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Results for the one-particle Green s function for the Tomonaga-Luttinger model of one-dimensional

interacting fermions take a simple form using space and time variables. To obtain the corresponding
spectral functions which determine photoemission and inverse-photoemission spectra, a double Fourier
transform is necessary. For the model including spin we present analytical and numerical results. They
show drastic differences from the spinless case. Expressions for the critical indices which determine the
singularities of the spectra are given.

I. INTRODUCTION

Long before any experimental realization of quasi-one-
dimensional metals, Tomonaga' made a pioneering step
towards the theoretical understanding of one-dimensional
interacting fermions. In contrast to three-dimensional
systems which have an excitation spectrum consisting of
single-particle excitations as well as of collective modes,
there are only collective long-wavelength low-energy
modes in the one-dimensional (1D) case, which approxi-
mately behave as bosons. To obtain his results, Tomona-
ga linearized the energy dispersion around the two Fermi
points +kf. In the Luttinger model, which is closely re-
lated to the massless Thirring model, an exactly linear
dispersion is assumed. An exact solution for the Lut-
tinger model was presented by Mattis and Lieb. The
original Tornonaga model and Luttinger model were
compared by Gutfreund and Schick, who sho~ed that
the low-energy physics in both models is the same for
long-range interactions with a rather weak restriction on
the interaction strength. As we are interested in the low-
energy spectral functions of 1D interacting electrons, we
mostly refer to the model as the Tomonaga-Luttinger
(TL) model in the following.

The one-particle Green's function for the TL model
can be calculated exactly. Three different approaches
were proposed: the use of Ward identities, the gen-
eralization of the method of Mattis and Lieb to calculate
time-independent correlation functions, ' and the
elegant method' which uses the bosonization of the fer-
mion field operators. " ' Apart from cutoff problems
which were treated on different levels of sophistication,
all approaches yield explicit results for the Green's func-
tion in space and time variables, when simplifying as-
surnptions about the form of the interaction are made. '

Originally the model was treated for spinless fermions.
The inclusion of spin still leads to an exactly solvable
model as spin and charge degrees decouple completely.
The calculation of the one-particle Green's function is
then easily generalized to the model including spin.

To obtain the spectral functions, which determine the
photoemission and inverse-photoemission spectra, a dou-
ble Fourier transform is necessary. For the spinless mod-
el this can be performed quite easily using the simplified

form of the interaction. ""' This is shortly reviewed
in Sec. II. For the model including spin, the one-particle
Green's function G(x, t) has a more complicated struc-
ture and no results for the physically interesting spectral
functions have been published so far. In Sec. III we gen-
eralize the methods used for the spinless model to obtain
general analytical results for the critical indices which
determine the singularities of the spectra for the model
with spin. For the case of spin-independent interaction
exact numerical results for the complete low-energy spec-
tra are presented. The details of how one of the integra-
tions is performed analytically are given in the Appendix.

II. SPINLKSS LUTTINGER MODEL

To clarify our notation we briefly review the Luttinger
model for spinless fermions on a line of length L. Assum-

ing periodic boundary conditions the field operators
f~(x) with a=+ ( —

) for right- (left-) moving particles
can be decomposed as

1
P".(x)=

~ XPk.
k

L
pk

= f p (x)e '""dx .

(2)

(3)

Using Eq. (1) this yields'

Pq, a X~ k, a~k+q, a '

k

(4)

With proper normalization the p obey Bose commuta-
tion relations. If one defines

p + forq)0
p for q(0

the commutation relations read as

f (x)= —ge'""ak
&L k

where Qk is the annihilation operator for a particle of
type a with momentum k =2qrnIL, n EZ, and kinetic
energy av&k. The density operators p (x)=—1(t (x)g (x)
are expanded in a Fourier series,
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[b,b .]=5 [b,b .]=0 . (6)

The basic clue to the solution of the interacting model
lies in the fact that (up to an infinite constant) the kinetic
energy can be expressed in terms of the Bose operators
and (normal ordered) particle number operators B for
the right- and left-moving particles, which commute
with b and b + as

Ho=u& g Iqlb, b, +—g (B '.—B.)

q&0 (z =+
(7)

The normal ordering is with respect to a state where all
one-particle states with negative energy are filled. The in-
teraction term can naturally be expressed in terms of the
density fluctuation operators as well as the 8 . As the
term involving the particle number operators has no
influence on the dynamics, but only enters the value of
the chemical potential p, we drop it and take as the in-
teraction

with vI(q)=u&+1+v(q)l(rru&) and 6 determined by
the equation

tanh(26 ) =- u(q)
u (q)+2m. vt.

