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Effect of a finite-range impurity potential on two-dimensional Anderson localization
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We show that in two-dimensional weakly disordered metals a finite-range impurity-scattering poten-
tial reinforces the localization of the electronic states.

I. INTRODUCTION

V(q) = (2)
Qy +q /kF

The quantity of interest in the subsequent scattering pro-
cess is

Co
nr V (q)=

y+q /k

Co=n 2 (3)

nr is the number of impurities per unit surface. Since all
the electronic momenta are of order k„, we have

Co 1
nlV (k —k')=

cosh@—k-k'/k~

coshtp = ( y /2) + 1 .
(4)

We now discuss various choices for a and y.
(a) a—=y~ ~. In this case V(r) is normalized to 1 and

We reexamine the conductivity of weakly disordered
two-dimensional (2D) metals containing a small amount
of randomly spread nonmagnetic impurities. Within the
hypothesis of noninteracting electrons and independent
impurities, the key result is well known. When the im-
purity concentration increases so that the Anderson tran-
sition is approached from the metallic side, the electron
system is localized in dimensions of d 2, whatever the
degree of disorder.

In the present paper, we consider a system of nonin-
teracting electrons and independent impurities and we
also use a perturbation expansion in (eFr) in the weak-

ly localized regime (eFr)))1, e~ and r being the Fermi
energy and the electron elastic lifetime, respectively. In-
stead of the usua1' contact impurity-scattering potential,
however, we assume a Yukawa-type potential (see below)
of finite range. Our purpose is to examine the effect of
this finite range on the transport properties. We perform
our calculations for d =2.

We choose a model scattering potential

kF exp( ykFr)—
V(r)=a

2& r

where a is a constant to be specified later on, kF is the
Fermi momentum, and (ykF )

' is the range of the poten-
tial. The Fourier transform of V(r) in 2D is

V(q) is a constant. One thus recovers the contact poten-
tial and the usual results' for the conductivity, as will be
checked in the following.

(b) a = i/2, yWO. (i/2 is chosen for convenience, but it
can be any finite constant). In the limit y=0, V(r) is
proportional to the pure Coulomb potential, which is
known to be pathological: V(r) cannot be normalized,
since the differential-scattering cross section diverges, due
to this potential (the well-known Rutherford formula ),
and the Born approximation, which will be used in the
present paper in the standard manner, ' is questionable.
Furthermore, an infinite range is not compatible with our
independent-impurities hypothesis.

Therefore, in the following we confine ourselves to
finite values y@0. However, we will be interested, in par-
ticular, in small values of y, 0 & y & 1, corresponding to
an "almost long-range" potential. As is well known,
only y =0 yields a true long-range potential. Neverthe-
less, when 0& y & 1, the potential extends rather far and
it is the physics of this case which motivated our work.

When the localization transition is approached, the
electrons slow down and it takes longer for the screening
to become effective. Therefore, it is reasonable to assume
that the interaction between a conduction electron and
the extra charge introduced by the impurity, i.e., the
scattering potential that the electrons feel, tends to be-
corne more of an "almost pure Coulomb type,

" at least
on a short time scale. Our model potential (1), with

y & 1, is intended to mimic precisely this physical situa-
tion. If these ideas are correct, one should find that a
finite range for the impurity potential reinforces the lo-
calization. We will show explicitly in the present paper
that this is indeed the case.

(c) a=y&0. This case is the same as (b), except that
here, the potential is normalized to 1. One gets an almost
pure Coulomb potential but with a very small amplitude.
The restrictions pointed out for case (b), when y-O, ap-
ply here as well.

In the following, we concentrate on cases (a) and (b).
Our paper is organized as follows. In Sec. II, we com-
pute, within the Born approximation, the electron elastic
lifetime due to the scattering potential (2). We also com-
pute I'," "(k,k'), the (n +1)th order of the Cooperon
I,(k, k ), i.e., the ladder with n single impurity scatter-
ings in the particle-particle channel. I,(k, k ) itself is

then given by

r (k k ) = y r'"+"(k k')
n=1
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with the appropriate fermionic Matsubara frequencies
implicitly included. In Sec. III, we collect all the dia-
grams contributing to the electrical conductivity o, in the
weakly localized regime, and we discuss the resulting for-
mula for o.. In Sec. IV, we conclude and correlate our
work with previous works dealing with what is usually
called "correlated disorder. "

k2

Q-k, 4)n Ip-k1 0-k2

kn-1 kn k'. ~n+v

0-kn ) 0 -kn Q- k', G)~

II. CALCULATION OF THE COOPERON I,
A. The relaxation time ~

In 2D the elastic scattering relaxation time ~ is given,
in the Born approximation, by the usual diagram of Fig.
l. Using (3) and (4),

—=ni J V (k —k')=1 2~ d8' 2 Co
(6)

o 2m 2 sinhy

(here 8' is the angle between k and k') and IkI = Ik'I =kz.
Retaining only the diagram of Fig. 1 for the electron
self-energy correction preserves the Ward identity that
guarantees the conservation of the total number of parti-
cles.

