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The analysis of I-V characteristics of sandwich a-Si:H n *-i-n T structures is performed, taking into ac-
count the effects of the n *-i space-charge regions. This enables the computation of the characteristics
from the low-bias-linear to the space-charge-limited current regimes, for arbitrary intrinsic layer
thicknesses. In the usual analysis, where the influence of n *-i interfaces is neglected, a scaling law is ex-
pected to hold for thick enough i layers. In the present work, the validity of this law is checked as a
function the Fermi-level density of states (DOS). For instance, it is found that the scaling law does not
hold for a 4-um-thick i layer with a 10'* cm 3¢V ~! Fermi-level DOS. The I-¥ measurements on a set of
four samples of various thicknesses and a single intrinsic material quality are fairly well described by the
model, using a unique Fermi-level DOS value and slope. These two parameters are strongly constrained
by the requirement to describe simultaneously the I-¥ measurements on thin and thick samples.

I. INTRODUCTION

The space-charge-limited current (SCLC) method has
been widely applied in the past ten years to the study of
deep-gap states’ density in amorphous semiconductors.
In particular, it is commonly applied to investigate the
density of states of intrinsic amorphous silicon and
silicon-carbon, silicon-germanium alloys or silicon ni-
trides using n "-i-n * structures. Different analyses of the
current-voltage (I-V) measurements have been developed.
They are addressing different problems, and two ap-
proaches can be separated as follows. (a) Direct calcula-
tions aiming to compute the (I-V) function either for
different types of density of states' (one gap state, con-
stant density of states, etc.) or for different kinds of physi-
cal hypotheses as, for example, nonhomogeneous layers,’
inclusion of conduction mechanism such as diffusion,’® or
high electric field (Poole-Frenkel) (Refs. 3 and 4). (b) In-
verse calculation, i.e., techniques which start from the ex-
perimental (I-¥) curves joined to well-defined physical
hypotheses and allow one to extract the density of states
at the Fermi level, or to estimate the shape of the density
of states above and in the vicinity of the Fermi level.?

From direct calculations, and using a set of physical
hypotheses which we will call “standard conditions,”
namely, (i) only electrons contribute to the current; (ii) lo-
cal thermal equilibrium among electrons, at the sample
temperature, is achieved; (iii) the injecting n *-i interface
does not limit the electron current, some general predic-
tions can be made. As a matter of fact, if the diffusion
current is neglected, the following four basic quantities:
the current I, the voltage V, the electric field F(x), and
the density of free carriers n (x), are related by three sim-
ple equations: current conservation, the Poisson equa-
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tion, and the relation between V and F(x). The density
of charged traps is involved in the Poisson equation, but
can always be related to the n(x) using condition (ii).
One can easily show that the system obeys a “scaling
law” with respect to the layer thickness #: replacing x by
u=x/t, Fby f=F/t, Vby v=V/t} and I by i=1/t
leads to equations giving f (u), v, and n(u) for a given i.
Taking condition (iii) into account allows one to prove
that there is a universal relation between i and v, given a
density of deep states, or in other words that I/t is a
function of V/t%, whatever the value of . A more
elegant proof makes use of no-dimension variables.! This
law can be experimentally checked® and is often used as a
means to verify that samples do not present any spurious
effect like a serial Schottky diode at one of the electrode-
n* interfaces.

Inverse calculations stem directly from the direct ones
in the case where assumptions made on the density of
states allow a direct, analytical extraction of at least one
physical quantity, i.e., the Fermi-level density of states
Np’”7 For example, one predicts the result
I/t <(V /Ngt?)exp(ee,V /gNgt?), in the case of a con-
stant density of states.

Apart from a few cases, some numerical computations
need to be performed to obtain the (I-¥) relation. For ex-
ample, solving the standard SCLC equations for an ex-
ponential density of states® leads to a series which can be
numerically summed and the resulting curves compared
to the experimental ones to find Np. For more general
density-of-states (DOS) profiles, the inverse problem was
solved and two relations were established: one between
the DOS profiles Npos(E-Ep) and the three first deriva-
tives of the (I-V) relation and the other one between
(E—Eg) and the same derivatives.> Applied to amor-
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phous silicon experimental (I-¥) curves, this allows one
to extract the DOS profile for a range of energies extend-
ing 100 meV above Fermi level. However, the method is
very sensitive to experimental errors and to the numerical
procedure used to extract successive derivatives.

