to as paper I, to the case of pseudobi-
nary semiconducting alloys. Our statistical approach was
shown to be successful in I by comparison with computer
simulations. The model is also applicable to binary alloy
systems like Sii,Ge which will be studied in the fol-
lowing paper, paper Ill. iz Our investigation provides a
better understanding of the theoretical assumptions be-
hind Vegard's law. i The layout of this paper is as follows.
We first discuss the valence force models in Sec. II. The
force constants of the models are fit from elastic mea-
surements for known pure binary crystals, and we give
extensive tables of these force constants. In Sec. III we
apply the analytic results from paper I to ideal pseu-
dobinary alloys (no force constant disorder). This result
demonstrates the importance of the topological rigidity
constants, which characterize the rigidity of the underly-
ing lattice system. We also discuss the importance of the
topological rigidity parameters in the construction of an
effective-medium theory for use when there is variation in
the force constants. In Sec. IV we study in considerable
detail all pseudobinary III-V and II-VI semiconductor
alloys using both effective-medium theory and computer
simulations. Results are presented in a form that can
be used for comparison with experimental data. We fo-

cus particularly on the deviations from straight lines for
the mean lengths, caused by the force constant disorder.
This bowing is much smaller than might have been ex-
pected. In general we find satisfactory agreement with
experiment, where results are available.

II. VALENCE FORCE MODELS

Valence force models have been used to give a reason-
able overall description of the phonons in semiconduc-
tors. In the diamond and zinc-blende structures, nearest-
neighbor central force interactions alone lead to unstable
structures that can be sheared. In fact one-third of the
vibrational modes, which correspond to the transverse
accoustic modes, have zero frequency. At a minimum
some short-range angular interactions are needed to sta-
bilize the structure. The Kirkwoodis and Keatingi4 po-
tentials contain second-neighbor interactions which are
sufficient to stabilize the zinc-blende structure. These
models are adequate for our purpose and little would be
gained by going to a more detailed force constant model.
There are some subtle differences between the Kirkwood
and the Keating models, although both can be regarded
as providing simple two-parameter fits to the phonon
dispersion relations in the pure binary materials. We
have a preference for the Kirkwood model as it separates
the angular forces from the bond-stretching forces in a
clean way. This makes it easier to construct an effective-
medium theory which is necessary if there is disorder in
the force constants together with the length mismatch.
We will only give the results from the Kirkwood model
in the main part of this paper. A comparison of results
from the Kirkwood amd Keating models is given in the
Appendix and Table I, where it is shown there that the
differences between these two models are quite small.

We use the Kirkwood model as in I,
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V = —) (L,j —L,~) + L—, ) (cos8;ji+ s),' (.3) ('~&)

TABLE I. The force constants n and P (in N/ml for the
Keating and Kirkwood models obtained from the elastic mod-
uli, as described in the text.

where the force constants n and P are the nearest neigh-
bor and the angular force constant, respectively, L,~ is
the bond length between atoms i and j, LP is the natu-
ral (unstrained) bond length and 8,jl is the angle between
nearest-neighbor bonds ij and i/. The angular brackets
( ) under the summations exclude double counting.

The potential (1) can be expanded for small length
mismatch. Denoting by L, the nearest-neighbor distance
of the underlying (undistorted) crystal structure, and u,
the displacement vector of atom i from its crystalline
position, and expanding up to linear terms,

L,q
——L, +i,q u,~,

where r",j is a unit nearest-neighbor vector in the perfect
crystal structure pointing from atom i to j. The potential
(1) can now be rewritten as

Alp
AlAs
Alsb
GaP
GaAs
GaSb
InP

InAs
InSb
ZnS
ZnSe
Zn Te
Cds
CdSe
CdTe
Hg Te

65.03
44.18
35.69
48.06
44.34
34.29
41.72
35.09
31.30
40.30
33.74
31.06
35.66
33.18
27.30
30.72