For the choices of a mentioned in the Introduction, we
obtain the following.

(a) r '=nl [cosh' —1]/sinhqr~ni, when tp~ ao. One
recovers the usual formula for the contact scattering po-
tential.

(b) r '=ni/sinhp In the .limit p~0, r ' diverges.
This last result corresponds to the Rutherford formula
mentioned in the Introduction for a pure Coulomb poten-
tial.

(a.u. ), G is given by

G(p, co„)=(ico„—g )

g~ =(p —k~)/2 .

ni V (Ip —k'I) is given by (3), with q =—Ip
—k'I, or by (4)

as

a V'(Ip —k'I)= Co 1

2 cosh'& —cos(8k, —
8~ )

(9)

FIG. 2. The (n + 1)th order of the Cooperon
I,'"+"(k,k';8„+„co„)given by formula (12). The upper and
lower straight lines are the two electron lines renormalized by
impurity scattering according to Fig. 1. The vertical lines with
crosses denote impurity scattering. Q is the overall momentum
of the Cooperon. co„ is the external frequency coming into and

going out of the conductivity diagrams in Fig. 3, which will

eventually be taken in the limit co„~0;co„+„,co„are the Matsu-
bara frequencies of the two electron lines and the various k's
and (Q —k )'s, their respective momenta.

dpp, r,'"'(k, p, Q;m„„,m„)
(2n. )

XG(p, co„+.)G(Q —p, co„)n,v'(Ip —k'I) . (7)

G(p, co„) is the one-particle Green's function for momen-
tum p and Matsubara frequency co„. It contains the elas-
tic relaxation time z due to impurity scattering through
co„=co„+(2r) 'sgnco„, with co„=2m T (n+ —,'), with T
being the temperature. r is given by (6). In atomic units

B. The calculation of I',"+"

We now compute the (n +1)th order of the Cooperon,
I',"+"shown in Fig. 2. We can write it as (using p for k„
in the figure)

where 8k (8 ) is the angle between k'(p) and the refer-
ence axis. Usually, for a contact potential [case (a) in the
Introduction], nl V (Ip —k'I) reduces to a constant, nl.
Then the right-hand side of (7) is independent of k' and
so is the left-hand side. Since I',"+"(k,k') is independent
of k', I',"'(k,p) is independent of p and can be pulled out
from the integral, which reduces to the integral over p of
the product of the two Green's functions. Then one re-
covers the geometric series' for I, leading to the usual
diffusive pole (co +DIk k'I )

—', with D the diffusion
constant given by D =kFr/2 in a.u. . In the general case,
however, when V (Ip —k' ) depends explicitly on the an-
gles 8 and 81, the right-hand side of (7) is not separable.
Therefore, before computing r„we must study r(,"+1)
(Note that n starts at n =1 because the n =0 contribu-
tion is already taken into account in the difFuson of the
Drude term of the conductivity. This will become expli-
cit in Sec. III). Q is the momentum of the Cooperon con-
tributing to the diffusive pole when IQI —+0 or, more pre-
cisely, when kFQr & 1 (and co r & 1). In the following, we
expand the Green's function G (Q —p) in (7) as follows:

G(Q —p, co„)=G(p,co„)—p QG (p, co„)

FIG. 1. The usual diagram (Ref. 4) for computing the life-
time r [formula (6)]. The straight line is the electron line; the
rounded line with a cross denotes the impurity scattering. Using (10), we get

+(p Q) G (p, co„)+.. . (10)
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d~p d8~ d(
z G(p, co„+„)G(g—p, co„)=f f G(p, co„)G(Q—p, co„)

(2n )~ " 2m'

f [1—ikFQ~cos(8& —8 ) —k&Q v cos (8& —8 )] .
CO +

7-

We then find for I ',"+"

1
COU +

7

n d 8, d82

2' 2m

d8„ 1 1

2m cosh' —cos(8, —8) cosh' —cos(82 —8, )

X
1 1

cosh' —cos(8„—8„,) cosh' —cos(8' —8„)

X 1 ikzQ—T g cos(8& —8, )
i=1

kFQ T—g cos(8& —8; }cos(8&—8, ) —kFQ T g cos (8& —8, )

(12)

8;, 8, and 8' stand for 8&, 8k, and 8k, respectively. The integrals are cumbersome but tractable and they are calculated
l

in Appendix A. 1 with the result

1

cosh[(n + 1)y]—cos8'

~k2Q2r
1 — sinh[(n + 1)y]

