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The bipartition model for electron transport has been extended to the energy range from 1 to 50 MeV
because of its importance for radiation therapy. In the extended version, the influence of energy-loss

straggling, secondary-electron production, and bremsstrahlung production on electron transport has
been included. In addition, the transport of obliquely incident electrons has also been considered. The
extended theory is described in detail and computational results including the electron-energy deposi-
tion, the charge deposition, and the angular distribution are given. Compared with the Monte Carlo
method, the extended bipartition theory shows a much higher computational efficiency, while retaining a
high precision. Moreover, comparisons between the moment method and the bipartition model demon-
strate also that the latter possesses higher precision and flexibility.

I. INTRODUCTION

The practice of modern radiation therapy calls for fast
calculations of high-energy-electron transport in the hu-
man body. Such energy-deposition calculations are espe-
cially important for high-energy accelerators used in ra-
diation therapy.

During the early 1970s, Kessaris extended the use of
the moment method proposed by Spencer to treat the
problem of high-energy-electron transport in water for
medical applications. ' The results obtained by using
the moment method were in reasonable agreement with
experimental data. Due to the adoption of the
continuous-slowing-down approximation (CSDA), how-
ever, some factors, such as energy-loss straggling which is
important for high-energy-electron transport, were not
considered in Kessaris's work. Moreover, with the mo-
ment method it is difficult to treat the electron transport
with oblique incidence and semi-infinite or multilayer
media. Brahme and Jette extended the Fermi-Eyges
small-angle multiple-scattering theory to calculate the en-
ergy deposition of high-energy electrons in water.
The method of Hogstrom, Mills, and Almond and
Brahme, Lax, and Andreo has been used widely in clini-
cal practice. ' However, as pointed out by these au-
thors, the Fermi-Eyges theory needs to be improved,
especially for the transport with inhomogeneities and at
large depth. Recently Huizenga and Storchi have used
the phase-space time-evolution method to treat the trans-
port calculation for high-energy electrons and have
shown good results. ' Until now, the most accurate
method for calculation of the electron penetration might
be the Monte Carlo method. Berger and Seltzer, Hal-
bleib and Van-devender, Nelson, Hirayama, and Rogers,
and Andreo and Brahme have developed different codes
of Monte Carlo calculation. " ' The Monte Carlo
method can simulate not only the electron transport pro-
cess in detail, but also its calculational efficiency, which

has largely been improved. Generally, Monte Carlo
simulation has satisfied the main requirements largely for
the electron transport calculation for medical applica-
tions, except for its slow calculational efficiency.

The bipartition model of electron transport has shown
high quality in the description of the electron transport
within the energy range 20 keV-1 MeV with high calcu-
lation precision, flexibility, and efficiency. ' ' In this pa-
per, we will extend the model to handle the transport of
1-50-MeV electrons in water. For high-energy electrons,
some other factors have to be considered. These factors
include energy-loss straggling, secondary-electron trans-
port, and bremsstrahlung. We have therefore completed
another version of the MONKEY program, MONKEY. RT,
which is capable of handling the transport of 1 —50-MeV
electrons in water. The MONKEY. RT code shows very
high computational efficiency, and still keeps good calcu-
lation quality. This fact implies that it may become a
promising way to employ the bipartition model for the
calculation of electron transport in media.

There are five sections in this paper. After a brief for-
mulation of the electron-atom interaction process, we in-
troduce the extended bipartition model in detail. In the
fourth section, we present results computed by the
MONKEY. RT code. Some of the results are compared
with more detailed Monte Carlo simulations, the moment
method results, and experimental data. The last section
is a brief discussion of the results.

II. FUNDAMENTALS OF THE INTERACTION
OF ELECTRONS WITH ATOMS

The electron-energy range considered in this paper is
approximately 1 —50 MeV. Within this range, four prin-
cipal interactions of the electrons with matter have been
taken into account in the Boltzmann equation: the total
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When E=E/2, L(E,b ) becomes the conventional col-
lision stopping power. The radiation stopping power is'

NqD r0S„d(E)= Z(Z+1) (E+moc )y„d.
137

(2)

In the present calculations, the fitting formula for q„d
given by Seltzer and Berger' has been used.

The function G(E,h), by definition, is given by

electron stopping power, the energy-loss straggling, the
bremsstrahlung cross section, and the elastic-scattering
cross section.

The electron stopping power, giving the average energy
loss of electrons passing through a unit depth interval, is
normally expressed by the Bethe-Block equation. ' A
more perfect stopping power formula should also take
bremsstrahlung, density effect, and shell correction into
consideration. In order to consider the transport of
secondary electrons in the medium, the restricted col-
lision stopping power has to be used:

G(E,&)=—1 —P +ln 4—1 ——
E E

Q2
+(1—P )

2(moc )

2E +1 ln 1 ——
moc

The total stopping power is

p, (E)=L(E,E/2)+S„,d(E), (4)

where N„is Avogadro's number, and Z and A are the
atomic number and atomic weight of the atom, respec-
tively. r0 is the classical electron radius, I is the average
ionization potential, 5 is the density effect correction, and
2CIZ is the shell correction factor. D is the density for
the medium. From Eq. (4) the CSDA electron range is
given by