14.19
8.94
6.79
10.69
9.25
7.33
6,60
5.75
5.07
4.78
4.56
4.66
4.75
4.37
2.72
2.93

Kirkwood model

60.30
41.20
33.42
44.50
41.25
31.85
39.52
33.17
29.61
38.70
32.22
29.51
34,07
31.72
26.39
29.75

14.19
8.94
6.79
10.69
9.25
7.33
6.60
5.75
5.07
4.78
4.56
4.66
4.75
4.37
2.72
2.93

Keating model

) (Le Lqj + rij ' Uij) + ) [rij ' Uil + ril ' Uij + s (rij ' Uij + ril ' Uil)]' (.2) ( ~&)

In the perfect system, there is no length mismatch and L, = L, , so that

V = —) (r,j U;j) + —) [rij 'Uil+rii 'Uij+ s(Iij 'Uij+ lil 'Uil)]'
('2) ( ~i)

Using the method of Keating, 14 the elastic constants
of the Kirkwood model are found to be

Cii =
4

[&+-,P],
1 8

Ci2 = —[cr — P], -1 4

4a
1 36crP

&44 =—
4a 9a + 16P

where a = Le/y 3. The frequency of the optic phonon at
k=0 is

4
~p = [n+ —'sp], —

9 ) (6)

where p, is the reduced mass.
The force constants in the models are chosen to fit

the elastic modulus Cqq and the bulk modulus B
s(Cii + 2Ciz). In Table I, we list the force constants
for different zinc-blende compounds. In the Appendix
and Table I we see that the angular force constants P
are identical for both the Keating and Kirkwood models,
while the central force constants n are difFerent. We em-
phasize that the main reason that we adopt the Kirkwood

model is its simplicity when there is size mismatch in the
system. As can be seen in Eq. (1), the length mismatch
comes only in the central force part of the potential and
not in the angular part.

The fitted force constants n and P shown in Table I
give the shear modulus C44 and the optic mode frequency
4Jp with errors smaller than 20% for most compounds
but up to around 40Fo for some other compounds when
compared with experiments. Of course, it is possible
to choose different angular force constants for ABA and
BAB angles and this and other embellishments would
lead to better fits to the elastic constants and the optic
mode frequency. One could further consider the charge
transfer and deploy a shell model. However, it is not nec-
essary to fit every detail of the phonon dispersion curves,
as all the phonons are involved in the concentration waves
that lead to the structural distortions in the alloys. We
find that even large variations in the force constants in
the binaries at the two extreme compositions only lead
to a very small bowing in the mean lengths, which is un-
observable in most cases. Even in the most extreme case
Zni ~Cd~ Te, the bowing is only just observable experi-
mentally, as discussed in Sec. IV. This is why simple mod-
els like the Kirkwood and Keating models are adequate.
Other approaches, such as using an embedded-atom po-
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In the above equations, all the quantities have been pre-
viously defined except for the strain energy per site s,
which is the expectation value of the potential (1). In
the limit of no force constant disorder Eq. (12) gives the
exact result

2.65— I

i

I I I I

i

I I I I

i

I I I 1

)

I I I I

oQ
2.60

g 2.55
Q)

2.50
0

CQ
2.45

s s

0.0 0.2 0.4 0.6 0.8
GaAs X

1.0
InAs

FIG. 3. The Z plot for Ga~ In As. Solid lines are from
the efFective-medium approximation. Solid symbols are from
computer simulation using the Kirkwood potential with pa-
rameters taken from Table I. The open symbols with error
bars are experimental EXAFS results (Ref. 2).

gy &Ac&Bc x(1 —x)(LBc —LAc) (1 —a'"). (16)