2

k QH
4

cosh[(n + —,
' )p] —cos8'cosh(y/2)

sinh(p/2)

sinh(n g/2) cosh —+ 1 p —cos8'coshn ng
sinh (y/2)

sinh[[(n +1)/2]y]sin(n/2)y+lkF 7 cos8g+cos 8g 8
sinh(g/2)

k~Q r
4

[cos28&SO( n ) +cos(28& —8' )S, ( n ) +cos(28& —28' )Sz( n ) ] (13)

where we used Eq. (6). In (13) we have assumed the reference axis to be along k, so that 8=0. The coefficients S; for
i =0, 1,2 are complicated expressions and are given by

sinh[(n + —,
' )y]sinh(n y/2 }

So(n) = 2 + . (e&—2)+ne
(e~—1) sinh(y/2) sinh(y)

SI(n) = 2 cosh[(n +1)y][1—e "+ n(e+ 1)e '"+—"+—](e~—1)

—e "q'2sinh(nor)tanh ~ +e "+(I—e "+)
2

(14)

1
S2(n) =

(e' —1)
~ sinh(np) ~ „~ („+,I„

sinh(y) 2
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We notice in Eq. (13) a surprising terin linear in Q for arbitrary 8' (it vanishes only for 8'=m ) but this term is, in fact,
irrelevant and it can be neglected, as we show in the following discussion.

Note that we could have simplified more drastically formula (12), taking advantage of the following fact. In the sub-
sequent calculation of the conductivity, we will have to integrate over g; in particular, we will need f 0 d8o/(2m ).
Therefore, immediately integrating (12) over d8& would amount to replacing the expression in [

.
] in (12) by

k QH
2

k2Q2r2
1 — g cos(8,. —8. ) n-

i,j =1

This, in turn, would result in suppressing in (13) the imaginary linear term in Q and the following Q term. The evalua-
tion of Eq. (12) with this last form is given in Appendix A.2.

C. The ca1culation of I,
We now compute I', in Eq. (5), together with Eqs. (13) and (14). Performing the sums over n is very difficult, so we

will examine specifically the two cases (a) and (b) of the Introduction.

(a) a=y~~

kFQ 2
1 —n

2 (e P —1)

Since n ~ 1, and y~ ~, then n y~ ~ and the dominant terms in Eq. (13) are

n k Qr
2

1+ikF Qr[cos8&+ cos(8& —8') ]
(e r —1)

k2Q rp

8sinh (p/2)
2e~ —1

1 —cos8'e ~—cos(28& )
(e++ 1)

—cos(28 —8')e r —cos(28 —8')
Q (er —1)

(15)

which reduces to

—1

e,+~ '
k2Q2a

1 —n
2

1 1+E
1+co r

k QH
1 n—(1+e),

2

r,'"+"(l,l ', q;a„,„,a„)=(1+e)- g'T
i 1 +N~7

kgb
=nr D=

co„+Dg 2

where we indicated by e the sums of terms proportional to Q and Q that are not multiplied by n. Then,

kgr1—
2

(17)

(b) a= v'2, arbitrary y

In the general case, we separate in (5)

n0

n=1 n=1 n=n +10

(18)

where e( «1) gives an uninteresting correction to unity
in the numerator and it can be dropped. We thus recover
the usual pole' in the diffusive regime for the Cooperon
r, .

noy=1 . (19)

We recall that for reasons explained in the Introduc-
tion, we exclude the value y=O, i.e., the value q=O.
Thus, y is always finite and the sinh(qr/25) and (e'r —1)
appearing in the denominators of (13) and (14) are also
finite quantities. Under these conditions, the first sum on
the right-hand side of (18) is a finite sum of finite terms,
which thus cannot yield a diffusive pole for I, ; we ignore
it in the following. In the second term of the right-hand
side of (18), we put

no is chosen such that, for a given value of y (i.e., for a
given value of the potential range), n =no+1+n' . (20)
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Moreover, since nqv&1, we can replace the hyperbolic
functions by their expansions for large arguments.

According to the remark made after Eq. (17), we can
drop in (13) the terms in Q that are not multiplied by n

l

for small values of Q. This leaves us with only the first
two Q terms. Then, nq» 1 and, in the case of later in-
terest, where k' =Q —k = —k, (cos8' = —1 ), we get for
(13)

kFQ T 8
1 —n

e~—1

—1

1—
CO +7

kFQ 2 elP

e~—1

n

(21)

Then I c follows straightforwardly as

n'=0

kFQ 21—
Sv+7 e~—1

n'
1 1

(22)

co„+(kF /2)z re ~ r sinhy
eq' —1

Therefore, we find that, as usual, ' I z has a diffusive
pole (without any constant term in the denominator).
This follows from the Ward identity insuring the conser-
vation of the total number of particles as noted after Eq.
(6).