(10)

P (x)=a Bx ——i g 8(aq)e'~"
1/2

bq . (12)

H2( [B ] ) contains all terms with particle number opera-
tors. To calculate the 2n point functions, one can use the
bosonization of the fermion field operators g (x). '

We use the procedure by Haldane' that properly incorp-
orates an operator U which applied to the noninteract-
ing ground state produces the noninteracting ground
state with one additional particle of type a and commutes
with the b and b

i a( vr/L )x

(1 1)v'L

with

V=-,' g ~q~' q (b,'+b, )(b, +b', ),
QO 27K

(8)
If one defines

where v (q) is the Fourier transform of the two-body po-
tential, e.g. , a screened Coulomb potential. As shown by
Mattis and Lieb the total Hamiltonian 8=80+ V can
be diagonalized by new boson operators a
—:coshe b —sinhe b

q~vI(q)a ~a~+H2( I B I )

q&0

iG, (x, t)= & fr (x, t)g —(0,0)),

iG (x, t)=&/ (0,0)f (x, t)),

(13)

(14)

the calculation of the right-hand side (rhs) of Eqs. (13)
and (14) is simple if one expresses b (t) in terms of a~(t)
and a ~(t) and uses the Baker-Hausdorff formula,

iG (x, t)e'"'= e—exp . g —[e—' t"e ' +2s (q)[cos(qx)e ' —1]]
L

(15)

where s (q)—= sinh (6 ) and co = ~q~uI(q). Following Luther and Peschel, ' we assume a potential that leads to

sinh (8 )=ye (16)

iak x
g, ia e

iG (x, t)e'"'= +
' 2~ x —aU t+ iaO~ (-) (x —v t+ir)(x+u t —ir)~ (-) ~ (+)

In the large x and t limit, one obtains, after taking the limit L ~ oo with vf —Uf(q =0),

2
y

T (17)

This is the basic result for the spinless model mentioned
in the Introduction. It agrees with expressions given by
Luther and Peschel' who used a not quite correct form
of the bosonized field operator. This is not surprising as
the proper inclusion of 0 only modifies the value of the
chemical potential, which in the following we take as our
reference energy.

To understand the physical content of Eq. (17) we
define the spectral functions

p)(k, ~)= &p,"~a„.o[~ (H —E,"+')]u „'.~—y,"&—

dt e' ' dx e '""e')"iG)(x t)
27T 00 oo

p.'(k, )—= &y, ~a'„.fi[ +(P—Z, -')]a„.ly, &

i cotdt e' ' dx e '""e'"'iG (x, t) .
2K oo

This agrees with the usual definition if the chemical po-
tential is put to zero. As we have calculated G and G
in the large x and t limit and as G( is proportional to

exp(iakIx ), our results for the spectral function will be
exact only in the limit k =akI and co=0. In the follow-

ing we evaluate the functions only for right movers
(a=+ ) and define k —= k —k&. As we have the relation

p+(kt+k, co) =p+(kI —k, —co), (20)
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without really performing the complicated integral
I2(u+ ). Using u+ =u +k, we can write
Ii(u )I2(u+ )=I, (u )I2(u +k)=Ii(u+ —k)I2(u+ ).
For fixed kAO the function I2 (I&) is regular near k
( —k ). For k )0 (k (0) the nonanalytic threshold be-
havior of p+(k&+k, co) is therefore determined by
I&(u ) [I2(u+ )]. The small u+ behavior of Iz is as sim-
ple as the behavior of I, for small u because it is deter-
mined by the large s behavior of the integrand. Then
+i0 can be replaced by +ir and I2 becomes an integral
of the same type as I, .

a)

