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Calculation of Wannier functions for the d-s band of Cu by a modified variational method
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A modified variational method is used to calculate the Wannier functions for the d-s band of Cu. En-
ergies at high-symmetry points in the Brillouin zone and the density of states calculated with the use of
Wannier functions are compared with the exact values. The effect of the number of nearest-neighbor
shells is taken into account, and other approximations introduced into these calculations are discussed.

I. INTRODUCTION II. METHOD OF CALCULATIONS

Direct calculations of Wannier functions based on the
variational principle satisfied by these functions have
been performed only for a very limited number of three-
dimensional crystals. ' ' The Wannier functions for
periodic systems can be, in principle, obtained by the
Fourier transformation of Bloch functions. However, the
choice of an arbitrary phase in Bloch functions"' and
the fact that the analytical dependence of Block functions
on the k vector is not known make the transformation
difficult. On the other hand, direct calculations of Wan-
nier functions for periodic systems allow one to verify ap-
proximations that are frequently made in approximate
considerations of the band structures of solids; further-
more, such calculations are relatively easy to generalize
for a crystal with the surface and a crystal containing an
impurity. '

The present calculations for the copper d-s band are
performed by the modified variational method previously
used for the crystal with the Mathieu potential' ' and
for the d band of Ni and Cu. ' The modification of the
variational method suggested by Kohn [20] consists in a
very accurate calculation of the Wannier function in the
region surrounding the lattice site on which the function
is localized. In this region the trial functions taken to
construct the Wannier functions are arbitrary variational
functions defined by differential equations derived from
the expression for the total energy.

The crystal potential used in the present paper is not
calculated self-consistently. The potential taken from the
work of Moruzzi, Janak, and Williams ' is used and both
band energies and the density of states (DOS) can be
directly compared with the results given in Ref. 21. The
use of this potential ' makes it possible to examine the
effects of other approximations, unrelated to the con-
struction of the potential, on band energies and DOS ob-
tained with the aid of Wannier functions.

This paper is organized in the following way. The
method of calculation is described in Sec. II ~ In that sec-
tion emphasis is placed on the changes and improvements
introduced to the method in comparison with the calcula-
tion performed for the d band in Ref. 9 (hereafter re-
ferred to as paper I). Section III provides the results of
calculations and their discussion. Section IV contains
conclusions.

A. The basic equations

We seek for the set of Wannier functions a L which
minimizes the energy functional for the composite d-s
band,

6

E(a,L, . . . , a6L )= g (a L,Ha L ),
m =1

(2. I)

Now the energy functional can be expressed in terms of
trial functions,

m, ml, m2

LI,L,
—1/2XH~ L ~ L G~ (2.4)

where

H L L =(f t (r),Df t (r)) .

where H is the Hamiltonian of the system, a L (r), with
0

m =1,2, . . . , 5, are Wannier functions localized on site
Lo=(0,0,0, ) for the d band and a6L is the Wannier

function for the s band of the metal, and the symbol (, )

denotes the integration over the whole space. The Wan-
nier functions are in turn expressed in terms of trial func-
tions,

(2.2)
ml, Ll

where f L(r) =f (r —L) is the trial function of the
correct symmetry localized on the lattice site I, and

is a normalization factor. The matrix elements
G '& L are chosen so that Wannier functions form the

1 1' 0

orthogonal set. It turned out that the orthogonalization
procedure suggested by Lowdin and used in paper I
cannot be used in the case of a d-s band because overlap
integrals for s trial functions are too large and the expan-
sion of G ' suggested by Lowdin is out of the range of
its convergence. The matrix elements G ' were there-
fore calculated directly from orthogonalization relations
of Wannier functions (see Appendix A),

(2.3)
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Since the matrix elements H and G '~ (see Appendix A}
are not independent, the total energy can be expressed in
terms of the set of independent matrix elements ' and
Eq. (2.4) can be reduced to the following form:

TABLE I. The independent matrix elements M; of the opera-
tor 4 having the full symmetry of the lattice. The functions in
the 6rst column of the table are localized on the Lo=(0,0,0) lat-
tice site, the functions in rows of the table are localized on the L
lattice site.