R(E)=I dE'Ip, (E') . (5)
0

In order to include energy-loss straggling in the calcu-
lations, the energy-loss straggling factor 0, is needed. By
definition, the factor 0, is made up of its collision and ra-
diation parts,

Q, =Q, +0, , (6)

where

0,= D OME, T T dT
0

N„Z 2m-romoc' 1 ED E 2 —21n2+
A p' 24 (E+m c )

moc (2E+moc )
(ln2 —0.5)

(E+moc )

I 0„(E,T}T dT
A 0

cz3=(a, +azE ')ES„d, (10)

where oM is the Moiler cross section and o.
„

is the bremsstrahlung cross-section differential in photon energy.

al =0.3000, a2=0.02226, a3=0.356 55 for water. T is the energy transfer in units of rnegaelectron volts.
In the extended model not only the radiation stopping power and its straggling parameter are needed, but also the

bremsstrahlung cross-section differential in energy is needed. The bremsstrahlung cross section given in Ref. 20 is
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We give the formulas for the functions 4,(y ) and h(y )

fitted over the relevant range of y:

4&(y)=a&e ' +b, e

C2p 12$Q(y)=4& —42=c&e ' +d&e

(12)

(13)

where a, =6.892, a2=0.4813, b, =13.817, b2=0.03289,
c& =0.2592, cz =2.869, d, =13.817, dz =0.032 89.

The elastic-scattering cross section of an electron in a
Coulomb field has been deduced by Rutherford by means

of classical mechanics. However, for a more accurate
scattering cross-section formula, the following three fac-
tors must be considered: the screening effect on the elec-
tric field of the nuclei resulting from the electron cloud
outside nuclei, the inelastic scattering, and the relativistic
effect. In our calculation, the above three factors have
been taken into consideration. Because water is a typical
medium in our calculation, the McKinley-Feshbach for-
mula for elastic electron scattering has been used. ' The
formula is

oMF(E, e)=r&Z(Z+ 1)(moc ) (E+moc ) /E (E+2moc ) + — (1—cose)
1 alp Z

(1+2'—cos8)~ v'2 137

——p+ mpZ
(1—cosg)

—1

2 137

Here
r ~ 2z 1/3

4 121.25
Z (E+moc ) (moc )2

1.13+3.76
137 E(E+2moc ) E(E+2moc )

g is the Moliere screen factor. In the calculations we shall apply the following scattering coefficient:

(14)

(15)

p((E) =2m. D f [1 p((p) 1aM—F(E,O)dp .
A

Using Eq. (14), we have

(E+moc ) (moc )
p~(E)= DZ(Z+1)2nro C~+2maPl —(P +naP) g i

A E (E+2moc )

(16)

(17)

and the recursion formula for C& becomes

Co =0,
C, =in(1+1/rl) —(1+rl)

CI+t=(2+1/l)(1+2')CI —(1+1/l)C) )
—(2+1/I)/(1+g) .

(18)

III. THE EXTENDED BIPARTITION MODEL
FOR ELECCRON TRANSPORT

The bipartition model of electron transport under the
CSD assumption has been verified to be successful for
describing the transport of 10-keV to 1-MeV electrons.
When one tries to extend the theory to a wider energy
range, other factors must be considered. Primarily, the
energy-loss straggling and secondary-electron transport
have to be considered to obtain accurate absorbed dose
distributions. The transport of the remaining electron

I

after bremsstrahlung emission should also be treated in
more detail.

A. The primary-electron transport including energy-loss

straggling and the bremsstrahlnng process

Assuming that an infinitely wide electron beam is in-

cident upon the surface of a homogeneous semi-infinite
solid, the entrance side of the surface may be either the
same medium or vacuum. Selecting the x axis along the
normal direction of the surface of the solid with the ori-
gin on the surface, the Boltzmann equation within the
Fokker-Planck frame is given by'

Bp,f ()f 1 (p N„D &0
+p —— (Q,f )+g,f=Cf(x,p, E)+ f dE' f(x,p, ,E')a„(E',E' E)—

aZ ax 2 g~2

+5(x )5(1—p)5(E Eo)/2n, —

C,(x,p, E)=f du [f(x,p', E) f(x,I,E)] Da—M„(E,u.u'),

N~D Ey„(E)= f cr„(E,T)dT .
A

(19)

(20)
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Here f(x,p, E ) is the electron fiuence diS'erential in angle
and energy E of the electrons. p is the cosine of the angle
between the electron direction u and the x axis.
p, =L(E,b, ), y„is the total cross section of bremsstrah-
lung. In order to describe the transport of high-energy
electrons in water accurately the influence of bremsstrah-
lung has to be considered in detail. This is because
bremsstrahlung, on the one hand, contributes to an in-
creasingly important part of the stopping power of elec-
trons with increasing electron energy and, on the other
hand, the influence of bremsstrahlung upon electron
transport differs from inelastic collisions. Having emitted
a bremsstrahlung photon, the energy spread of the elec-
tron is much larger than that for elastic collisions. In this
way, we assume that, having emitted a bremsstrahlung
photon, both the forward-directed electrons and the
diffusion electrons belong to the difFusion electron com-
ponent. Furthermore, we have neglected the events when
the electrons emit photons with low energy. In so doing,
first of all we may avoid the divergent difficulty of the to-
tal bremsstrahlung cross section. Second, the approxima-
tion appears to be reasonable, because the influence of
such events on electron transport is very weak. In our
calculation we neglect the event of emitting a photon
with energy lower than F=0.02EO ~ Besides, due to the
small deflection of recoil electrons we neglect the direc-
tional change after an electron emitted photon. The first
term of the right side of Eq. (19) is represented by C&,
called the scattering integral, which represents the net in-
crease in the number of electrons per unit solid angle in
direction u, passing through a unit distance caused by
elastic scattering. Obviously