Whatever the method used, the physical quantities de-
duced from experimental results reflect both material
properties and physical assumptions stated as the basis of
each method. Although some insight can be given into
the role of phenomena not taken into account in the stan-
dard conditions, it is the aim of this paper to formulate
and solve the SCLC in a somewhat larger frame of hy-
pothesis taking into account the effects of n *-i interfaces
and of i layer thickness. The underlying physical as-
sumptions are similar to the ones introduced by Bonham
to analyze hole transport in polymers;’ they have also
been introduced by Meaudre to analyze g-Si:H film thick-
ness dependence of the Ohmic conductivity.?

II. COMPUTATION OF THE J-V CHARACTERISTICS

A. Physical assumptions

In this section the physical assumptions introduced are
described and the set of equations allowing the computa-
tion of I-V characteristics is derived. Among the as-
sumptions, some may be viewed as essential, in the sense
that one cannot relax one of them without changing com-
pletely the modelization, other ones are introduced for
sake of simplification but might be modified if necessary
within the framework of the model. It must be under-
stood that the n%t-iint structure, actually a
m-nt-i-nt-m’, m and m’' being metal layers, is of
sandwich type, the potential bias ¥ being applied to the
metal layers connecting the n* layers to the measure-
ment apparatus, with the current I flowing normally to
the layers boundaries. In all the following one will be
concerned uniquely with time-independent phenomena.

The physical hypotheses essential for the modelization
may be expressed as follows: (a) the films are uniform in
the directions parallel to their boundaries; (b) only elec-
trons contribute to the current; (c) in the whole structure,
the electrons are in local thermal equilibrium, at the mea-
surement apparatus temperature 7. One may then intro-
duce an electron pseudo-Fermi energy level to describe
the electron states’ occupancies; it will hereafter be
denoted Ep(x). (d) The electron current density J may
be expressed in terms of conduction and diffusion as fol-
lows:

dn(x)

J=qyn(x)F(x)+qDT

x is the abscissa of a point in the intrinsic layer, in a
direction perpendicular to the interfaces. g is the elemen-
tary charge, u the conduction-band electron mobility,
n (x) the conduction-band electron density, F (x) the elec-
tric field, and D the electron diffusion coefficient. The
mobility m is assumed field independent and linked to the
diffusion coefficient D by the Einstein relation
D=kTu/q. (e) The electron density of states is position
independent in the intrinsic layer. This may be wrong as
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one suspects that the a-Si:H structure may be influenced
by the proximity of interfaces. Indeed in some cases, the
observation of a failure of scaling in SCLC measurements
when using rather thin samples has been attributed to an
increase of DOS in the vicinity of interfaces.®° It is pos-
sible that the departure from scaling is, at least partly, a
consequence of the inadequacy of the standard conditions
for these thin samples. (f) The potential drop takes place
uniquely in the intrinsic layer. As a consequence, the
electron quasi-Fermi level Ep(x) coincides with the n*
layers Fermi levels at the n *-i boundaries. This consti-
tutes a simplifying assumption, which may be to some ex-
tent relaxed if necessary.

B. Derivation of the transport equation

From the above hypotheses, the quantities convenient
to evaluate the J-V characteristic may be computed as a
solution of a second-order differential equation with a
given set of boundary conditions. Let us start from the
Poisson equation:

edF(x) _
dx

where € is the a-Si:H dielectric constant, and p(x) the
charge density. The electric field F(x) is the opposite of
the internal electrostatic potential gradient, which is it-
self linearly related to the electron conduction-band mo-
bility energy E,(x):

dE_(x)
gdx

p(x),

Let
E;(x)=E_(x)—Eg(x) .

Whatever the charge state of an occupied level, the
charge density may be evaluated if one notices that p=0
for a bulk material at equilibrium, E;=E,, E, being
the distance between the conduction-band edge and the
bulk Fermi level. Then the electron occupation probabil-
ity differences of the states, between the bulk situation
and another one characterized by a given value of E,, in-
tegrated over the whole DOS distribution, gives the
charge density:

p(E))=—q [ g(E) f(E,E;)—f(E,Ey)dE .