Indeed all the quantities in the EMA results (12)—(15)
give back the previously found exact results in the limit of
no force constant disorder. The force constants o, and P
are chosen from Table I, with P for the ACB angle taken
to be the arithmetic mean of the values for the ACA
and BCB bonds. The P force constants for the ACA
and CAC bonds are set equal and also for the BCB and
CBC angles, and obtained from Table I. As the EMA
results are also exact in the dilute limits of small con-
centrations x or (1 —x), we have considerable confidence
that the EMA provides a good overall description. Al-

though the force constants P do not explicitly appear in
the EMA, they are needed to evaluate the topological
rigidity parameters, for which purpose we make a virtual
crystal approximation for both o, and P. The results are
not sensitive to this as can be seen by the good agreement
between the simulation results and the EMA in Figs. 3
and 4, where we have plotted the EMA against results ob-
tained from computer simulations. The agreement with
the simulations is seen to be excellent, and the variation
in force constants produces a bowing of the curves, al-
though this effect is quite small even for Znq ~Cd~Te
which has a large difFerence in the angular force con-
stants especially as can be seen from Table I. We com-
pare the results for Gaq In As and Znq Cd Te with
experimental EXAFS and x-ray diffraction data in Figs.
3 and 4. The agreement is very good for Znq ~Cd~Te
but less good for Gay In As, where a better agreement
is obtained in Fig. 1 with the more empirical approach
used in the previous section, with the variation in force
constants ignored. Nevertheless, the overall agreement
with experiment in Figs. 1—4 is rather satisfactory. Our

o+ 280

I I I I

i

I I I I

i

I

Zn, „Cd„Te

2.75

Q)

2.70

0
2.65

0.0 0.2 0.4 0.6 0.8
ZnTe

1.0
CdTe

FIG. 4. The Z plot for Znq Cd Te. Solid lines are from
the efFective-medium approximation. Solid symbols are from

computer simulation using the Kirkwood potential with pa-
rameters taken from Table I. Open symbols with error bars
are experimental EXAFS results (Ref. 5).

main point is the insensitivity to the actual values of the
various force constants, and the dominant role played by
the topological rigidity parameters, whose value is largely
determined by geometry. We note that Vegard's law is
not obeyed when the force constants a and P are differ-
ent for AC and BC bonds in the pure binary systems, as
seen by (12).

In most semiconductor alloys, the difference in the ra
tio of force constants, P/n, is modest as seen from Table
I. This leads to very small deviations from Vegard's law
in the experimental data. But in general, Vegard's law
is not obeyed, and the question is always how large the
deviations are.

IV. APPLICATIONS

L = xpi + (1 —x)p2+ x(1 —x)ps, (17)

where pq is the length at x = 1, and p2 at x = 0, and ps
denotes the bowing of the curve. Values of p1, p2, and p3
are given in Table II, from the EMA.

We can also derive analytic values for these three pa-
rameters from the EMA equations, assuming the bow-

ing to be small. Denote cx = (n~c + o.Bc)/2, and

P = (P&& + P~~)/2. For an AC-type bond,

Out of the 36 possible pseudobinary alloys that could
be formed from Zn, Cd, Hg, P, As, Sb, and Al, Ga, In,
Si, Ge, Sn, we study 29 of them (see Table II), for which
force constants can be extracted from experimental data.
We use the Kirkwood model in the effective-medium ap-
proximation described in the previous section.

It is easy to solve the efFective-medium equations in
the previous section using the interpolation formula for
a" given in paper I. As an example, we plot the Z curves
for Ga Inq As in Fig. 3 and Zni Cd Te in Fig. 4. All
the curves are straight lines plus a small bowing, as in
the following description,
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TABLE II. Length parameters (in A) for (Aq B )C or C(Aq B ) for use in expression (17) for the mean lengths.