f C~(x,p, E)du=0 . (21)
4m

Equation (21) shows that the elastic scattering only gives
rise to the change of electron angular distribution. From
Eq (21) a. nd the property that the small-angle elastic
scattering of electrons is dominating, the main charac-
teristics of C& can be estimated, as shown in Fig. 1. Ac-
cording to the bipartition model of electron transport,
the scattering integral is divided into two parts, of which
one is the comparatively isotropic diffusion electron

Sd

FIG. 1. An illustration of the scattering integral and parti-
tion condition. 0;„is the smallest selected large angle which
can be used for determining diffusion electron source. The ar-
rows show the selected large angle for partition condition. The
solid line is the scattering integral. The dashed line is the
diffusion electron source Sd, and the dashed-dotted line is the
rest part of the scattering integral which still belongs to the
forward-directed electrons having moved the rather isotropic
portion from the scattering integral to diffusion electrons.

f(x,p, E)=f,(x,p, E)+fd(x, p, ,E), (22)

the Boltzmann equation can be composed into two sub-
equations coupled to each other:

source Sd, which includes nearly all the large-angle scat-
tered electrons; the other is the remaining part that
spreads mainly in the forward small-angle directions.
The latter remaining part is normally of negative value,
demonstrating that the number of electrons that leave the
forward small-angle direction due to elastic scattering is
larger than that of the electrons that enter the srnall-
angle directions caused by elastic scattering. Following
the bipartition model, the total distribution function
f(x,p, , E) is formed by the distribution function of
forward-directed electrons f, (x,p, E) and the distribution
function of diFusion electrons fd(x, p, ,E ). According to

dp f, df, I g2 N„' ' +p ' —— 2(Q,f, )+y„f,= D du'[f, (x,p, ', E) f, (x,p, E)]oM—„(E,u' u)
BE Bx 2BE2 ' ' "'

A 4~

—Sd+5(x )5(1—p)5(E Eo)/2m, —

~P fd ~fd 1 8+p —— (Q,f„)+y„f„=D du'[f„(x,p, ', E) fd(x, p, E)]oM„(E—, u. u')
BE Bx 2 BE~ ' ' " A 4

(23)

o+ D f dE'[f, (x,p, E')+fd(x, p, E')]o,(E',E' E)+Sd . (24)—
A E+c

In order to simplify the calculation for diffusion electrons, we have used

N„D r)S„dfd I "o Q„f„f dE' fd(x, p„E') o „(E',E' E) (p„fd= ——+-
E+g

(25)

In Appendix A we deduce Eq. (25). Essentially, we consider that the modified CSDA with energy-loss straggling is a

good approximation to the transport of the diffusion electrons. Thus we have
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dptf~ dfd 1
+p —— (&,fq)= f du'[fd(x, p', E} f—d(x, p, E)]oM„(E,u.u')

BE Bx 2 BE~ ' A 4

+ D f dE'f, (x,p, E')cr„(E',E' E—}+S~ .
A E+~

(26}

Expanding the distribution functions f„fd, and Sd into

Legendre polynomials, we have
St(x,E)= —q)t(E) At(x, E }— g Dtt yt, At, (x,E } .

1'=m+1

f,(x,p, E)= g pt(p)At(x, E),2l+1
I=0

fd(x&p&E)= g pt(p)Nt(x&E) &

2E+1

1
—0

21+1Sd(x, p, E)= g pt(p)St(x, E) .
4m

(27)

(28)

(29)

(31)

m+1 is the number of large angles selected. DII. is the
partition coefficient, which has already been defined in
Ref. 15. Besides, we may use the average directional
cosine p, instead of the real directional cosine p in the
gradient term in Eq. (23) due to the small-angle property
of forward-directed electrons. By definition

CI (x,p;, E)=Sd(x,p,;,E), i =0, 1, . . . , m . (30)

Therefore, we have

For calculation of the distribution function for the
forward-directed electrons, we have used two concepts:
the partition condition and the narrow-energy-spectrum
approximation (NESA) which was proposed in Ref. 23.
The main idea of NESA is that if the width of the energy
spectrum for a charged particle beam is much narrower
than the average energy of the beam, then the interaction
cross section between the particle and the atoms in medi-
um in an integral weighted with the charged particle
spectrum can be expanded in a Taylor series around the
average energy. For the forward-directed electrons,
NESA is valid. Using the partition condition, we have

fo'f & pf, (x,p„E)dpdE
p,,(x)=

fo' f ~ f,(x,p, ,E)dpdE

fo'A t(x, E)dE

fo'Ao(x, E)dE

(32)

(33)

S,(x)=f dx'[p, (x')]
S

E,(x ) =Eo—f L(E,K)dS' .