E is the energy of a state, referenced to the conduction-
band edge. f(E,E,;) is the state occupation probability,
which depends only on the difference E —E,, and g(E) is
the DOS distribution; the integration extends in principle
to the whole energy range, but is in practice limited to
the energies where the difference between the occupation
probability functions is appreciably different from 0.

From the fact that the charge density depends on the
position only through E,(x), the Poisson equation may
be written

d’E,(x)

) = —-%p(Ed(x)) ,



1584

which may be rewritten taking into account that
E (x)=Ep(x)+E;(x)
d’Ep(x) d*E (x)
dx? dx?
Charge conservation implies that the current density J

is position independent. Owing to the nondegeneracy hy-
pothesis, one may express the current density as follows:

dEp(x)
dx

=_49
6p(Ed(x)) .

J=pun(x)

or equivalently

_Ed(x)

dEp(x)
kT )

dx

J=uN_exp

One may then eliminate E(x) between the Poisson equa-
tion and this last one to get a second-order differential
equation in E (x):
d’E (x) J
dx? uN, . kT

E, (x)
kT

dEd(x)
dx

exp =%p{Ed(x)} .

(1)

According to assumption (f) above, at the n*-i boun-
daries E; is equal to the difference between the conduc-
tion band and the Fermi energies in the n ™ material,
which is also the n ¥ material activation energy E,'.

Choosing the origin of the abscissa at one interface and
calling ¢ the intrinsic layer thickness, the boundary condi-
tions may be written

E,(0)=E (t)=E; .

For a given current density, it is then possible to compute
E, (x) and then the potential bias V, related to the
Fermi-level difference between the two n * layers.

_ Ep(t)=E(0)

’

q
this may be expressed as
J t Ed(x)
V=- dx . 2
quN, f 0P | kT * @

C. Variable change for numerical evaluations

The second-order differential equation satisfied by E,
does not depend explicitly on the position x; it is then
possible to reduce it to a first-order equation. Let us in-
troduce the dimensionless variable u defined as

()= E,;(x)
u(x)=exp KT
and let
oy — du(x)
u'(x) o

Then Eq. (1) may be rewritten as follows:
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’

d |u '—
dx +Mu ekTp(u) ’
where
_J
uN kT °
Noting that d /dx =u'(d /du ), one may write
uwod \u | A gp)
u du | u u €kTu
Finally define
u' dZ
z=%, z7=°%
u du

The equation may be written in the final form

ZZ'+MZ=—R(u), (3)
with
—__9q plu)
R(u) T u

In the present situation of electron injection, p(u) is nega-
tive, so that R (u) is positive.

At the intrinsic layer boundaries,
E;}

u=uog=exp |~ox

According to the nature of the N *-I interfaces, it is as-
sumed that u is minimal at these boundaries, so that
ug=u. Let u,, be the maximum value taken by u, at this
position Z=u'/u =0.

For a given u,,, Eq. (3) may be solved, leading to the
determination of Z between u,, and u,; it turns out that
Z is a bivaluated function of u, one branch corresponding
to Z >0, call it Z, (u), and the other one to Z <0, call it
Z _(u). These two branches correspond to the two re-
gions of the intrinsic layer on both sides of the position
t,, where u=u,,, Z corresponds to 0<x <t¢,, and Z _
tot, <x <t

One may now relate the applied bias ¥ and the intrin-
sic layer thickness to Z, and Z _. Equation (2) may be
rewritten

_ kTM

V= fotu(x)dx .

Using the fact that u dx =du /Z and separating the re-
gions corresponding to the two solutions for Z, one gets

_KTM *n | 1 1

V= —_
g Juw |Zyw  Z_w

du . (4)

Similarly, the thickness is expressed as follows:

1 1 \du
Z.(w) Z_(w |u -

Um

(5)

L)

So the procedure to get the J-V characteristic is to as-
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sume a value for J, assume a value for u,,, solve Eq. (3)
for Z . (u) and Z _(u), compute V and ¢, then iterate on
u,, until a convenient value of ¢ is obtained.

D. Numerical procedure

To solve Eq. (3), the following procedure has been
used.

(a) Decompose the {u,,u,,} interval into sections in
which the function R(u) may be regarded as constant;
say that the relative variation of R (u) is of about 1%.