F.(If L J)= g C L L (i,j,k)G, '~ .N 'H Gk
'~

m, i,j,k

(2.6)

where G,
' and H- denote independent matrix elements

of G ' and H, respectively, N '=N„' N ', the
J J

summation is over all d and s %annier states and over all
independent matrix elements, and C L & has the same

0~ 0

meaning as in paper I and can be calculated only once for
the set of orbitals and the lattice of a given symmetry.
The set of independent matrix elements 6 '~ and H
consists of matrix elements listed for d orbitals in paper I
and additional matrix elements between d and s, and be-
tween s states. The whole set of independent matrix ele-
ments is listed in Table I. Table I contains all indepen-
dent matrix elements between d states and d and s states
up to second-nearest neighbors and independent matrix
elements between s states up to eighth-nearest neighbors
(the notation of Slater and Koster appropriate for Ham-
iltonian matrix elements can be easily deduced. }

Now we assume that

L= (0,0,0)
yZ

zx
Xy

x —y
3z2 r2

L=(1,1,0)
yZ

ZX

xy
X
3Z2 r2

L= (0,0,2)

yZ

ZX

yz
M,

yZ

M3
Ms

yZ

M9

Ms
M3

ZX

xy

xy

M7
M)3

xy

x —y 3z —r

M2

x y 3z r

M7

M6
M)4

x —y 3z —r2

M)6

M)3

M)4
M)7

f L(r)=f (r —L)=N„'"rL'R„t.(r}Y~t.(&,P}, (2.7)

where rt =(r —L(, R„L(r)=R„((r—L)), ri=1 for m 5

and 2 otherwise, and Y z are the cubic harmonics cen-
tered on the L lattice site (Y t for m (5 have the same
form as in paper I and Y6L is equal to unity). Equation
(2.7) means that we assume, as in paper I, that the varia-
tions in the function f t are confined to variations in the
functions R„t(r) and the function R, t (r) is the radial
function common to all trial functions of e and t2 sym-
metry. We further assume that the functions R „t (r) are
arbitrary variation al functions inside the muffin-tin
sphere and simple analytical functions outside the sphere,

Rqt (r), rL —rp
R t(r)= ' . )R„t.(IP I'r» rt, -rp (2.8)

Xy

x —y
3z —r

L=(1,1,2)
S

L=(0,2, 2)
S

L=(0, 1,3)
S

S

M]9

S

Mzo

S

M2)

M)0
M, )

M)2
M~s

M)s
M&s

where

R~t. ( IP; J;r) =P~ prt" exp( P~ tr), — (2.9)

L= (2, 2, 2)
S

S

M22

n, =3, n2=4, and ro is the muffin-tin radius. Since the
functions are to be admissible variational functions, the
functions R „I and their derivatives must be continuous
functions at rL =ro.

Following the method described in Ref. 19, the condi-
tion for the minimum of the functional (2.6} can be writ-
ten in the form of the following set of equations:

L=(1,2, 3)
S

L=(0,0,4) S

M24

l„(1„+1)+—" + V(r)+ Re„(r)=X„(r)+(q—1) g A,„„R (r), ri=2, 1
2 dr~ 2 r2

(2.10)

i,j,k n%1,2, 16

(2.11)
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where

X„(r)= a—„'N '. g C, (i j,k) G,
'/ N 'y„/Gk ' H/(r)

i,j,k
{j&1,2, 16)

+N. 'H.
J

n {%1,2, 16)
(co; „Gk ' +G, '/ co„„)y„„S„(r) (2.12)

C, (i j,k }=3C,L,t (i,j,k)+2C4t 4t. (i,j,k)+C6L 6L (i,j,k),

a, = g [C,(i, l, k)+C, (i, 2, k) jG, '/ N, 'GI, '

i, k

a~= g C, (i, 16,k)G ' N, 6'Gk '

i, k

H (r)= jdQ Y„(r)Hf (r),
J

S (r)= jdQ Y„(r)f (r),
—1/2N —1/2

(f f )
n n mn ' ~n

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2. 19)

0, n ~16,

(2.20)

l1=2, 12 =0, the integration over dQ denotes the integra-
tion over the solid angle, and R„,(r) and A, „„appearing
in Eq. (2.10) denote the core states of s symmetry and the
Lagrange multipliers ensuring the orthogonality of the
conduction-band s state to the core states, respectively.
While the d states are automatically orthogonal to the
core states localized on the same lattice site because of
the angular parts of the functions, the orthogonality of
the conduction-band s state must be imposed as an addi-
tional constraint. The Lagrange multipliers can be calcu-
lated in the following way. The core states can be con-
sidered with a good approximation as the states orthogo-
nal to the core states localized on adjacent lattice sites.
They therefore satisfy the equation