In this way, from Eqs. (23}and (27)—(31) we obtain

(3&)

We can also define an average path length for the
forward-directed electrons arriving at point x, S,(x ), and
its corresponding average energy of forward-directed
electrons E,(x ).

a dAt 1 a'
aE ' ' ' ' ax 25E~[L(E,h) A((x, E)]+p, ——

q [0,At(x, E))+q)„At(x,E)

Dtt.q)t At (x,E)+5(x )5(E Eo), l m, —
I'= m+1

aAt 1
[L(E&~)At(x&E)]+p, [Q, At(x&E)]+y At(x&E)= yt At(x&E)+5(x)5(E Eo), l) m .

BE ' ' ' ' B~

(36}

(37)

Following the same calculation in Ref. 15, we have

At(x, E)=— g Dtt'At'(x E), l ~m .
I'=m+1

(38)

(39)

Bt(x,p }is the Fourier image of At(x, E), i.e,

Therefore, when we obtain the solution of Eq. (37), we

also obtain the solution of Eq. (36). Introducing the
Fourier transformation of Eq. (37) and using the NESA
approximation, we have

f e'~ At(x, E)U(E)dE=U[E, (x)]Bt(x&p) .

Bt(x,p)= f e'~ At(x, E)dE . (40)

p~
ipL(E„A)Bt(x,p)+p, + Q, (E, )Bt(x,p)dx 2

Therefore

+ [q)„(E,)+q)t(E, )]B(—5(x )e '=0 . (41)

U(E) is any function for interaction between electron
and atom, and Eq. (37) becomes
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1

2 IT W
(43)

Having made a calculation similar to that in Ref. 15, we
obtain the distribution function for the forward-directed
electrons

0 c 7 r &0ip(EO —AE ) —p {x)—p (x)—p w(x)

u)=
() (0 (42)

with hE, =f L (E,(x '), b )dx '/p„ then
0

ip—E+ipiEO —hF. j —piix) —p ix) —p wix)

2 ir

where

w(x)=-,' f"Q,(E.)dx/p. = i f Q, (E, )dS,
0

(46)

iLi, ,(x)=f y, (E, )dx/iM, = f p, (E, )dS, (47)

„„(x) =f"&„(E.)dx /p, =, f p„(E,)dS .
0 0

(48)

Formula (31) for the diffusion electron source is only a
formal solution. It is difftcult to use formula (31) for a
numerical calculation. Fortunately, however, it has been
proven that Eq. (31) is identical with the simple formula

1 m
Ai(x, E)=

2' W

1/2 —(E—E ) /4m —p, (x)
e ' ' ai(x), (44)

dlna,
Si(x,E ) = ip((E—

) Ai(x, E )
—Ai 1~m .

PIi(x )D„,e, 1&m,
+i(x ) = ' I'=m +1e, 1)m

(45)

(49)

The detailed proof is given in Appendix B.
For the diffusion electrons, the P„approximation has

been used to describe their transport. We have

I+I ~N+i+ +
BE 21+ 1 Bx 21+ 1 Bx

1 BQN( N~ E,
yiNi+ — D f dE' Ai(x, E')rr„(E',E' E)+S—i,

1=0,1, . . . , n . (50)

The boundary condition and the initial condition for
solving Eq. (50) are the same as those in Ref. 16. Thus,
the spherical harmonic moments Ni(x, E) can be ob-
tained.

B. Extension to the oblique incidence

Assume that a conical beam of electrons of energy Ep
is incident upon the semi-infinite homogeneous medium
at angle 80. The incident geometry is shown in Fig. 2.
Since the angular spread of forward-directed electrons is
usually small, when satisfying the condition
~/2 —00&0, the influence of the boundary upon the
distribution function of the forward-directed electrons
does not exist. For radiation therapy, the incident angle
Op often is not very large, and the condition usually is
satisfied. This is the case even under the condition
m/2 —80 & 0, since only a small portion of the forward-
directed electrons can leave the surface directly. The
influence of the boundary layer upon the distribution
function of forward-directed electrons is still not great.
Thus, we will neglect the influence of the boundary on
the distribution function of forward-directed electrons.
Here 0 is the smallest large angle among the chosen
m + 1 large-angle directions. Setting an axis X' along the
incident direction of the electrons and observing the
transport of the forward-directed electrons along X', it
may be seen that their transport is the same as that for
the normal incidence. In this way, it is possible to derive
the distribution function for the forward-directed elec-
trons of oblique incidence from the distribution function

for forward-directed electrons of the normal incidence
through proper coordinate transformations, and further
to obtain the distribution function of diffusion electrons.