(b) In each section solve Eq. (3) assuming R(u)=R,,
where R, is the average value of R (u) in the section.

(c) Starting from u,,, where Z is known to be equal to
0, join the solutions in each section by imposing that Z is
continuous at the boundaries.

(d) Compute the contributions of each section for the
evaluation of ¥ and ¢, by Egs. (4) and (5).

The solution of Eq. (3), with R (u)=R,=const, may be
expressed as follows: Define Y=MZ /R,, then Eq. (3)
leads to

2

dY=—11‘: du .

a

1

1_—

1+Y

Let u, be the upper edge of the section, where Z=2Z,
and hence Y=Y, is known from the evaluation in the
preceding section. Then Y in the section satisfies the rela-
tion

2

Y—-In(1+Y)=Y,—In(1+7Y,)+ M

Ra (uZ_u) . (6)

The contribution of the section {u,,u,} to the poten-
tial V'is

11
Z. (W) Z_(w)

kTM %
Vip=— q f"l

du

which, noting that
1 Y M

may be expressed as

kT
V1,2=—q—{Y+2_Y+|—Y—2+Y—1} ’

where Y, and Y_ correspond, respectively, to Z, and
Z_ and Y, is the value of Yat u =u,.

The contribution of the {u,,u,} interval to the thick-
ness is

V25Ju | Zyw) Z_(u) | u

or
po=M |1 1 jdu
P20 R,duy [ Yow) Y_(w) | u

This integral has been evaluated numerically using ap-

proximations of the functions Y, (u) and Y _(u) satisfy-
ing Eq. (6) (see Appendix B).

E. Energy dependence of the charge density

Depending on DOS shape, some approximations may
be introduced to evaluate the charge density. For the
states belonging to the conduction band, one uses the
standard effective level approximation, valid for nonde-
generated semiconductors:

pAE;)=—gn(E,;),
with
n(Ed)=Ncexp( "'Ed/kT) )

where N, is the conduction-band effective density of
states.

The a-Si:H band-gap DOS is believed to be rather flat
in the bulk Fermi-level vicinity; the occupation probabili-
ty may then be approximated by a step function, which
constitutes the 0-K approximation. But the DOS is ob-
served to increase exponentially with energy faster that
the drop of the Fermi-Dirac occupation probability'®~!2
as the energy gets close to the conduction-band edge, a
situation which cannot be accounted for by the 0-K ap-
proximation. The incidence of these states on the charge
density is analyzed in Appendix A, where it is shown that
the charge density may be evaluated assuming an
effective number of gap states per unit volume at the
conduction-band edge, let N, be this number, and a
charge density p,(E;) whose functional dependence is de-
rived in Appendix A.

Using the 0-K approximation, for the DOS around the
Fermi level, one then gets the expression for the charge
density:

E
pE)=—q [ “g(EME
d

N,
—+1
4

N {n(Ed)—*n(Edb)}-Fpl(Ed) s

- q

where n(E,, ) is the conduction-band electron density of
the bulk material.

The DOS g(E) is usually assumed either energy in-
dependent (flat) or to depend exponentially on E. In the
latter case, one may write

E db E

IkT
g(E,,) is the DOS at the bulk Fermi level, and / charac-
terizes the DOS logarithmic slope with respect to the

measurement inverse temperature. The 0-K approxima-
tion is valid only if / > 1.

g(E)=g(E, Jexp

III. RESULTS OF THE CALCULATIONS

The following sets of plausible parameters were intro-
duced in a simulation program, written in Microsoft
QUICK BASIC 4 language.
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FIG. 1. J-V characteristics, in the scaling variable plane, for
a 10" cm ™3 eV ™! Fermi-level DOS, flat (a) and slope / =8 (b).
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FIG. 2. J-V characteristics, in the scaling variable plane, for
a 10'® cm 3eV ! Fermi-level DOS, flat (a) and slope / =8 (b).
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FIG. 3. J-V characteristics, in the scaling variable plane, for
a 10" cm 3¢V ™! Fermi-level DOS, flat (a) and slope / =8 (b).

were measured in the materials used in our samples.)

The calculation was performed for the following set of
values: thicknesses: 8, 4, 2, 1, 0.5, 0.25, and 0.125 pm;
bulk Fermi-level DOS: 10', 10'%, and 107 cm3eV™};
DOS slopes: flat, =8, [ =3.