1 + V(r)+E„, R„,(r) =0,
2 dr

(2.21)

(e~ —E„,}(R~,R„,}=H„,~ H, „, X+~ A+, „,S„,—,

where

(2.22)

0,. = drR; r 2+V r +Ej Rj r 2231 d
0 r

with the continuity equations analogical to these satisfied
by R„l. By multiplying Eq. (2.21) by R~(r) and Eq.
(2.10) by R„,(r), integrating over the muffin-tin sphere
and adding the integrals of analytical parts of the func-
tions over remaining parts of the space, we get

P'p

X2„,= drX2 r R„, r
0

rp
S = drR2 r

0

and we assumed that

(2.24)

(2.25)

f
f'p

dr R„,(r)R„,(r)=—(R„„R„,)=0, n&W zn.
0

(2.26)

Since ezAe„„ it is sufficient that

S„,'(H„, q
H—

~ „,+X~ „,)— (2.27}

for L2 not equal to either L, or L3. The three-center
corrections also result from the nonorthogonality of the
trial functions both of d and s symmetry to core states lo-

to ensure the orthogonality of R2 to core states localized
on the same lattice site.

Equations (2.10) and (2.11), together with the continui-
ty conditions at r0, fully define the trial functions both in-
side and outside the muffin-tin sphere. Similarly as in pa-
per I, the set of the equations was solved in two-center
approximation. However, three-center contributions
were included into the final calculations of matrix ele-
ments of the Hamiltonian.

Three-center contributions to the matrix elements of
the Hamiltonian come from the integrals of the form

jf t (r)V(r —Lz)f „(r)dr (2.28)
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calized on adjacent lattice sites. The angular dependence
of the trial functions in the case of d orbitals and the
Lagrange multipliers introduced into Eq. (2.10) ensure
the orthogonality of the trial functions to the core states
localized on the same lattice site but the functions must
be orthogonalized to the core states on other lattice sites.
The method of calculations of three-center contributions
is described in Appendix B. It should be mentioned that
nonorthogonality effects reduce three-center corrections
connected with integrals (2.28) and are particularly large
in the case of the extended conduction-band s states. The
effect is similar to the replacement of the bare potentials
V(r —L) by pseudopotentials.

B. Numerical details

As in paper I the basic equations (2.10) and (2.11) for
calculating the trial functions have been solved by an
iterative method. However, the iterative procedure was
slightly modified. First, Eqs. (2.10) were solved by replac-
ing in the initial iteration the inhomogeneous parts of the
equations by zero and assuming reasonable values of ei-
genvalues. The Herman-Skillman integration mesh was
adopted for the first four blocks and the integration in the
remaining part of the interval [O,ro] was performed for
fixed interval hr equal to the interval hr in the fourth
block. The whole interval [O,ro] was divided into 20
blocks. In the next step of the calculations the parame-
ters of the analytical parts of the trial functions were

found from the continuity conditions and the inhomo-
geneous parts and eigenvalues were calculated. The cal-
culations were repeated until the values of the total ener-

gy obtained in the current and preceding iterations
differed by less than the assumed accuracy criterion (in
the present calculation the criterion was iE, —E;,il
Z, & 10-').

III. RESULTS AND DISCUSSION

The calculations have been performed for the d-s band
of copper and the crystal potential was taken from Ref.
21. The matrix elements between the functions of d sym-
metry and those between the functions of d and s symme-
try were neglected for the lattice sites more distant than
second-nearest neighbors. The matrix elements between
the functions of s symmetry were calculated up to the
eighth nearest neighbors in the lattice. The matrix ele-
ments obtained in the Wannier-function basis for two
atomic shells (i =2) and for the maximum number of
neighbors (i =8) taken into account in the present calcu-
lation are listed in Table II. The table contains, for both
values of i, two sets of values of matrix elements. The
second and the fourth column contain the values ob-
tained when the three-center corrections are calculated
for nearest neighbors, that is the three-center corrections
are neglected when either

i L2 —
L& i or i L2 —L3 i in Eq.