As will become clear in the following, the term propor-
tional to Q in the denominator of (22) involves the trans-
port time r„=re+I(e ~ 1), so th—at I c may be written in
terms of the "transport diffusion constant" D„as

kF
0'(

)
— 1, r —nl /sinh(p .

27T
(25)

In Fig. 3, the diffuson I d (square box) is the infinite
impurity-scattering ladder in the particle-hole channel.
Its analytic expression can be obtained from I z with

kFst.2

2

where D,„ is, in general, different from kFr/2.

(23)

III. CALCULATION OF THE
ELECTRICAL CONDUCTIVITY o

kF 1 L
0 ( )+( )

'T ln
2& ~ KF

n (24)

where L is the linear dimension of the system.
Instead, for a=&2 and y finite, we have to take into

account all the other diagrams of Fig. 3. The algebra is
straightforward; we give some details in Appendix B.
Denoting by 0.~,~, etc. , the contribution to o of diagrams
(a), etc. , of Fig. 3, we get

First, we have to collect all the diagrams contributing
to o. Due to the fact that the scattering potential, in
Fourier space, depends on the momentum transfer, many
more diagrams contribute, compared to the case of
contact-scattering potential. We have examined all the
topologically possible diagrams. We have found that the
only relevant ones, to first order in (eF T) ', are th'ose

shown in Fig. 3. For the contact-potential case, where
the scattering potential does not depend on the momen-
tum transfer, two only diagrams matter: the ones labeled
(a), yielding the usual' Drude value, and (c), the "multi-

ply crossed" diagram' yielding the localization correc-
tion. For comparison, we recall the result' for the con-
tact potential due to diagrams (a) and (c):

FIG. 3. The relevant diagrams in the present problem, for
the conductivity 0., to first order in (eF~) ': the square box
denotes the diffuson I d [(formula (26)] and the one with diago-
nals denotes the multiply crossed ladder, i.e., the Cooperon I,
given by formula (5) with (13) and (14). The lines with crosses
are impurity-scattering lines. The other lines are electron lines

renormalized by impurity scattering. By symmetry, there exist
two diagrams of the type (d), two of the type (e), two (h), and
four (f). Diagrams (d), (b), and (h) involve independent momen-

ta k and k', instead, diagrams (c), (e), and (g) involve
k'—=Q —k = —k. Each extra single-impurity line introduces a
factor of the form (4).
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00 —1

I'd"+ "(k,k', Q, co„+,co„)= g
=p T CO +'r

n

sinh(n +1}y
cosh(n + 1)y—cos8'

(26)

Whenever k' is independent of k, we found it easier to
compute the corresponding conductivity diagrams, in-
volving either the diffuson or the Cooperon, with the
(n+1}th-order term, then integrate over k' and finally
sum over n. We thus found

1
+(b) ~(a)' e~—1

with cr~, ) given by (25).
The diagrams containing Cooperons yield

(27)

cr(, )
= ——J ( l, (k, —k) ) =Ok~r3

1 eq' —1 L
ln

e~ kF&

—1
"I

sinhy
(28)

with

1
0 (e) ~(c)2 e+—1

d8g= lim J 1,(k, —k, Q;co„+„,co„),
co —P 7T

(29)

I
+(g) ~(e)

(e P —1)2

On the other hand,

y J Q Q J (r(n+1)(k k))
ir 2' 2'

(30)

2 3Fr, Sin

= —a e(c) (31)

Q =0, and with the summation in (5) including the n =0
term. Finally,

with r„defined before Eq. (23). Expressed in terms of y
only, using the explicit expression for ~ recalled above in
(34), we get

kF ep+ 1
2

&Drude 7

27T7lI 2

bloc +(c)+ ++(h)

= —(1—e P)
eq'

e~ —1

2
e~—1

(36)

Xln
L
F+

1 L
ln

kF
(37)

Clearly, when the potential range increases (p decreases),
0D,„d, decreases. On the other hand, the coefficient of
the ln in o&„remains the same as in the case of the con-
tact potential. The effect of quantum localization is nev-
ertheless reinforced through the dependence of r [under
the In in (37)] on the range of the potential. As a conse-

quence, the total conductivity cr in (34) decreases.

IV. CONCLUSION

The result of the preceding section is consistent with
our initial idea that increasing the range of the impurity
potential reinforces the tendency of the electrons to local-
ize. In order to handle the mathematical complexities in
deriving our result, we had to resort to a number of con-
straints; the perturbation expansion to first order in
(e~r) ', the Born approximation, and also the indepen-
dent impurity hypothesis prevent us from examining the
direct neighborhood of the Anderson transition. If one
estimates, using Ref. 2, the lowest y value allowed for the
Born approximation to hold, one finds that y can be quite
low ()0.4). On the other hand, concerning the validity
of our independent-impurity hypothesis, one must note
that the potential range cannot exceed the mean distance
between impurities, denoted by (2ro}. With the density
of impurities being ni, we have, in 2D, (pro)=nl '

Therefore, y
' cannot exceed yp

' such that
(1 Ok@ } =2ro. For small y, y —y, we must have tp )qo
with gp pp.