Owing to the large number of simulation data, it is
difficult to present them here extensively, so they are ar-
ranged to approach two questions of interest in SCLC
measurements: one is the validity of the thick sample ap-
proximation, the second is the sensitivity of SCLC to the
DOS slope.

A convenient way to study the validity of the thick
sample approximation is to display the results in terms of
“scaling variables” namely J/t—V /t?, for which the
characteristics should not depend on the sample thick-
ness t. Figures 1-3 show the results. One observes in

'
pury - w w ~

10'7eviem?®

| 1 L L I 1 1 J

3 4 5 6 7 8 9 10 11 12
log [V/t* (Vem'?) ]

Iogm[ Jit (Acm’ 3) ]

'
6] w

FIG. 4. J-V characteristics, in the scaling variable plane, of a
4-um-thick sample with Fermi-level DOS values 10'° and 10"
cm%eV ! and flat, / =3 or / =8 DOS slopes.
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particular that the scaling law is not yet verified for 4-
pm-thick samples, if the bulk Fermi-level DOS is equal to
10 cm eVl

At high current density, a scaling law with J propor-
tional to V is observed; it corresponds to the situation
where the electron injection is high enough to impose a
density of conduction electrons independent of the posi-
tion, and equal to the density at the N *-I interfaces.

The sensitivity of SCLC to DOS slopes is illustrated in
Fig. 4, displaying J-V characteristics of a 4-um-thick
sample, with 10'> and 10'7 states cm eV ™! at the bulk
Fermi level. For the lower DOS, where the scaling ap-
proximation does not hold, the conductance is slope
dependent in the low-J region, where an Ohmic behavior
is observed. This means that the contribution of the

space-charge regions to the conductance is still
significant.
The effect on the I-V characteristics of the

conduction-band edge tail states, which have been intro-
duced in the simulations, is expected to be sizable only in
the limit of low Fermi-level DOS. It turns out that, even
for the lowest Fermi-level DOS hypothesis, namely 10'°
eV~ lcm ™3, the contribution of the tail states is marginal.

It may be of interest to visualize the evolution of the
band shape as a function of the current density. In Fig.
5(a), the quantity E;(x)=E_(x)—Eg(x) is drawn for a 2-

0.68 T T T T

0.58 - @) T
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0.48 (3) N

0.38

E(x) - E(x) (eV)

c
S—

(a)

0.28 L 1 L

o

'
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T
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T

04 (1) ]

'
o
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T
!

- (b) 1

1 |
0.5 1 1.5 2
depth x (um)

'
e

€ (x)-E(0)}/ {E,(0)-E (1)}

o

FIG. 5. Sample characteristics: thickness 2 um, 10'
eV~ !lem™? flat Fermi-level DOS. Polarization conditions (1):
J=10"7 Acm™% V=6.5 mV; (2): J=10"° Acm™?%, V=0.37
V; (3): J=0.1 Acm™2, ¥=6.7 V. (a) Position dependence of
the distance between the conduction-band edge and the
pseudo-Fermi level. (b) Position dependence of the pseudo-
Fermi level, normalized to its total variation.
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pm-thick sample with a 10'® eV~ 'cm ™3 flat DOS at vari-
ous current densities. The polarization is such that elec-
trons are injected from the left. One observes an overall
increase of the electron density in the sample as the
current density is increased, especially in the region close
to the cathode, and one observes also a diminution of the
electron density, as compared to the equilibrium situation
in the vicinity of the anode for a high enough current
density.

The pseudo-Fermi-level position dependence, normal-
ized to its overall variation, is displayed in Fig. 5(b). It is
observed, as expected, that its slope is connected to the
value of E,(x) displayed in Fig. 5(a).