AlPi As
AlPy Sb
AlAsi Sb
GaPg As
GaPq Sb
GaAsi Sb
InPq As
InPg Sb
InAsq Sb
Gay Al P
Gay Al As
Gay Al Sb
Al, .In. P
Alq In As
Alp In Sb
Gay In P
Gay In As
Ga~ In Sb
ZnSy Se
ZnSq Te
ZnSeq Te
CdSq Se
CdS~ Te
CdSeq Te
Znq Cd S
Znq Cd Se
Znq Cd Te
Znq ~Hg~ Te
Hg~ Cd Te

2.3846
2.4175
2.5005
2.3851
2.4268
2.4965
2.5597
2.5952
2.6660
2.3623
2.4488
2.6446
2.3968
2.4881
2.6911
2.4009
2.4857
2.6791
2.3645
2.4021
2.4971
2.5404
2.5608
2.6493
2.3784
2.4904
2.6697
2.6692
2.7976

(L~c)
P2

2.3658
2.3658
2.4509
2.3601
2.3601
2.4479
2.5412
2.5412
2.6233
2.3601
2.4479
2.6396
2.3658
2.4509
2.6567
2.3601
2.4479
2.6396
2.3427
2.3427
2.4541
2.5193
2.5193
2.6206
2.3427
2.4541
2.6430
2.6430
2.7955

0.0051
0.0271
0.0077
0.0019
0.0133
0.0051
0.0012
0.0082
0.0030

—0.0002
0.0000
0.0003
0.0194
0.0115
0.0068
0.0149
0.0128
0.0106
0.0002

—0.0014
—0.0013

0.0011
0.0211
0.0120

—0.0005
0.0010
0.0133
0.0113
0.0001

Pl

2.4509
2.6559
2.6559
2.4479
2.6396
2.6396
2.6233
2.8056
2.8056
2.3658
2.4509
2.6567
2.5412
2.6233
2.8056
2.5412
2.6233
2.8056
2.4541
2.6430
2.6430
2.6206
2.8085
2.8085
2.5193
2.6206
2.8085
2.7955
2.8085

(Iac)
P2

2.4171
2.5257
2.5859
2.4189
2.5308
2.5711
2.5999
2.7240
2.7546
2.3643
2.4500
2.6517
2.4692
2.5638
2.7594
2.4790
2.5616
2.7517
2.4279
2.5678
2.5977
2.5967
2.7297
2.7604
2.4795
2.5827
2.7644
2.7583
2.8060

0.0046
0.0225
0.0074
0.0019
0.0120
0.0048
0.0013
0.0084
0.0030

—0.0002
0.0000
0.0003
0.0171
0.0108
0.0065
0.0133
0.0119
0.0097
0.0002

—0.0018
—0.0014

0.0011
0.0216
0.0120

—0.0006
0.0010
0.0124
0.0101
0.0001

2.4509
2.6559
2.6559
2.4479
2.6396
2.6396
2.6233
2.8056
2.8056
2.3658
2.4509
2.6567
2.5412
2.6233
2.8056
2.5412
2.6233
2.8056
2.4541
2.6430
2,6430
2.6206
2.8085
2.8085
2.5193
2.6206
2.8085
2.7955
2.8085

2.3658
2.3658
2.4509
2.3601
2.3601
2.4479
2.5412
2.5412
2.6233
2.3601
2.4479
2.6396
2.3658
2.4509
2.6567
2.3601
2.4479
2.6396
2.3427
2.3427
2.4541
2.5193
2.5193
2.6206
2.3427
2.4541
2.6430
2.6430
2.7955

p3

—0.0101
—0.0537
—0.0127
—0.0022
—0.0294
—0.0150
—0.0036
—0.0193
—0.0054

0.0005
0.0000
0.0002

—0.0228
—0.0111
—0.0053
—0.0073
—0.0116
—0.0043
—0.0043
—0.0174
—0.0036
—0.0016
—0.0159
—0.0075
—0.0046
—0.0006
—0.0046
—0.0004
—0.0003

LO + BC AC(Lo Lo )
I+ [(o- —I)nAG]/[~ nBc]

rO
~AC~

+p(" ")~p p+
~

(lo Lo )
p )