&m.nl
(38)

F

1
(f) (d) e~—1

1
~(h) ~(d) (e~—1)2

(32) We may still handle small values of p if the impurity den-
sity remains weak, according to the above expression
which, in turn, puts a limitation on the possible increase
of~

' 1/2

Therefore 2kF- (39)

O =~Drude+Otoc~

~Drude ~(a)+~(b)

1 7lI

sinhq
'

kF2~
1+

e~—1

kF
+tr &2' "'

(34)

(35)

Despite these constraints, we believe that the present pa-
per shows, at least qualitatively, how a finite-range im-
purity potential enhances the electronic localization.

Anderson localization with correlated disorder has
been discussed in a number of previous studies. Follow-
ing the work of Weinrib and Halperin in magnetic sys-
tems, Varriale and Theumann considered the case of
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algebraically decaying correlations. This would corre-
spond to writing, instead of Eq. (3), V (q) =q, for arbi-
trary 0.&2. It is well known that such correlations be-
long to the long-range universality class and a renormal-
ization group calculation performed in Ref. 8 indicated a
new transition for 0. (0, although the singular behavior
of the conductivity was analyzed to first order in e =4—d
and the Cooperon was not calculated. Hikami and
Brezin investigated the behavior of the conductivity of a
two-dimensional system in a strong magnetic field. In-
stead of Eq. (3), they assumed a Gaussian form for V (q)
corresponding to a potential V(r) regular at the origin.
Depending on the parameter values, they found either a
zero conductivity or recovered the results of the uncorre-
lated unitary case. John and Stephen' reexamined the
Anderson localization in d =2+a dimensions within the
nonlinear o model with either exponential or power-law
(regular at the origin) correlations. Their results were
identical with those of the uncorrelated case even for
long-range correlations. However, as the authors
remarked, due to the method of calculation, it is possible
that their model even in the apparently long-range case,
corresponds to a small q expansion in (3) with the form
V (q)=a+bq . This would explain why they recover
the results of the uncorrelated case. Similar results were
obtained in Ref. 11 where, along with a zero-range
impurity-scattering potential, a weak, but finite, interac-
tion between the impurities was assumed. The weak local
ordering of the impurities (due to their mutual interac-
tions) amounted to having again an "effective" V (q) of
the form (a +bq ).

Our present work differs in several ways from the
above-mentioned studies of correlated disorder. Our
model scattering potential, given by (1), is the conse-
quence of physical considerations on the nature of the in-
teraction between electrons and impurities. Since we al-
low the "screening length" proportional to 1/y to be
large, we have to retain the full expression (3), and no ex-
pansion in terms of the momentum transfer q is possible.
The scattering potential, given by (1), is singular at the

I

origin, contrary to all the earlier studied cases in 2D. We
have proved that, even under such conditions, the
coefficient of the ln in o.&„remains the same as that for
the contact potential. This is consistent with the fact
that for any nonzero value of y (no matter how small it
is) the system belongs to the short-range universality
class. This is true despite the fact that for small y, no
small-q expansion of (3) is allowed.

In conclusion, then, we have been able to show explic-
itly that a finite-range scattering potential reinforces the
tendency for localization. This is physically quite reason-
able. In the contact-potential case, an electron "feels" an
impurity only when they are both in contact. Instead, for
a finite-range potential, an electron feels the effect of all
the impurities within that range around it. This is
equivalent to the electrons being scattered effectively by
many more impurities. The case of a finite-range impuri-
ty potential is then analogous to the case of a contact po-
tential but with a higher concentration of impurities,
which explains the enhanced tendency for localization.
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APPENDIX A

1. Calculation of Eq. (12) without integrating over 8~

We will need the following useful expressions comput-
ed straightforwardly by residues in the complex plane:

2m- d0
Jl(ql q2 6 )

2m o cosh y, —cosO cosh p2
—cos 0—6'

sinh(y, +y~) 1

sinh(y& )sinh(yz) cosh(q, +y2) —cos(6')2n.cos(8 —6")d 6
2n o [cosh(q&, )

—cos8] [cosh(y2) —cos(8 —6') ]

sinh(y2)cos6" +sinh(y, )cos(6' —6")
sinh(q, )sinh(q, ) [cosh(q, +q, )

—cos(6') ]

(A 1)

(A2)

1 cos (8—6")d8
2m o [cosh(y, )