(2.28) is greater than the distance between nearest neigh-
bors in the lattice. For consistency, the nonorthogonality

TABLE II. Hamiltonian matrix elements calculated in Wannier-function basis (in Ry). i denotes the
number of atomic shells taken into account for the s states. Three-center corrections are calculated for
nearest neighbors (n) and up to the second nearest neighbors (s). The Slater notation is used.

Element

Ey, y, (000)
E„2 2.2 2(000)

Ey y ( 1 10)
E„ (110)

3z —r 3z —r

E 2 2(110)
E y, (110)
Ey y (002)
E y y(002)
E 2 2 2 2(002)

E, , (110)
E 2 2(110)
E 2 2(002)

E„(000)
E, ,(110)

(002)
E, ,(112)
E, ,(022)
E, ,(013)
E, ,(222)
E, ,(123)
E, ,(004)

(n)

0.4185
0.4158

0.0072
—0.0214

0.0168
—0.0082

0.0107

0.0079
—0.0011
—0.0006

0.0019
—0.0044

0.0394
—0.0228

0.0091

0.5818
—0.0804
—0.0118

1=2
(s)

0.4185
0.4158

0.0072
—0.0214

0.0169
—0.0082

0.0106
0.0080

—0.0011
—0.0006

0.0020
—0.0043

0.0390
—0.0234

0.0090

0.5873
—0.0827
—0.0093

(n)

0.4179
0.4156

0.0073
—0.0214

0.0169
—0.0080

0.0107

0.0082
—0.0009
—0.0005

0.0021
—0.0044

0.0382
—0.0218

0.0116
0.5356

—0.0767
—0.0012

0.0167
0.0108

—0.0024
—0.0083
—0.0020

0.0048

i=8
(s)

0.4178
0.4157

0.0073
—0.0214

0.0169
—0.0080

0.0107

0.0083
—0;0009
—0.0005

0.0021
—0.0044

0.0377
—0.0225

0.0114
0.5460

—0.0806
0.0039
0.0164
0.0122

—0.0033
—0.0079
—0.0020

0.0050
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of the Wannier functions to core states localized on more
distant lattice sites than the nearest neighbors was also
ignored. The third and the last column in the table con-
tain the results obtained in the case of the three-center
corrections calculated up to second-nearest neighbors.
The comparison of these two sets of values shows that
while the three-center corrections to the matrix elements
between d states coming from more distant lattice sites
are negligibly small, the three-center corrections for the
matrix elements involving more extended s states should
be calculated at least up to second-nearest neighbors.
The role played by the potential and the orthogonality
effect in the three-center contributions can be illustrated
by the following example. The value of the matrix ele-
ment E, , (0,0,0) for i =8 obtained without three-center
corrections is equal to 0.6239 Ry and the value calculated
with contributions from integrals (2.28) involving poten-
tials localized on neighboring sites (up to second-nearest
neighbors) is reduced to —0.0954 Ry. The orthogonality
to core states imposed on the Wannier functions gives
finally the value 0.5460 Ry listed in Table II. Thus the
orthogonalization to core states plays a similar role as the

calculation of matrix elements in conventional band-
structure calculations for a pseudopotential instead of a
bare potential reducing the magnitude of three-center
corrections. The comparison between results for i =2
and 8 shows that the increase of the number of atomic
shells taken into account in the calculations significantly
affects the values of matrix elements between Wannier
functions localized on less-distant lattice sites particularly
in the case of matrix elements involving Wannier func-
tions of s symmetry.

The matrix elements between extended s states de-
crease slowly with the distance between lattice sites on
which two Wannier functions involved in the matrix ele-
ment are localized. This result is in agreement with pre-
vious results for metallic hydrogen, ' but precludes the
possibility of an accurate description of the ds band of
transition metals by a model Hamiltonian based on Wan-
nier functions and confined to second-nearest neighbors.
This conclusion is corroborated further by a comparison
of band energies at high-symmetry points in the Brillouin
zone shown in Table III. The band energies obtained in
the present work at various levels of accuracy are com-

TABLE III. The comparison of band energies obtained in the present calculations (i) with exact
band energies given in Ref. 21. The successive energy values at the I point (e.g., —0.453, 0.385 and
0.460) correspond to I 1 state, I » states and to I » states, respectively. i denotes the number of shells
taken into account in the calculation of the Wannier function of the s symmetry, k is expressed in 2vrla
units where a is the lattice constant. In (a), three-center corrections are calculated for nearest neigh-
bors; in (b), three-center corrections are calculated up to the second-nearest neighbors.