IV. ANALYSIS OF EXPERIMENTAL DATA

J-V characteristics have been measured on a set of
samples made of the same intrinsic material, the thick-
ness of it being varied. The material properties were as

[Jit (Acm ¥ ]

10

log

[Jt (Acm Y]

10

log

[J/t (Acm'®)]

10

log

FIG. 6. J-V characteristics in the scaling variable plane, mea-
sured on a set of samples made of the same I material and of
thicknesses 5.3 (A), 2 (O), 1.5 (O), and 0.6 (O) um and com-
pared to the prediction of various Fermi-level DOS values (unit
cmeV7!) and slopes. (a) 4X10%, flat; (b) 10', flat; (c)
4X10Y,1=8.
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much as possible maintained identical for each sample.
Possible contamination of the i layer by phosphorus used
to make the nt layers was minimized by the use of a
reactor allowing the deposition of the two types of layers
in separate chambers. It turned out that for thin sam-
ples, a contribution to the potential drop taking place at
the metal-n * interfaces had to be subtracted in view to
get the actual i layer bias. Details on the experimental
procedures may be found in Refs. 13 and 14, where re-
sults on the J-¥ characteristics temperature dependences,
in the low-bias-linear region, are also presented. It is
shown that they may be well accounted for taking into
account the influence of the n *-i charge space regions.

In Figs. 6(a)-6(c), the result of the model is compared
with the J-V measurements. One observes that the best
agreement is obtained for an energy-independent DOS
with 4X 10'° states cm eV ™!, No systematic optimiza-
tion of the parameters was attempted, but it appears that
only a rather flat DOS can describe the whole set of mea-
surements. If one considers only the thickest sample, one
observes that the experimental measurements may be ac-
counted for by various combinations of DOS densities
and slopes, so that the measurements on thin samples
bring a significant constraint to the values of the adjust-
able parameters.

V. DISCUSSION

The interpretation of the measurements excludes that
the DOS exhibits a sizable exponential slope as a function
of energy in the vicinity of the bulk Fermi level. The ob-
servations are compatible with a Fermi-level flat DOS,
which of course does not demonstrate the DOS flatness.
To illustrate this point, the charge density p(E;) has been
computed using a dangling-bond Gaussian DOS, with a
positive correlation energy of 0.4 eV, to describe the D,
D°, and D~ occupancies. Figure 7 shows the result of
the calculation for two hypotheses of Gaussian widths
o=0.1 and 0.2 eV, at room temperature. One observes

|

N

=

c

3.0.2 + -
g

804+ E
=

w06 s=02¢ ]
c

(]

©T-0.8 -

c=0.1eV

Q

E’ -1 1 it ue _
(]

5 o0.28 0.38 0.48 0.57 0.67

E - E (eV)

FIG. 7. Charge-density variation as a function Fermi-level
position, assuming a Gaussian dangling-bond density of states,
and an energy correlation of 0.4 eV. The Gaussian width is ei-
ther 0.1 or 0.2 eV. The Fermi-level position corresponding to a
null charge density is taken at 0.67 eV below the conduction
band.

that in the domain of interest for E, —Ef, both curves
may fairly well be approximated by straight lines, which
may be simulated using an effective flat DOS.

The observed absence of scaling is interpreted as due to
the inclusion of diffusion in the transport equation, as al-
ready stated by Lampert and Mark.! Moreover, the
present treatment of transport allows one to use bound-
ary conditions at the n *-i interfaces more realistic than
the ones required to derive scaling, namely zero electric
field and infinite electron density at the injecting elec-
trode. At high current densities, probably outside the
range of experimental measurements, a scaling law is,
however, predicted to hold. It corresponds to the situa-
tion where the distance between the electron band edge
and the pseudo-Fermi level is constant through the in-
trinsic layer.

VI. CONCLUSION

The consideration of the effect of the space-charge re-
gion in computing the I-V characteristics of nt-i-n™
a-Si:H sandwiches enables a fair description of the mea-
surements performed on samples made of the same ma-
terials but with various thicknesses, using a unique DOS
density. The value of this DOS density and its slope is
severely constrained by the requirement to describe
simultaneously the I-V measurements on thick and thin
samples. The measurements exclude that the density of
states varies exponentially with the energy in the Fermi-
level vicinity. A hypothesis of energy-independent densi-
ty of states is compatible with the observations. It is,
however, shown that a Gaussian distribution of dangling
bonds leads to a charge-density distribution depending
approximately linearly on the value of the pseudo-Fermi
level, just as a flat DOS does. So the present measure-
ments are compatible with the commonly accepted vision
of Gaussian dangling-bond DOS with a correlation ener-
gy of =~0.4 eV and a width of 0.1-0.2 eV.