—cos8][cosh(q&z) —cos(8 —6')]
1 1

2sinh(y& )cosh(yz) cosh(y&+ p2) —cos6

X [sinh( q, + q&~ ) +e 'sinh(q 2 )cos26"

+e 'sinh(y, )cos(26"—26')+2e ' ' sinh(y, )sinh(g2)cos(26" —6')] . (A3)
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Using Eq. (Al) repeatedly, we can deduce the useful expression

1 2.d8, , 1
Io(1,8') =

o 2m. cosh(p) —cos(8i —0') fo 2m. cosh(p) —cos(8i, —0&)

2~ d8, 1 1
X

o 2~ cosh(y) c—os(82 8—, ) cosh(qr) cos(8&)

sinh[(l + 1)y] 1

[sinh(tp}]'+' cosh[(l +1)y]—cos8'

We write Eq. (12) as

'n

[sinhy)'"+" Io(n, 8') ik~g—v g I (n, 8')
j=1

(A4)

n n

kFQ r— g I; (n)+ g L;(n)
ij =1 i=1
i&j

(A5)

where Io(n, 8') is given by Eq. (A4) with l =n and

d8„ 2„d8, cos(8& —8 )I (n, 8') =. ~ ~ ~

o 2n cosh(y) —cos(8„—8') o 2n. cosh(tp) cos(—8J —8 +&)

d81 1X
cosh(p) —cos(8, —02) cos(p) —cos(8, )

' (A6)

d8„ 1IJ(n)=
o 2n cosh(p) —cos(8„—8')

2 d8, cos(8& —8~)

o 2ncosh(q&) . cos(8—J 8/+, )—
d8; cos(8& —0; )

X
o 2m. cosh(y) —cos(8; —8;+ &

)

2' d81 1X
o cosh(tp) —cos(8, —0z) cosh(y) —cos8,

(A7)

nd8„ 1L;(n)=
o 2n. cosh(p) —cos(8„—8')

d8; cos (8&—8;)
~ ~

2m cosh(p) —cos(8; —8;+ &
)

d8; 1 1X
2n cosh(y) —cos(8, —8z) cosh(y) cos8, — (A8)

Using Eqs. (A4) and (A2) we obtain for I (n) in Eq. (A6)

8.I.(n, 8') = f cos(8 —8&)Io(n j,8J 8')Io(j —1,8~. )— —.

sinh[(n +1—j)g]sinh[jtp] . +1Jz Jqr, n+1 —
g p, 0', 8&]

sinh(n + 1 —j}pcos0&+ sinh( jp)cos(0& —8')

[sinh(y) ]"+' cosh [(n + 1 )p] —cos8'

then

g I (n, 0')= 1
[ 0 (0 0, ]

sinh(ny}sinh[(n +1)/2]y
[sinh(~)]" +' cosh[(n +1)p]—cos8' sinh(p/2)

(A9)

(A 10)

In the same way, we obtain from Eqs. (A8) and (A3)
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dO,
L, (n)= f cos (0, —0&)ID(n —i, 8, —8')Io(i —1,8, )

sinh[(n + I —i)y]sinh[iy]

1 1 1

[sjnh(y }]"+ ' 2 cosh[( n + 1 )|p]—cos8'

X {sinh(n +1)y+e '+sinh[(n +1—i}y]cos28&

+e '"+' '~sinh(iy)cos(28& —28')+2e '"+"~sinh(iq&)sinh[(n +1—imp]cos(28& —8')]

The sums over i are tedious but straightforward; then we get the result

g L;(n)= 1 1 1

[sinh(~) ]"+' cosh[(n + 1 }y]—cos8' 2

X sinh[(n +1)p]+—[cos28 +cos(28 —28')] . ne—1 sinh(n tp) („+i ~

Q sinh(y)

+cos(28 —8') ne '" "~cosh[(n + 1)y]—e '"+"~ . cos(28 —0')—(n+1) ~„+i~ sinh(ntp)
Q sinhg

The calculations involving I; (n) are the most difficult ones. We obtain from Eqs. (A7) and (A6)

d8.
I,;(n)= f "

Io(n j,8 —8'—)cos(8J —8&)I;(j—1,0 )

sinh[(n + 1 —j)p] cos(8, —
8& )

d8 , I(j —1,8, )
[sinh(p)]'"+' &' ' cosh[(n + 1 j)y]—cos—(8 —0')

and, using Eq. (A9), together with Eqs. (A2) and (A3), we get

Ii;(n) = 1 1 1
MJ, ,[sinh(+)]"+' cosh[(n+1)p] —cos8' sinh(jg)

with

M., =sinh[( j i)y] {c—os 8&sinh[(n + 1 j)y]+co—s8&(8& —8')sinh( jy) ]

+ {sinh[(n + 1)y] +e ~~sinh[(n + 1 —j)q]cos(28& )
sinh( i tp )

+2e '"+""sinh(jy)sinh[(n +1—j)q&]cos(28& —8')+e '"+' ~'"sinh(jy)cos(28~ —20')] .