Symmetry
point

Band energies in Rydbergs
(relative to muffin-tin zero)

(a)
r [k=(o,o,o)] —0.453

—0.599
—0.073
—0.051
—0.064

0.385
0.385
0.386
0.386
0.390

0.385
0.385
0.386
0.386
0.390

0.385
0.385
0.386
0.386
0.390

0.460
0.462
0.462
0.462
0.451

0.460
0.462
0.462
0.462
0.451

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

X [k=(0,0, 1)] 0.235
0.232
0.224
0.241
0.241

0.270
0.268
0.269
0.270
0.284

0.491
0.490
0.490
0.490
0.494

0.499
0.498
0.499
0.499
0.509

0.499
0.498
0.499
0.499
0.509

0.888
0.796
0.74
0.895
0.748

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

L [k=(0.5,0.5,0.5)] 0.197
0.168
0.220
0.227
0.242

0.385
0.384
0.384
0.384
0.386

0.385
0.384
0.384
0.384
0.386

0.494
0.495
0.494
0.494
0.497

0.494
0.495
0.494
0.494
0.497

0.816
0.716
0.865
0.897
0.544

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

W [k=(0.5, 0, 1)] 0.333
0.332
0.332
0.333
0.297

0.389
0.387
0.388
0.388
0.354

0.389
0.387
0.388
0.388
0.354

0.452
0.453
0.456
0.455
0.448

0.501
0.501
0.501
0.501
0.509

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

I [k= (0.75,0.75,0.75) ] 0.285
0.274
0.289
0.289
0.286

0.354
0.352
0.353
0.353
0.311

0.455
0.454
0.454
0.454
0.413

0.464
0.463
0.464
0.464
0.416

0.487
0.487
0.487
0.487
0.494

(i =2)
(E =3)
(i =6)
(i =8)
(exact)
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TABLE III. (Continued).

Symmetry
point

Band energies in Rydbergs
(relative to muffin-tin zero)

(b)
I' [k=(0,0, 1)] —0.461

—0.625
—0.088
—0.064
—0.064

0.385
0.385
0.386
0.386
0.390

0.385
0.385
0.386
0.386
0.390

0.385
0.385
0.386
0.386
0.390

0.460
0.462
0.462
0.462
0.451

0.460
0.462
0.462
0.462
0.451

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

X [k=(0,0, 1)] 0.235
0.235
0.230
0.244
0.241

0.270
0.268
0.269
0.269
0.284

0.492
0.490
0.491
0.491
0.494

0.499
0.498
0.499
0.499
0.509

0.499
0.498
0.499
0.499
0.509

0.918
0.866
0.820
0.979
0.748

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

L [k=(0.5,0.5,0.5)] 0.197
0.164
0.222
0.229
0.242

0.385
0.384
0.384
0.384
0.386

0.385
0.384
0.384
0.384
0.386

0.494
0.494
0.494
o.494
0.497

0.494
0.494
0.494
0.494
0.497

0.806
0.698
0.857
0.890
0.544

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

W [k=(0.5,0, 1)] 0.333
0.332
0.332
0.333
0.297

0.389
0.387
0.388
0.388
0.354

0.389
0.387
0.388
0.388
0.354

0.452
0.453
0.456
0.455
0.448

0.501
0.501
0.501
0.501
0.509

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

K [k=(0.75,0.75, 0.75)] 0.285
0.276
0.290
0.290
0.286

0.354
0.352
0.353
0.353
0.311

0.455
0.454
0.454
0.454
0.413

0.465
0.463
0.464
0.464
0.461

0.487
0.487
0.487
0.487
0.494

(i =2)
(i =3)
(i =6)
(i =8)
(exact)

pared with the exact values obtained directly ' for the
same crystal potential. The comparison clearly shows the
necessity of taking into account in calculations the matrix
elements between more-distant neighbors to get a reason-
able agreement between low-lying band energies. That
higher band energies are not reproduced equally well is
probably connected with the omission of p functions in
the present calculations. On the other hand, the compar-
ison between the values in parts (a) and (b) of Table III
seems to indicate that three-center contributions calculat-
ed in the nearest-neighbor approximation give suSciently
accurate matrix elements for a correct description of the
band structure.