In Fig. 2, we set up two axes. One is the axis X', the
other is the axis X in the normal direction of surface. In
the system (x',p, E'), the distribution function of the
forward-directed electrons does not change. Suppose f,
represents the distribution function of forward-directed
electrons and S& the diffusion electron source in the sys-
tem ( x', c ops, E'); we have

FIG. 2. An illustration for obliquely incident geometry. x,
absciss; x, the absciss along the incident direction; 80, incident
angle; 8, the angle between the x axis and the direction of a
forward-directed electron; 8, the angle between the x' axis and
the direction of the forward-directed electron.
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1j,(x', cosB,E') =
27T W

1/2 —(E'—E ) /4' —p, (x')
a r

Using the addition theorem of Legendre polynomials, we

have

—(E' —E ) /4m —p, „(x')

X g P,(cost)aI(x'),21+1
i=o 4~

1/2

Sd(x', cosB,E'}= — e2' W

(51)
—(E—E ) /4w —p, (x')

AI(x, E)=(4nw. )
' e ' ' Pi(pp)ai(x'),

pp =cos8p, (57)

21+1
X g P, (cos@)$1(x') .

4m
(52)

When the coordinate system (x', 8,E') is transformed
into coordinate (x, 8,E), we have the following transfor-
mation:

x'=x lcos8p,

E'=E,
cosd=cos8&cos8+sin8psin8cos(y yp)—.

(53)

Under the geometric condition of conical symmetry, the
distribution function of the forward-directed electrons
should be average over azimuth angle y, i.e.,

f, (x,p, E)=f f, (x', cost, E)dql2n.
0

Pi(p, ) AI(x, E) .21+1
1—0

(54)

Note that the average projection distance of the
forward-directed electrons along the axis X' is

x'= f pg(s')ds'= f a, (s')ds'lap(s') . (55)
0 0

SI(x E ) =PI (pp )SI (x ', E ) (58)

Having obtained S&(x,E), we can use Eq. (50} and its
boundary and initial conditions to calculate the spherical
harmonic moments of the diffusion electrons Ni (x,E ).

C. The secondary-electron transport

To calculate the secondary-electron transport, we have
made some simplifications. (1) Only such secondary elec-
trons directly produced by primary electrons have been
considered in our calculation. Generally, these secondary
electrons are the main part of all secondary electrons. (2)
CSDA has been used to describe their transport. (3} Be-
cause the angular distribution of secondary electrons is
rather isotropic, P„approximation has been used to cal-
culate the spherical harmonic moments for the secondary
electrons.

%'hen a primary electron collides with a free electron,
from the momentum and energy conservation laws, the
direction of motion of the recoil electron, u, is governed
by the relation

Thus

f,(x,p, E)= 1 m'

277 W

' 1/2 —(E—E )~/4w
e

Iuu = T(E+2mpc )

E(T+2mpc )
(59)

21+ 1
& pr(x ) 2m'

X g ai(x')e " f Pi(cosd)dq& .
I=o 8m 0

(56)

T is the energy transferred to the secondary electron. E
is the energy of the primary electron. Thus the
secondary-electron source S(x,p, E) produced by pri-
mary electrons is

N~Z Ep 1 E(E'+2moc2)
S(x,p, E)= D f du' f dE'rrM(E', E) 5 u u' — f(x,p, ',E') .

4n 2E
'

2n E'(E+2moc2)
(60)

Expanding S(x,IJ,, E) into a Legendre polynomial series, we have

$(x,p, E)= g P„(p)S„(x,E},2n+1
4m

(61)

where

NzZ E(E'+2mpc2)
S„(x,E}=f dE' Do~(E', E)p„ f (x,E}

2E A E'(E+2moc }
(62}

We know that the NESA is valid for f„(x,E), the nth spherical harmonic moment of the primary electrons; therefore
we have

Eof„(x,E)= a„(x)+f N„(x,E')dE' 5(E E, ) . —
L 0

(63)
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Inserting Eq. (63) into Eq. (62), we have

NAZ E(E, +2moc )S„(x,E)= Do~(E„E)I'„
E,(E+2moc )

Eoa„(x)+f N„(x,E')dE'
0

From S„,the P3 approximation can be used to calculate the secondary-electron transport, and we have

n+1+
BE 2n +1

BN +i n+
Bx 2n +1

= —y„N„+S„,n ~3 . (65)

Using the same boundary and initial conditions, we can obtain the spherical harmonic moments for secondary elec-
trons, N„(x,E).

IV. CALCULATIONAL RESULTS

By applying the above extended form of the bipartition
theory for the electron transport, we have completed
transport calculations for electrons with energy from 1 to
50 MeV normally and obliquely incident on water. The
electron-energy deposition, the electron charge distribu-
tion, and the angular distribution of electrons at various
depths have been calculated. Moreover, a comparison
between the bipartition model and existing experimental
and Monte Carlo data has been made. The following are
our main computational results.

A. The choice of calculation parameters

In accordance with the electron bipartition transport
theory generalized above, we compiled a program
MONKEY. RT, which is specially developed for calculation
of electron transport in the above-mentioned energy
range in water or soft tissues of the human body. Be-
cause of the high efficiency of the bipartition theory, in a
standard calculation, we would rather choose the calcula-
tion parameters which, though more time consuming,
will give higher precision. The calculations also showed
that, even when a more economical calculation was
selected, the calculational precision was only weakly
affected even though much time was saved. This fact
shows that the bipartition theory does have a potential to
allow accurate real-time calculations.