~10-
3

2~
+

b

~ 5
V-

1 '11

I II

I II

II
II

1

I I

! I

I I

:'I I I

1I, 1

III. MODEL INCLUDING SPIN

where the two-body potential is allowed to be spin depen-
dent,

&..(Ix —x'I) = V(lx —x'I)+aa'U(lx —x'I) . (27)

In Eq. (26) the field operator P (x) creates an electron
with spin component 0. in the Fock space corresponding
to the Tomonaga model. Only after the transition to the
Luttinger model does one obtain field operators f (x)
where a as in Eq. (1) distinguishes right- (a=+) and
left- (a= —

) moving electrons and the corresponding
density operators p (x). It is useful to define charge-
and spin-density operators as

To describe interacting electrons in (quasi-) one-
dimensional systems the spin degree of freedom has to be
taken into account. In the framework of the Tomonaga
model one writes an (effective) interaction term

,' f —dxf dx' g g (x)P (x')
O', Cl

X V (~x —x'i)f (x')lI (x),
(26)
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Pq, a =Pq, a, f+Pq, a, $ (28)

q, a =Pq, a, f Pq, a& (29)

and with a normalization which differs by a factor of &2,
the analogous definition to Eq. (5) reads as

p + forq&0

Iq~II. p, for q (0,
&q+ for g %0

b, =— t

IqlIL ov — «r q « .

(30)

These operators describe independent boson degrees of
freedom. Again the kinetic energy can be expressed in
terms of the boson operators and particle number opera-
tors
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FIG. 2. Total spectral function p+ (kI+k, co) of the TL
model including spin as a function of nor, /v& in the low-

frequency regime for y, =0.3 (dotted curve), y, =0.6 {full

curve), and difFerent momenta k. The interaction is taken spin
independent and repulsive. (a) r, k =0.01. (b) k =0. (c)
r, k = —0.02. The curve for y, =0.6 is scaled up by a factor of
3.
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The interaction term naturally decomposes into a sum of a charge-density and spin-density part which both are of type
(8). The Hamiltonian for the interacting Luttinger model including spin then reads as

+ & Iql Uf+ bq, bq, + (bq, b „+b q, bq, +I) +H2([& ]) . (32)

This shows the complete spin and charge separation. Therefore the results of Sec. II can be used to obtain an expres-
sion for the function G+ (x, t). Apart from a factor —, which is due to the factor I/W2 in the spin-dependent boson
operator bq =(b», +orb», )/&2 and the sum over the charge and spin part in the exponent in the second term on the
rhs of Eq. (15), this result can be used also for the model with spin. Assuming the special form (16) for u (q) and u (q),
one obtains in the large x and t limit

(x —av, +iaO)'~ (x —au, t+iaO)'f'(-) f' (-)

p
2

C

(x uf ~t +—ir, )(x +Vf, t —ir, )

y /2
2

S

(X Uf gt+ jr' )(X +Uf gt lr~ )

y /2

(33)

where the renormalized Fermi velocities are given by the q =0 limit for the velocities in the interacting system

vf g
—Uf t/ 1+2v (0)/(qrvf )

vf ~
—Uf+I +2u (0)l(qruf )

(34)

(35)

The spin wave velocity uf, equals the unrenormalized Fermi velocity Uf in the case of a spin-independent interaction.
The spectral functions p (k, co) and p (k, to) corresponding to G+ (x, t) are defined as in Eqs. (18) and (19). It has

been pointed out previously that the double Fourier transform to obtain the spectral functions in the model with spin
poses a diScult problem. ' '

In the following we discuss only p+ (kf+k, co) as the relation (20) also holds for the spin components of the spectral
functions. In our attempt to perform the x and t integration we use variable substitutions s =x —Uf, t and s'=x+Uf
as in Sec. II. This yields with p:—uf, /Vf, and u + (to+Vf, k )/(2u——f g ),

p+ (kf+k, co)=

with

P t:Py y lQ S

2Uf — 2m s' —ir7 C

(36)

lQ S+

2 + 0 + l+ 2+ l 2+;

X
[s'( I+P)/2+s(1 P)I2 ir, ]

' [s—(1+P)—/2+s'(I —P)/2+iO]'~
(37)