The method for band-structure description in terms of
the model Hamiltonians based on Wannier functions,
originally suggested by Bross, is widely used (see, for
example, Refs. 28 and 29); this description is usually lim-
ited to matrix elements between neighbors up to second
order. In light of the present results, it seems that the
conduction band in transition metals cannot be described
accurately within this approximation. On the other
hand, the model Hamiltonians based on nonorthogonal
functions ' which are also limited to the second-nearest
neighbors, are in a better position to give an accurate
description of conduction band in transition metals not
only because they introduce a greater number of parame-

ters to fit the structure of the band but also because they
are equivalent to the model Hamiltonians based on or-
thogonal Wannier functions with a greater number of
atomic shells taken into account.

Having calculated the matrix elements in the
Wannier-function basis we can directly calculate the den-
sity of states for the d-s band. The method of calculation
given in Ref. 31 and adapted for the fcc lattice was
used. DOS obtained for i =2 and 8 is compared in Fig. 1

with the exact DOS taken from Ref. 21. The DOS ob-
tained in the present calculation for i =8 is close to the
exact DOS. The positions of peaks are in good agree-
rnent and the differences can be probably ascribed to the
neglect of p functions in the present calculation. The
DOS obtained for i =2 and 8 are very close to each other.
The differences occur mainly for higher energies when
the only contributions come from s-symmetry states. It
seems to indicate that if the main aim of a calculation is
to obtain the shape of the d band of transition metals, a
calculation limited to second-nearest neighbors and to
the d-s complex band can be a good approximation.

IV. CONCLUSIONS

Direct calculations of the Wannier functions for the d-s
band in copper show that the modi6ed variational



15 722 P. MODRAK 46

P(T)a„L(r)= g G„~'.~„„P(T)f„,(r)
v, L'

= g G„L'„„+2),(T)f,TL (r), (A 1)
2-)
p

(b)

6-
OJ

~ 2-

tll
P

8 (c)

I

I I

= g2),„(T) g G,L' ',TLf„L-(r) .
v, L"

(A2)

By introducing L"= TL', summing over L' instead of L",
and interchanging names of the summation indices, we
get

v, L'

in which the notation of Ref. 25 has been adopted. On
the other hand,

P(T)a„i (r)= +2),„(T)a,TL(r)

P(T)a„L(r)= g 2)„„(T)G T't „TLf,TL(r) .
r, v, L'

(A3)

p, f, I . i ~ ~j
11 -9 -7 -5 -3 -1 1 3

~~elegy relative to EF(ep)

FIG. 1. Density of states (DOS) curves for Cu. (a) The exact
DOS taken from Ref. 21. (b) The DOS obtained in the case
when the matrix elements for Wannier functions of the s sym-
metry are calculated up to the eighth-nearest neighbors. (c) The
matrix elements are calculated up to the second-nearest neigh-
bors. Energy is expressed in eV relative to Fermi energy [as-
sumed to be equal (Ref. 21) to 0.628 Ryj.

method can be applied even to wide conduction bands in
transition metals. The calculations reveal the role of
three-center corrections in the calculation of the matrix
elements and show the importance of the orthogonality
of Wannier functions to core states. The matrix elements
between extended s states decrease slowly with the dis-
tance between the lattice sites on which Wannier func-
tions involved in the matrix element are localized. The
matrix elements between the Wannier functions localized
on more-distant lattice sites are important for an accurate
description of the band structure, but an approximate
description of the DOS is possible within the scope of a
model limited to second-nearest neighbors.

APPENDIX A. THE CALCULATION
OF THE COEFFICIENTS 6

IN THE EXPANSION OF WANNIER FUNCTIONS
IN TERMS OF THE TRIAL FUNCTIONS

First, it will be shown that coefficients G ' in expan-
sion (2.2) can be expressed in terms of independent ma-
trix elements of the matrix G ' in the same way as ma-
trix elements of any operator invariant under the opera-
tions of the point group of the crystal, provided that both
the trial functions and the Wannier functions in Eq. (2.2)
span the same representation of the point group. By act-
ing on both sides of Eq. (2.2) with the operator P(T) of
the symmetry group, we get

By comparing right-hand sides of Eq. (Al) and (A3) and
taking into account that (since the functions f,L are arbi-
trary functions) the coefficients at the same function have
to be equal, we get

g G „L' „„X„(T) = g S„„(T)G ~rt. ', v TL (A4)