In a standard calculation, the number of terms in the
Legendre polynomial series of the forward-directed elec-
tron distribution function, ML, is usually chosen as 200.
The number of the selected large-angle directions for
diffusion electrons, MA, is 5. The largest penetration
depth is 1.5r0, where r0 is the CSDA range of the in-
cident electrons. The depth interval has been equally di-
vided into N~ segments, Nz =150. The electron-energy
interval has been divided into Nz segments, NE=100.
The division of the electron-energy interval is not uni-
form, but it guarantees equal relative residual range seg-
ments. Such energy intervals are more suitable for solv-
ing the hyperbolic equation for diffusion electrons. For
the diffusion electrons we generally use P9 approxima-
tion, i.e., NpL =9. NpL is the order of P„approximation.
For the transport of secondary electrons, we use P3 ap-
proximation.

Some special considerations have been given to the

B. Energy deposition

For radiotherapy applications we are most interested
in the electron-energy deposition in water. Besides the
interest in normally incident electron beams, there is also
a clinical interest in the energy deposition produced by an
electron beam obliquely incident on water. In the present
calculation, a systematic calculation for the electron-
energy range from 1 to 50 MeV has been made and the
results have been compared with existing experimental
and Monte Carlo data.

The electron-energy deposition in the bipartition model
consists of three parts: the contributions from the
forward-directed electrons, diffusion electrons, and the
secondary electrons produced by primary electrons con-
sisting of the forward-directed electrons and diffusion
electrons:

D~=D +D, . (66)

DE is the total energy deposition, D is the energy deposi-
tion by primary electrons, and D, is the energy deposition
of secondary electrons. Obviously

D = f [Ao(x,E)+No(x, E)]L(E,E)dE,
0

Eo /2

D, = f No(x, E)L(E,E/2)dE,

(67)

where 6 is 0.02E0 in our calculation. E0 is initial energy

choice of large-angle directions. In earlier calculations,
the directional cosine corresponding to the smallest large
angle is usually between 0.2 and 0.5, corresponding to
80'-60'. While calculating the transport of the electrons
of several tens of megaelectron volts in water, though the
bremsstrahlung does not contribute greatly to stopping
power, it does contribute greatly to the straggling pro-
cess. This means that the electron spectrum is rapidly
broadened at large depths and this fact restricts the use of
the NESA. To avoid such a situation, we have chosen a
large cosine of the smallest large-angle so as to move
more scattered forward-directed electrons to the diffusion
electron group. The result is that, when the NESA is no
longer valid, the number of the forward-directed elec-
trons is low, and as a result, the problem brought about
by the NESA and the Fokker-Planck approximation is
small. In the present calculation, the cosine of the small-
est large angle is 0.7.
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of incident electrons. Figure 3 shows a comparison of en-

ergy deposition of 30m0c electron in water by using the
bipartition model with the moment method. The ener-

gy deposition decrease near the surface is due to the es-
cape of secondary electrons from the surface. This effect
is not reflected in the moment method. For our energy
deposition a considerable amount of electrons can
penetrate deeper than the CSDA range due to the effect
of energy-loss straggling, but the moment method cannot
treat this important problem. The energy depositions for
10-, 20-, and 40-MeV electron beams are shown in Figs.
4, 5, and 6, respectively, and compare them with the ex-
perimental data in Refs. 24 and 25. The comparison
shows that the extended bipartition model can well calcu-
late the energy deposition for high-energy electrons in
water. Figure 7 shows the energy depositions by oblique-
ly incident electrons at the angles of 0', 15', 30'. It is im-

I

portant that, even for the incident electron with 15', the
change of energy deposition should not be neglectible for
radiation therapy. Therefore, the correction of dose dis-
tribution for obliquely incident electron beams in treat-
ment planning must be carefully considered.

C. Charge distribution

The charge distribution produced by electron beam in
an insulator is of some interest in radiation effects. The
charge distribution in a solid, C(x ), not only depends on
the primary-electron transport, but also depends on
secondary-electron transport. In order to calculate the
charge distribution we assume there is a vacancy at the
point where a secondary electron is released from an
atom and the charge distribution is simply the spatial dis-
tribution of electrons with zero energy. Thus, we have

Eo E'yp Ng Z
C(x) =No(x, E~O)+No(x, E~O) f dE'—f dT D[ Ao(x, E')+No(x, E')]crsr(E', T) .

A
(69)

We have calculated the charge distribution for 20-MeV
electrons, and compared with the results obtained by the
Monte Carlo method. Figure 8 shows the computation
results. The agreement between our results and the
Monte Carlo results is fairly good, although the results of
Monte Carlo show a slightly deeper penetration.

100

A(x, iu)= g Pt(p)at(x)
4m

' 2l+1+ g Pt(p) f N, (x,E)dE
4 t P

21+1 Eo-+ g Pt(p) f N, (x,E)dE .
t=o 4~ (70)

D. The angular distribution

In order to understand the electron transport process
better and check the extended model in detail, we have
also calculated the electron angular distribution at depth.
By definition, the angular distribution of the fluence is

Figure 9 shows the angular distribution at depth
x =0.07, 0.017, 0.37, and 0.77 for 10-MeV electrons in
water. The corresponding results obtained by the Monte
Carlo method are also given in the same figure. ' It is
shown that the agreement between both calculations is
quite good, except possibly for the largest depth.