In contrast to the spinless case, p+ is not given as a
product of two independent integrals. Nevertheless, it is
possible to read off the critical indices for the singularities
of the spectrum from Eqs. (36) and (37) and to determine
the threshold of the spectrum. For p& 1, i.e., uf, & vf „
the singularities of the integration variable s' (s) are in
the upper (lower) complex integration plane. Therefore
p+ vanishes for to& ~k ~Vf, . For p& 1 the roles of Vf,
and Vf, are interchanged and p+ vanishes for
~ & lk IVf,

For a given value of k )0 we expect singularities in

p+ at co=Of, k and co=if, k. This can already be seen
for the special case y, =y, =0 but Vf, AVf „where the

integrations can be performed and one obtains square-
root singularities at both frequencies. ' For co=uf, k,
i.e., u' =0, we have u+ =k and the main contribution
to the s integration in F(s') comes from finite ~s~ & C(k ).

,—(y +1/2)
Therefore, for large s', we have F(s') -s' ' . As
the small u' behavior of the integral in (36) is deter-
mined by the large s' behavior of the integrand, we obtain
for P & 1 the threshold behavior

p (kf+k, t0)-e(co —Vf, k)(to —Vf, k)

k &0 . (38)

For p& 1 the roles of Vf, and Vf, are interchanged and
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the threshold behavior is

p+.(k, +k,~}-8(~ u—f,k)(~ u—f,k)'" +' "", p+ ~(kf, co) lcol

The total spectral density per unit length

(42)

/c)0. (39)

For p& 1 there is an additional singularity at cv=vf, k
with the exponent given in (38) but cv —uf, k replaced by
lcv —vf, k

I while for p) 1 the additional singularity is at
co =vf, k with the exponent given in (39).

For k & 0, as in the spinless case, there is no singularity
in p+ itself but only in its derivative with respect to co.

Interchanging the order of the s and s' integration we can
argue as for k & 0 and obtain for P & 1 the threshold be-
havior

p (kf+k, cv)-B(cv vf, lk—)(cv uf—, lkl) '

k (0.
while for P & 1 one has

p (kf +k, }-8( —
f,, Ik I }( —0'f, , lk I

)'

(40)

k &0 (41)

For p& 1 (p& 1) there are additional nonanalyticities at
~f, I k I (co =uf, I

k
I ) with the exponents given in (40)

and (41).
The case k =0 requires special treatment as in the spin-

less case. It can be treated by examining the behavior of
the integrals in (36) under the scaling co~ed, k ~ek, i.e.,
u + ~au +. This leads for k =0 to

p (cv):—f p (k cv)
dk

(43)

with p (k, cv)=p (k, cv)+p (k, co) can easily be cal-
culated, as it involves only the time Fourier transform of
6 + (0, t). Using (33) this yields for small cv

p...(~)-l~l' ' (44)

This completes our general analytical results for the spec-
tral function for the model including spin.

As it is desirable to obtain the spectral function in the
whole low-frequency range we discuss in the rest of this
section the important special case of a spin-independent
repulsive interaction, i.e., u (q) =0, u (q) )0. This implies
uf vf y, =0, and uf, & uf, i.e., p & 1 . In this special
case the integrand in F(s'} is an analytic function in the
upper s plane. Therefore p+ (kf +k, cv) is proportional
to 8(co+uf, k ). This implies that the threshold for k &0
is not given by vf I

k
I

as in Eq. (41}but the additional step
function shifts the threshold to cv=uf, lkl. This is a
specialty of the y, =0 case.

As described in the Appendix it is possible using the
integral representation of the confluent hypergeometric
function to obtain an expression for p+ which involves

only a single integration

p+ (kf+k, cv) =C exp [2co+k ( vf, —uf ) ] 8(cv —uf k )(cv —uf k )

Uf Uf

&& f ds(1 —s) ' s ' [( o+cvf, k)(1 —p) —(cv —vfk)2s]

co Ufk
X exp 2r, s 8[(cv+uf, k )(1 l3) (cv vf k—)2s ]- —

Uf c Vf
(45)

with

r r&
( 1+p)l/2

u (1 p2) c

x [r(-,')r(y, f2)r((y, + I) /2)] ' (46)

The remaining integration can be performed numerically.
Also starting from (45) it is possible to reproduce the
above results of the threshold behavior for the special
case r, =0 and Uf, , )Uf.