In the expression for p1, the topological rigidity pa-
rameter is evalulated at n~c and P~c, while in the ex-
pression for p3, the topological rigidity parameters are
evaluated at n and P. For BC type bonds, the p-arame-
ter ps takes the same form, but x and (I —z) are inter-
changed and AC and BC are switched in Eqs. (17) and
(18). Similar results and parametrization has recently
been used by Schabel and Martins, who have produced
extensive results for the pseudobinary alloys using the
Keating potential. Their results and ours for both the
nearest-neighbor and next-nearest-neighbor lengths are
in general agreement. They also obtain sets of nearly
parallel lines for the mean lengths from their computer
simulation results. Our work explains the underlying ori-
gin of these sets of parallel lines. The deviations from

parallelism and the bowing are not identical as there are
differences between the Kirkwood model and the Keating
model at this level of sophistication, and we regard nei-
ther as being very reliable. Comparison between results
for the Keating model~s and the Kirkwood model in this
paper, for any particular compound, gives a sense of how
stable the results for the bowing of the Z curves are.

For the overall mean average length,

y. O
~BC &

0
5'2 = ~AC& (19)

where the argument of a" involves n and P. It is inter-
esting to analyze the approximate expressions above. We
can see that the bowing of the curves for AC and BC are
in the same sense and depend on both the difFerences of a
and P for the two binary components in (18). However,
the bowing of the overall average length only depends on
the difference of central forces n in (19). For most semi-
conductor alloys, the bowing of the overall length average
(lattice parameter) and the AC and BC length averages
go in opposite directions, i.e., the angular force difFerence
dominates the bowing in the mean AC and BC length
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FIG. 5. The nearest-neighbor length distribution for Zn-Te

and Cd-Te bonds in Zno. 5Cd0.5Te from computer simulation

using the Kirkwood potential with parameters taken from Ta-
ble I.

act solution for the quaternary system found in paper I,
with no variation in the force constants. An effective-
medium theory has been developed and applied to these
pseudobinary compounds, when there is variation in the
force constants. All our theoretical results have been
checked against computer simulations. We find sets of
straight lines, whose slopes are determined by the topo-
logical rigidity parameters, when there is no disorder in
the force constants. These topological rigidity parame-
ters are only weakly dependent on the atomic force con-
stants. Force constant disorder produces only a slight
bowing that is just discernable experimentally in a few
pseudobinaries like Zni Cd Te. Our results show that
detailed model calculations are not required (if the small
bowing is neglected) and the single topological rigidity
parameter (a" = 2b'" in the region of physical interest)
can be obtained from experiment.

averages, as in Fig. 4 for Zni Cd Te.
The nearest-neighbor length distribution is approxi-

mately Gaussian as can be seen in Fig. 1. Figure
5 shows the distribution of nearest-neighbor lengths in
Zno sCds. sTe. There is barely any overlap between the
two peaks, contrary to the situation in metal alloys.
This is mainly due to the low nearest-neighbor coordi-
nation (4 compared to 12 in the fcc lattice), where the
difFerent distributions often overlap. The widths of AC
and BC length distributions is not exactly the same be-
cause of the difFerence in force constants. We should
point it out that our EMA does not give good results for
the width of the distribution when there is clustering in
the alloy.
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APPENDIX

V. CONCLUSIONS

We have studied the structure of the pseudobinary
(Ai B~)C semiconducting alloys by applying the ex-

In this appendix we examine the Kirkwood modelis
and the Keating modeli4 together in a unified notation.
Recall the form of the elastic energy for the Kirkwood
model (3)

VKirkwood =
2 ) (rij ' uij) + —) [rij u;i + i;i u;j + s(re uiz + r";i uii)]'

('2) ( ~&)

(A1)

where the notation is explained in the main text. The Keating model is written

P
VKeziins = (rij uij) + (rij ' uii + ri& ' uij )' (.2) ( ~&)

(A2)

It can be seen that these two models are very similar except there are extra terms in the Kirkwood model. We can
combine them in a single potential

n 2 p
Vg = —) (r;j u;j) + — r";j u, i + r";i u;j + —(r";j u,z + r;i u;i)'

('2) '('2l) .

- 2

(A3)
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of the optical phonon/~3. The frequency of e p
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