The computational results of the current angular dis-
tribution at x =0.62 for 10-MeV electrons in carbon are
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FIG. 3. The energy deposition for 30moc electrons in water.
The solid line shows the computational results given by the ex-
tended bipartition model. The dashed line shows the Kessaris
data by using the moment method (Ref. 2).

FIG. 4. The energy deposition for 10-MeV electrons in wa-
ter. The solid line shows the results obtained by using the ex-
tended bipartition model. The solid points show the experimen-
tal data fRef. 25).
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FIG. 8. The charge distribution for 20-MeV electrons in wa-

ter. The solid line shows the results obtained by using the ex-
tended bipartition model. The histogram shows the data given

by the Monte Carlo method (Ref. 26).
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FIG. 6. The energy deposition for 40-MeV electrons in wa-
ter. The solid line shows the results obtained by using the ex-
tended bipartition model. The solid points show the experimen-
tal data (Ref. 25).

given in Fig. 10. The experimental angular distributions
J(x,p) measured by Roos and others are given in the
same figure. By definition, J(x,p) is

J(x,p)=iud(x, iu) . (71)

Obviously, only the extended bipartition model can reach
good agreement with the experimental data.

E. Calculation efSciency

In a standard calculation, it takes only 2 min to corn-
plete a transport calculation on an HP-900-750 cornput-
er, when the calculation parameters are taken from the
above-mentioned numerical parameters. If we choose a
set of more economical parameters, for example, we can
take ML =100, %~=60, N~=40, NpL=5, then 10 s
would be suScient for a calculation with minimal loss of
calculation precision. Figure 11 shows the energy deposi-

3r 00 ~ ~ ~ t ~ ~ ~

2.50—
E

2.00

1.50

0 1.00
CI

0.50
LU

~ ~ ~ t W ~ ~ t ~ ~ I t ~ I ~ t ~ ~

0
~~

CO

Q
C$

Ch
C

~~
g5

I

CO
I

80 t20

Angle (degrees)

0.00 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Depth (units of CSDA range)

FIG. 7. The energy deposition for 20-MeV electrons oblique-

ly incident into water. The incident angles are 0, 15'., 30'.

FIG. 9. The relative angular distribution of 10-MeV elec-
trons in water at di6'erent depths. The solid line shows the elec-
tron angular distribution at x =0.07, 0.17, 0.37, and 0.77. The
histogram shows the electron angular distribution resulted
within 0.05—0.10, 0.15—0.20, 0.35-0.40, and 0.75-0.80 obtained

by using a Monte Carlo simulation (Ref. 14).
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FIG. 10. The relative angular distribution of 10-MeV elec-

trons passing through graphite with 3.84 gcm thickness. The
solid line shows the results obtained by using the extended bi-
partition model. Circles show the experimental data given in
Ref. 27. The dash-dotted line shows the results obtained by us-

ing the Bethe theory presented in Ref. 28. The dashed line
shows the results obtained by a modified Bethe theory (Ref. 29).

tion of 10-MeV electrons in water. The results when
standard parameters are used are given by the solid line,
and the results with the economical parameters stated
above are indicated by the dotted line. It can be seen that
there are only minor differences between them indicating
that the bipartition model is a highly effective calcula-
tional method.
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FIG. 11. A comparison between two curves corresponding to
the different computation parameters. The solid line shows the
computational results corresponding to the parameters
ML, =200 Ng = 150 NE = 100 Npl =9, and the computation
real time is 120 s at an HP-900-750 computer. The dotted line
shows the computational results corresponding to the parame-
ters ML =50, N&=60, N&=40, NPL =5, and the computation
real time is 10 s at the same computer.

V. DISCUSSION AND CONCLUSION

f=5(1 p)fo(x,—E)/4' .

Therefore

+ —— =25(x )5(E—Eo)
BE Bx 2 BE~

and obviously

1 m'

fo=
uI(x )

' 1/2 —(E—E ) /4w
e

Correspondingly, the energy deposition is

D(x)= f dEp, (E)f du f(x,p, E)
0 4m.

' 1/2
Eo 1

Ep E — e
0 27T W

—(E—E )2/4w

p

(74)

If we consider the influence of elastic scattering, Eq.
(19) becomes as follows, without the straggling term,

pff Bf
BE Bx

+p =C(f )+5(x)5(1—p)5(E —Eo)/2fr .