ACKNOWLEDGMENTS

We are indebted to I. Solomon, whose activity in SCLC
has initiated the present study. We thank R. Van-
derhaghen for helpful discussions on the determination of
DOS by time-of-flight methods, and Ph. Delannoy for en-
lightening discussions on transport in polymers around
the work of Bonham. The work was financially support-
ed by PIRSEM-CNRS, AFME and CCE -contract
JOULE.

APPENDIX A

From time-of-flight experiments, one gets a relatively
precise knowledge of the density of states below the
conduction-band edge. Following Vanderhaghen and co-
workers, 12 we assume that the DOS has the following
behavior.

From E, to E,=E_.—0.15 eV, it decreases exponen-
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tially from D, =10*' cm 3¢V ! at E, with a characteris-
tic energy of 0.026 eV. Under E.—0.15 eV, it decreases
further with a characteristic energy kT, =0.017 eV. The
DOS around the Fermi level is not properly probed by
time of flight, so one may assume that the DOS intro-
duced to analyze SCLC measurements is to be added to
the present ones.

The question arises of the contribution of these states
to the charge density. 0-K approximation is not justified,
for the characteristic energies are equal to or smaller
than the thermal energy at the temperature of the mea-
surements, =300 K, i.e., kT=0.026 eV.

One may compute the contributions of these states to
the charge density from the relation

CONDUCTION PROPERTIES OF a-Si:H n*-i-n™ . ..
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p(Ep)=—q [ ¢(E){f(E,Ep)—f(E,Ef)}dE .

S(E,Eg) is assumed to be the Fermi-Dirac function, Eg;
is the bulk Fermi energy.

Note that E;,=E,—E is greater than or equal to
E;f=0.28 eV, so that the pseudo-Fermi level is far
enough from E, (recall that E,—E;=0.15 eV) to allow
the use of the exponential approximation of the Fermi
Dirac occupation probability function in the energy re-
gion between E, and E.. One then gets easily the result
that this part of DOS behaves like a DOS located at E,
with a density N,=D_,(E,—E,).

The charge-density contribution of the DOS at ener-
gies lower than E, is given by

El El _E 1 1
p(Egp)=—gN exp— - dE ,
rer J kT, oo |EEe | [E—En
exp o exp |~
where Ep; <Ep<<E|, N, is the DOS at E=E,, and APPENDIX B

where

E —El

(4

kT

N,=D_ exp =3X10"¥ cm V!,

With the particular choice of the ratio kT/kT,=%,
here satisfied, this integral may be analytically evaluated,
and one gets finally

(Ep)=—2qkTN ! F
P1 F q 1€Xp 2kT
F Fi
X [1—exp |- —L =2

exp kT

The minimum value for E; —Ej is 0.13 eV, at the n *-i
interfaces. There, one gets 1.3X10'® cm™3 elementary
charges in these states, so they may contribute
significantly to the SCLC characteristics.

The preceding expression for the charge density may
be rewritten as a function of u =exp(E,/kT), where
E;=E_—Ep, convenient for the numerical evaluations.
One gets

Ec _El
2kT

—-1/72

1__.__
Up

pi{u)=—2gkTD_exp

u, is the value taken by u in a bulk material.

The determination of Y(u) from Eq. (6), valid in an in-
terval (u,,u,) where R(u) may be taken as constant and
equal to R, leads to the resolution of

Y(u)—In[1+Y(u)]=g(u), (B1)

where g(u)=Y,—In(1+7Y,)+(M?/R, Nu,—u) is a
linear function of u.

Y, is assumed to be known from the treatment of the
preceding interval, for the starting point is u,, the max-
imum value of u, where Z and therefore Y is known and
equal to 0, and the end point is u,.

Two solutions are sought, one positive Y, and the
other negative Y_, which turns out to be in our case al-
ways greater than —1. Y, may be approximated by the
expression

x +4
+6

Similarly Y_ is approximated by the following expres-
sion, valid if Y_ > —0.99:
24—5x
x—————— where x =—{2g(u)
24—13x +5x? (28(w)]
From these approximations, an iteration procedure to
solve Eq. (B1) was realized; it was checked that the ap-
proximations were accurate enough. The evaluation of
the integral to get the thickness was then performed by
quadrature of the above expressions.

Y, =x+x’ }172

where x ={2g(u)

172

i
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