Now we use the identity

cos( a )cos(p) =
—,
' [cos(a+p) +cos(a —p) ]

to recast Eq. (A14) in the form

M; = sinh( jy)—,(sinh[(n + 1 —j +i )y]+cos8 sinh[( j i)y]—
+cos(28&)e '~sinh[(n +1 j)y]+cos(28& ——28')sinh(iy)e

(A 1 1)

(A12)

(A13)

(A14)

+cos(28& —8 ){2e ' ~'+si hn[(n+1 —j)y]sinh(iver)+sinh[(j —i)y]]) . (A15)

So the overall factor sinh(jy) cancels the identical term in the denominator of Eq. (A13) and the sums over i,j in Eq.
(A5) can be easily performed.

First we observe that the two first terms in Eq. (A15}depend only on n =j —i; then we may write

n j=l n n

{sinh[(n +1—n')y]+cos8'sinh(n'y)] = g g {sinh[(n +1—n' p}] +c so'0sinh(n'y ]}
j=1 n'=1 n'=1 j=n'+1

n

(n —n') {sinh[(n +1—n')y]+cos8'sinh(n'y)]
n'=1

(A16)
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and the sums in Eq. (A16) can be performed by using

g n "sinh(n "g)= g cosh(n "g) and g n "cosh(n "y)= g sinh(n "tp) .
II Bp II Bg

For the rest of the terms in Eq. (A16) one should sum first over i up to j—1, and after, over j from 1 to n. The pro-
cedure is standard but tedious, with the result

1 1

[sinh(~)]" +' cosh[(n +1)y]—cos8 82

X . {cosh[{n+ —,')y] —cos8'cosh(q&/2)]
2 sin p/2

r

sinh(ny/2) n, nycosh —+1 y —cos8'
2 sinh (y/2)

1 2 sinh[(n + 1/2)y]sinh(ny/2)
2(e v' —1)

cos 28'
sinh(p/2 )

sinh(n y) +ne
sinh(y)

+ 1
cos(28& —8') ne —"v'2 cosh[(n + 1)p]

2(e~—1)

( I —e "v') (1—e "v')
+ {2cosh[(n+1)y]+e "~]+

e~ —1 eq'+ 1

1
cos(28& —28'} . —cot (1—e "&)+ne

sinh(ng}
2(e v' —1) sinh(tp) 2

(A17)

By introducing Eqs. (A4) (A10), (Al 1), and (A17) into Eq.
(A5) we obtain Eq. (13).

2. Calculation of Kq. (12) integrated over 8&

If we take advantage of the remark made in the text
after Eq. (14) the algebra is simplified. We put

One easily verifies that all the terms within a given di-
agonal of the above triangle are equal, whatever the diag-
onal.

I1,z=Iz, 3=

d{9, d8z d8„
2~ 2m- 2m

I13—
z 4

— —I„ (A20)

x
cosh' —cos( 8&

—8)X, cos(8; —8J ) .
1

cosh@&—cos{8' —8„)

I 1,n-1=I', n

Therefore,

Then

g I,', = g (n i)I„— (A21)

can be written as a triangular table sum

I1 z +I1 3+I'1 4+
+Iz 3+Iz 4+

+I3 4+

+I1 „
+Iz „
+I3 „

+I„'

(A19)

One can also note that within the last column, but only in
this one, the terms cancel two by two, except the last oneI„',„,which, using (A20), allows some partial cancella-
tions in other columns, too. However, this does not sim-
plify things much compared to just computing (A21).
I„',. „can be written from (A18}with (A4) as follows:
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1 dO„ 1 dO„
2' cosh' —cos(0' —8„) 2m ~ cosh' —cos(0„—8„,)

d8„;cos(0„—0„,)

2m cosh' —cos(0„,+,—0„,)

XIo(l =n —i —1,8'=0„,} . (A22}

Then, using (A 1}and (A2} a number of times, one gets

I
In —i, n

sinh[(n i—+ 1)y]+sinh(iq&)cos8'
sinh"+'p[cosh[(n + 1)p]—cos8'I (A23)

Then, to perform (A21) we put (n i)—:n"—so that

n
1

n=1

n+1 n "[sinh[(n" +1)y]+sinh[(n n—")y]cos8') .sinh" +'y[cosh[(n +i)y] co—s8'I „-=,

The sums in (A24) can be performed using

= a
Xn "sinh(n "p)= X cosh(n "p),

Bg

= a
Xn "cosh(n "y)= X sinh(n "y) .