By multiplying Eq. (A4) by Xl,*„(T),summing up over r,
and taking into account that 2)(t) is the unitary matrix,
we finally get

G„L',pL g X ~„(T)2)„i,( T)G~T'i. , vTt. . (A5)

Equation (A5) has exactly the same form as the equations
derived in Ref. 25 to establish the set of independent ma-
trix elements of an operator invariant under the opera-
tions of the point group of the crystal. The overlap ma-
trix elements in the Wannier-function basis can therefore
be expressed in terms of the independent matrix elements,

(a~ L,a~ L)= g C L ~ L(i j,k)G; '
SJGk

'

&~ J~

(A6)

where G,
' and S; denote the independent matrix ele-

ments of the matrix G 'L L and of the overlap matrix
1 0' 2

S L L calculated in the trial-function basis, respec-
1 0™2

tively.
Since the overlap matrix elements in the Wannier-

function basis can be also expressed in terms of indepen-
dent matrix elements, the orthogonality condition of
Wannier functions can be reduced to the set of equations
(A6) for the independent matrix elements. The set of
equations (A6) was solved by an iterative method: the
equations were linearized by replacing one of G; ' ap-
pearing in the quadratic form by initial values in the first
step and by the average values of G,.

' obtained in the
current and the preceding iteration in the successive steps
of the iteration procedure.

The set of equations (A6) also served as a starting point
for the calculation of the variation 6G; ' . Since the
orthogonality of the Wannier function is the constraint
imposed on the variation of the trial functions,
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5(a t, a t )=0 (A7)

56; ' = +co;J 5S. ,
J

(A8)

for any variation of the trial functions. If we expand
5G, ' in terms of the variation 5S.,

localized on adjacent lattice sites. Let us consider first
the corrections connected with the integrals (2.28). In
this approximation the independent matrix element can
be expressed as the sum of the matrix element calculated
in two-center approximation and three-center contribu-
tion,

we get from Eqs. (A6) —(A8) the set of linear equations
defining the coeScients co;J.,

J J J

where H' is the sum of integrals (2.28),

(B1)

Eau~in din ~ (A9) H'=
J

(+La, L )
fdr f„L (r)V(r —L, )f„t (r)

where

a~;= g [C((i,j,k)S Gk
' +C((kj, i)S Gk

' ],
j,k

d(„= QC((i, n, k)6 '~ 6
j,k

(A10)

(A 1 1)

APPENDIX B. THE CALCULATION
OF THREE-CENTER CONTRIBUTIONS

The three-center contributions to the matrix elements
stem from the integrals of the form (2.28) and from the
nonorthogonality of the Wannier functions to core states

where l is a shorthand for all pairs m&Lo, mzL which
form the set of independent matrix elements of the over-
lap matrix.

m'= —1

(B3)

where Y& is the spherical harmonic, a, P, and y are
Euler angles describing the rotation, and the method of
calculation of the matrix 2)"' is described in Ref. 33.
By using (B3), the three-center correction H' can be writ-
ten in the following form:

fdr f„t t (r) V(r)f t L (r) . (B2)
L& (QLO L ~ )

The cubic harmonics contained in the functions f„can
be expressed in terms of spherical harmonics and the
latter can in turn be expressed in rotated frame of refer-
ence,

(l„)
H,'= g g T„* T g2) ", (ap, Pp, yp)

L~ (ALO L& ) m &, m2

X g2) ", (ai,pi, yj) fdr Y(', (8,p)rt ' „R„t „V(r)
I

m2

X Y(, (8,P)rt '
t R, t (B4)

where p and v denote the pair of the functions involved in the matrix element HJ, the matrix T is the transformation
matrix from cubic to spherical harmonics ap Pp yp and aJ,Pi, yj are the Euler angles describing the rotation of the
frame of reference so that the z axis is directed along Lo—L, and L —L, , respectively, and the additional index at Yin-
dicates the localization and the frame of reference connected with the spherical harmonic. Now we can expand the
function r L Ylm. LR&L around the displaced center using the method given in Ref. 34,

(l„) (l„)HJ'= g g T„' T„+2) ", (apPpyp) g2) ", (a,PJ, y~)
L~ (ALp L ) m~ m& m' m'

1 2

x fder g Y,
'

~ (O', P')a~ (n„l„.m', ~a„r)
1, , 12

X V(r) Y, (8",P")a& (n„ l„,rn
&
~a, r), (B5)