This is Lewis' electron transport equation and we can ob-
tain an approximate solution to the equation by using the
earlier bipartition model. ' Finally, we have the present
solution for which the bremsstrahlung, secondary elec-
tron, and energy-loss straggling have been included. Let
us make a comparison among them in Fig. 12 for the en-
ergy deposition of 1-MeV electrons and in Fig. 13 for the
energy deposition of 30-MeV electrons. From the com-
parison we may see that the CSDA and elastic scattering
are important for transport of electrons with energy
range below 1 MeV. However, CSDA, elastic scatting,
bremsstrahlung, and energy-loss straggling together make

How does the fundamental interactions between elec-
trons and atoms in a medium influence the transport?
The so-called fundamental interaction processes here are
the following interactions: elastic scattering, bremsstrah-
lung, secondary-electron production, and inelastic
scattering. Owing to the fact that the influence of inelas-
tic scattering does not reflect through individual interac-
tion of electrons with atoms in media, but do reflect
through nonstochastic energy loss (CSDA) and stochastic
energy loss (CSDA with energy-loss straggling), we first
investigate the simplest CSDA solution without elastic
scattering and bremsstrahlung. In that case we have a
degradation form of Eq. (19),

Bp,f Bf 1 B'Q,f
+IN —— =5(x )5(1 p)5(E—Eo ) /2—fr .

BE Bx 2 BE~

(72)

Using the NESA, it is easy to obtain an approximate
solution. Let
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FIG. 12. A comparison among three energy deposition

curves for 1-MeV electrons in water, corresponding to difterent
approximations. The solid line shows the results obtained by
using the extended bipartition model that involves influences of
energy-loss straggling, secondary-electron creation, and brems-
strahlung recoil electrons on transport. The dashed line shows
the results given by the earlier bipartition model in which only
CSDA and elastic scattering are involved. The short-dashed
line shows the solution of Eq. t,'72) for which only CSDA
without elastic scattering is considered.
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FIG. 13. A comparison among three energy deposition
curves for 30-MeV electrons in water, corresponding to different
approximations. The solid line shows the results obtained by
using the extended bipartition model that involves influences of
energy-loss straggling, secondary-electron creation, and brems-
strahlung recoil electrons on electron transport. The dashed
line shows the results given by the earlier bipartition model in

which only CSDA and elastic scattering are involved. The
short-dashed line shows the solution of Eq. (72) for which only
CSDA without elastic scattering is considered.

gether make important contributions to total energy
deposition for the electron-energy range from 1 to 50
MeV. Comparably speaking, the secondary-electron
transport influences the global behavior of electron trans-
port to a smaller extension.

The present type of bipartition model has given results
that generally agree with those of available experimental
data and Monte Carlo calculations. Furthermore, its cal-
culation efficiency is very much higher than that of the
latter and also other numerical methods. The difference
between the results of the bipartition model and those of
the experiment and the Monte Carlo method is generally
only a few percent. Yet, in view of the needs of medical
physics, further increase of the precision is desirable. A
major reason for the differences is that the contribution
from bremsstrahlung to the energy deposition has so far
been disregarded. In addition, a method which can fur-

nish a description of forward-directed electrons better
than the Fokker-Planck approximation might also be
valuable.
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APPENDIX A

We have made use of the fact that

f o„(E',E' E)fd(x, p, E')d—E' fq(x, p, ,E)f — o„(E,T)dT.
o +~D E+~Df e 'r dp f dE e'~ f cr„(E',E' E)fd(x, p, E')dE—' fd(x, p, ,E)f — o„(E,T)dT

2m. — — E o

(A 1)

We extend the definition domain for the function fd(x, p, E) as follows:

fd(xpE), 0 E Eo,
f"&E'='O, E(O,E)E, .

Correspondingly, the definition domain for the function o „(E,T) will be analytically extended. Thus

fd*(x,p,p)= f f&(x,p, E)e'I'~dE= f fd(x, p, E)e'~ dE . (A3)
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Exchanging the order of integral in Eq. (Al}, we have

Thus, we have

Eo, NAD Eo NADf dE' fd(x, p, E') o „(E',E' E)—fd(—x,IJ„E)f dT o„(E,T)dT
E A '

0

f e '~ dp f dE fz(x, p, ,E)e't' f dT o„(E,T)(l —e 't'
)

277 0 0 A

p g d Xpg jpgd+p Q,
lj 0

»,.~fd(xi E) 1 B'+—
z [Q,fd(x, p, E)] .

2 BE
(A5)

f dE e'~ f dE' fd(x, p, E') o„(E',E' E—)dE'= f dE' fd(x, p, E')e'~ f dT cr„(E',T)e 't' . (A4)
0 A

APPENDIX B

We have Eq. (36), then

Dtt V't At
s'= m+1

BA,
[L(E,Q)At(x, E)]—tM, +—

2 [Q, At(x, E)]—p, At .
Bx 2 BE2

(B1)

Adopting the same method as that to solve Eq. (39), we have

BAt BAt, B At
Dtt.q)t At =L(E„b,) —

ttt,, + ,'Q, (Eg )——p„At . (B2)

By differentiation of As, we have

aAs

as 2w
At(x, E), (B3)

B A, (E E, ) —2w-

BE 4w
At(x, E), (B4)

AI

Bx
1 dw

2w dx 2w

E —Eg dE,
dX

(E E, ) dw d—tu„dlnat+ At(x, E) .
dX dX dx

(B5}

Inserting the following equations into Eq. (B2),

dw c
dx 2Pg

dE, = —L
dX Pg

dp»

dX

we obtain

d lncx sSt(x,E)= At(x, E)

(86)

(B7)

(B9)
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