" Results for the total spectral
function p+ (kf+k, cv) are shown in Fig. 2 for y, =0.3
and 0.6. The k values chosen are r, k =0.01, k =0, and
I.,k = —0.02 as in the spinless case. For k (kf the main
weight lies in the photoemission part of the spectrum at
co & 0, while for k & kf it lies in the inverse-photoemission
part at co&0. At k =kf the spectrum is a symmetric
function of co and again shows Luttinger liquid behavior,

I

i.e., the absence of a sharp quasiparticle peak. For the
large value y, =0.6 the spectral weight in the low-energy
regime is strongly reduced compared to the spectrum for

y, =0.3. This transfer of spectral weight to higher fre-
quencies also happens in the spinless model, as can be in-
ferred from Eq. (24). Large values of y, correspond to
systems with a low electron density.

IV. SUMMARY

While the one-particle Green's function for the
Tomonaga-Luttinger model as a function of space and
time variables has been known for a long time, it is
surprising that the behavior of the corresponding spectral
functions for the model including spin have not been dis-
cussed previously. This has also been pointed out in a re-
cent experimental photoemission study of quasi-one-
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dimensional metals. We have presented analytical and
numerical results for the spectra, which show interesting
additional structure compared to the spinless model. The
critical indices for the singularities of the spectrum which
depend on the coupling strength have been given analyti-
cally.

Note added in proof Af.ter our paper had been submit-
ted for publication we received a paper by J. Voit,

which for the special case of a spin-independent interac-
tion contains results equivalent to ours.

APPENDIX

In this appendix we want to discuss the spectral func-
tion p+ for the special case of a spin-independent repul-
sive interaction. Starting with (18) and (33) we get for

y, =Oand vf )vf,

~c

p+ (k&+k, co}= ' f dt e'"'f dx e
4m 00

1 1

(x DI, t—+iO)'~ (x vIt—+iO)'~

y /2

X
1

(x Vf at +ir, )(x +vI, t ir, )—

With the substitution s'=x —vf t one obtains

c lc0$ /Vg I'(c —v&k)x/v&

4H —~ ( '+iO)' —~ [x(l—P ')+P 's'+i0]'p+ (k +k, co)= ds' dx
oo

1 1

[x(1 13 ')+P—'s'+ir, ] [x(1+P ') P's—' ir, ]—
ICOS /Vg

ds e I(, )—~ 2~ (s'+iO)'

(A 1)

~c /2

(A2)

with P ((1)as in Sec. III. For small co and co —vIk, the behavior of p+ is determined by the large s' and s behavior of
the integrand and we can replace +iO by +ir, in both integrals. This does not alter the low-energy behavior but leads
to a violation of the sum rule for the total weight as the high-frequency regime is not described correctly. Then the x
integration has the same structure as the integral I2 in (21) and can also be expressed in terms of the confluent hyper-
geometric function'

—(2y +1)/2

I(s')=~i(1+P ') ' (P ' —1) ' exp r, (1+P ') ' k—
I [(2y, +1)/2] Vf

r

X exp —is'(1+P ') ' k-
Vf

—(2rc 1)/2
B(co—vIk )(co —vIk )

y, +1 2y, +1 r P is'—
,2P k—

2 2 1 —p2 v&

By taking the integral representation

4(a, b, z)= I (b)
ds e sss a —

1( 1 s )
b —a —1

I (b —a)I (a} o

of the confluent hypergeometric function and interchanging the remaining s' and s integrations we get

(A3)

(A4)

p+ (k/+k, co) =
~c(,)i (1+P ') ' (P ' —1) ' I '(y /2)I '[(y +1)/2)

Vf

P~
Xexp (kuI co) B(co uIk)(c—o —vI.k)—

Vf ~+Vf

2 i+2

0 1 —p VI

exp. —is' k+
Vf c

(1—P)+2sP k-
Uf

(r is')'— (A5)

The s' integral can now be performed as I, in Sec. II (22} and we finally obtain (45) and (46).
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