2m'

where the function a, has the same meaning as in Ref.
34, n„and n are the exponentials occurring in the
analytical parts of trial functions f„and f, respectively,
O', P', and 8",P" are expressed in the frames of reference
in which the z axis is directed along Lo—L, and LJ —L„

respectively, a =
~ Lp —

L& ~
and a =

~

L.—Lp~. The last
step in the calculation of H'- consists of the reciprocal ro-
tations of the frames of reference used for the first and
the second function occurring in the integrand. Since the
function al depends on the distance between two centers
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involved it is convenient to replace the summation over
L& by the summations over shells in which L, is the
nearest-neighbor position with respect to both L0 and L,
L& is the nearest-neighbor position of L0 and the second-
nearest-neighbor position of L, and so on. In this way
the three-center correction H, can be finally written in

the following form:

M j(l, mI, mz, p, q)F (l, m', , m2, p, q), (B6)

where

I'0

Fj(l, m'~, m2, p, q)= dr V(r)a&(n& lzm &
~a, r)a&(n„.l„,mz ~a, r),

0
(B7)

M (l, mI, m 2p, q)=
I IUP (IU)g{Tq T, 2) (aok Pok Yok)+ ' (ajk Pjk r, k )

2 2
1 P 2 U™

XX "„*,(apk fipk @ok)2)",', , (a"k,p~k, y,"k ) I, (B8)

f„„(r)=c„ f„„(r)—g Ir„„(b,)P„L +g(r)
v~5

(B9)

where

the summation over k denotes the summation over all
sets of Euler angles which result from the summation
over L, and correspond to the geometrical arrangements
in which L& is the neighbor of the order p with respect to
L0 and, at the same time, L& is the neighbor of the order q
with respect to L and the Euler angles with index r cor-
respond to the rotations restoring the original frame of
reference.

It should be mentioned that the matrix M need be cal-
culated only once for a given crystal lattice and a given
set of trial functions. It turned out that with good accu-
racy the summation over I can be truncated beyond 1=4.

The orthogonality of the Wannier functions to core
states localized on adjacent lattice sites has been achieved
by the orthogonalization of the trial functions to the core
states. The Wannier functions formed according to Eq.
(2.2) from such functions will be also orthogonal to the
core states. By using Schmidt orthogonalization pro-
cedure and assuming that the core states localized on
different lattice sites are mutually orthogonal, the trial
functions orthogonalized to the core states can be written
in the following form:

Sj =c„c, S —g ~„,(b)a„, (Lo+5—L, )

vp2

(B12)

H, =c„c„H,—g e„ ir„„(b )a., (Lo+b —L, )

v~5

(B13)

where S and H are the matrix elements calculated with
the use of the original functions f„L and we assumed that

(B14)

In order to simplify the calculations the sum of products
can be expressed in terms of independent ele-P, Vp P, vp

ments of the overlap matrix between the trial functions
and the core states. Following the method used in paper
I to obtain matrix elements expressed in terms of in-
dependent matrix elements, we get

S, =c„c, S, — g B(j,l, k„k2) g Ir„& (k, )Ir„I,(k, )

I, kl, k2 n

The overlap matrix and the Hamiltonian matrix ele-
ments can now be recalculated in the orthogonalized trial
function basis,

&„,(~)=(4.p, +a f„t,» (B10) (B15)

c = 1 —pi~ (6)p p~vp
v, h

(Bl 1)

and P are the core states. It can be shown that the

function f„t span the irreducible representation of the
point group provided that the original functions f„L do
So.

HJ =c„c Hj — g B(j,l, k„k2)
I, kl, k2

X g e„jir„j„(k,)jr„i„(k,), (B16)

where

B(j,l, k„k2)=(2') f dp„ f dp» f dp, g {co„,» k (p)ro„, ~ k (p)exp[(ip(LJ —Lp)]I,
Pl P2

(b )exp(i, pb, )= g oj„, k(p)a.„j„(k),
p, k

(B17)

(B18)
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g tt„„(b,)exp( tp—b, )= g co„ t &(p)tc„t„(k),
p, k

(B19)

the core states are specified by two quantum numbers n and I, and k runs over the number of independent matrix ele-
ments of the overlap matrix ~„I„. The matrix 8 need be calculated only once for crystal and trial functions of a given
symmetry.
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