Bp

The remaining sums are known and one gets

n

cosh n +—,
' y —cos0'cosh

sinh"+'tp[cosh[(n +1)y]—cos8']

sinh( n y/2) cosh
2sinh (y/2)

n ny
2
—+1 y —cosI9'cosh

2
(A25)

Then, using (A4) and (A25) in (12) with the brackets [ ] replaced by its average over 8&,

kgb ~ kg7
. 1 — g cos(8; —

8J ) n—

we obtain

—
1 k QHsinh'"+ "y . 1 —n

Sv+ 7 2
kFQ r

I(l =n, 81+, —=0 ) — 2 I J',
17J —1

—
1

1

~ +r ' cosh[(n+1)p]

kFQ r
I n —sinh[(n+1)y]

2

k 2 g 2P

2
n

cosh[(n + —,
' )y] —cos8'cosh

2sinh y/2

sinh(ny/2) n
~ cosh —+ 1 y —cosO'cosh ny

2sinh (y/2)
(A26)

'which identifies with formula (13) integrated over 8&.
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APPENDIX B: CALCULATION OF SOME OF THE CONDUiaxVrr Y DIAGRAMS IN FIG. 3.

In the following, we calculate the contribution of the diagrams in Fig. 3 to be K~b] for finite co„, then, as usual,
the conductivity formula will be obtained through

K (i co) K—(0)e= lim ~, CO
—l COv

co~0 l CO

(Bl)

1. Calculation of Kt»

k and k are the electron momenta on either side of the diffuson I d given in formula (26); co„+„and (co„) are the
Matsubara frequencies of the upper (lower) electron lines. Then,

K( )
= —2T g f f rd G(k, ro„„)G(k,co„)G(k',ro„„)G(k',co„)

dk dk', , kk'
(2n. ) (2m )

V

n=0

d6)' kr cos8'sinh[(n +1)(p]
o)„+r ' 2n 2 cosh[(n + 1)y]

co„k
re

77 2 p

n

(B2)

which straightforwardly yields

kF'~
~(b)

2m

which is formula (27) in the text.

(B3)

2. Calculation of K~, ~

Here the upper electron line carries momenta k and k on either side of the Cooperon I,. The lower line carries
Q —k' and Q —k. Momenta conservation imposes

k+k'=—Q, Q~O

Therefore E~, ~
is written as

K(,)
= 2T g f f— , , r, (k, —k) G(k, (o„„)G(Q—k, (o„„)G(k,(o„)G(Q —k, (o„)

dk d Q k(Q —k)
(2m ) (2n. )

' 2

(B4)

d k d= —2Tg f f ", , r, (k, —k)
(2m ) (2m )

where I'c(k, —k) stands for

I c(k,Q-k, Q;ro„+„m„)

from which we deduce

f ——&r, (k, —k)&, „,(k,r ),1 QdQ

k
G (k, (o„+„)G (k, (o„) (B5)

(B6)

which, with (23), yields

1 e'P —1 I.0 (c) ln
e~ kF~

which is formula (28) is the text.

—1

sinhq
'

3. Calculation of the other diagrams involving Cooperons

The other diagrams can be computed the same way. We will thus get, compared with cr(, ) in (B6),

1 d 1 1o „)= —— (1,(k, —k) ) (k r )2 =(r(, )2e~—1 e()' —1

which is formula (29) in the text;

(B8)
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~„,= —'—f "
& r, (k, —k}) (k'r')

2
1

&(c) e~—1

2

(89}

which identifies with (30), so that

e~
~(c)+~(e)+~(g) (c) ep —1

(810)

On the other hand, we get

&, ,
= —4T g f f f r, (k, k';co„„,to„)G(Q—k', to„„)G(k,to„„)G(k',to„„)(Q—k, to„„)dk dk' dQ

(2tr) (27r) (2sr)

XG(Q —k', m„)G(Q —k, a„)n, V'(k+k' —Q) Q

and then

" y f Q Q f (r(n+l)(k k }i)
2m 2m'

3 2v. k~ cosg'
sinhy

2 cosh'+ cos6'
(811}

~„,= ——'g f ~"~f" &r,'"'"(k,k )&. . .(k,'r')sinhy{d) 2 2 c 8co 0 E f h + gi
(812)

identical to (31) in the text.
Then one gets as well

Collecting the different contributions

'2
1

+(f) +(d)2 e~ —1

I
~(h)

(e e' —1)2 7

(813)

+(d)+ +(f)++(h)

we finally obtain

eq'
+(c) &e+—1

(815)

as indicated in the text in formulas (32) and (33). To cal-
culate (812), one has to use formula (13), where one per-
forms first the integral over O'. This is a lengthy but
straightforward calculation, which yields

lac +(c)+~(d)+ + (h)
r

=(1—e +) o(,),e~ —1
(816)

+(d) +(c) (814) which identifies with (37) using (28).
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