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Theory of the quantum confinement effect on excitons in quantum dots
of indirect-gap materials
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The quantum confinement effect on excitons in quantum dots of indirect-gap materials is investigated
and a mechanism that induces an indirect-to-direct conversion of the character of the optical transition
is clarified. The exciton transition energy and the exciton binding energy are calculated and found to be
in good agreement with experimental results on Si and Ge nanostructures. The large exciton binding en-

ergy in Si and Ge quantum dots suggests that the photoluminescence from these nanostructures is of ex-
citonic origin even at room temperature. The estimated radiative lifetime of excitons is strongly size
dependent and varies from nanosecond to millisecond corresponding to the diameter from —10 to -30
0
A. These theoretical results suggest strongly the importance of the quantum confinement effect in the
luminescence processes of porous Si.

Recently, a great deal of research effort was focused on
the low-dimensional structures of indirect-gap materials
such as Si, ' Ge, ' and AgBr. ' '" Especially, in the last
few years, the visible photoluminescence from porous Si
has attracted much attention from the fundamental phys-
ics viewpoint and from the interest of the potential appli-
cation to optical devices. The rnechanisrn of the photo-
luminescence is the main issue of the current research
and is still controversial at the present stage. The blue-
shift of the photoluminescence was observed when the Si
column size was reduced by increasing the etching time
duration in HF solution. This observation suggests the
presence of the quantum confinement effect in Si nano-
structures. On the other hand, the importance of the lo-
calized levels at the surface of nanostructures in the pho-
toluminescence was pointed out by several authors. The
visible photoluminescence was observed also from Ge
quantum dots. Because the mechanism of photolumines-
cence from nanostructures of indirect-gap materials is
controversial and not well understood, it is important to
clarify theoretically the intrinsic optical properties of ex-
citons in these quantum-confined structures. The com-
parison of the theoretical results with experimental data
will shed a new light on the mechanism of photolumines-
cence. In this paper, we investigate the quantum
confinement effect on excitons in nanostructu res of
indirect-gap materials and calculate the exciton transition
energy, exciton binding energy, and exciton oscillator
strength or radiative lifetime.

In the bulk crysta1 of indirect-gap materials, the
electron-hole recombination is possible only through pho-
non emission or absorption because the wave-vector
difference between the conduction-band bottom and the
valence-band top must be compensated. One of the most
effective means to convert an indirect optical transition
into a direct one is to form a superlattice structure12-15

by which the size of the Brillouin zone is reduced and the
conduction-band bottom is folded onto the I point, re-
sulting in a direct-gap materia1. Gn the other hand, in

nanostructures such as an isolated quantum dot, the
periodicity due to a superstructure is absent and the
above picture of zone folding is not applicable straight-
forwardly. In these structures, the electronic states be-
come completely discrete as in atoms and molecules and
the optical matrix element between a pair of discrete
states must be evaluated to identify whether that transi-
tion is optically allowed or not. This is the most legiti-
mate picture. However, in a relatively large nanostruc-
ture, we can employ approximately the picture of zone
folding. If the envelope functions of carriers confined in
a nanostructure have a sizable Fourier component at the
wave vector corresponding to the indirect-gap transition,
that Fourier component plays the same role as phonons
in the bulk material and the direct optical transition be-
comes allowed. This mechanism of luminescence is simi-
lar to that of a bound exciton trapped by nitrogen impur-
ities in GaP. '

The electronic structures of linear chain and planar po-
lysilanes were calculated by the first-principles method
and interesting optical properties were predicted. ' Here,
in order to see more conveniently the dependence of exci-
tonic optical properties on the nanostructure size, we em-

ploy the effective-mass approximation.
' Concerning the

morphology of porous Si, recent studies suggest that the
structure is a network of interconnected nanocrystallites
rather than a series of parallel columns. Here, in order
to simplify the analysis but to retain the essential physics,
we consider an isolated nanocrystallite or more
specifically a spherical quantum dot and calculate the ex-
citonic states using the Luttinger Hamiltonian' for the
valence band. The mass anisotropy at the conduction-
band bottom is also included. The valley degeneracy of
the conduction band is taken into account in the calcula-
tion of the excitonic radiative lifetime. The conduction-
band minimum is located at ko =2m/a(0, 0,0.85) and
another five equivalent points in the case of Si and at
ko =~/a (1,1, 1) and another three equivalent points for
Ge, where a is the lattice constant. The energy disper-
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sion around this point is given as

f2

where k (k) ) is the wave-vector component in the direc-
il

tion parallel (perpendicular) to the vector ko and m))
(m) ) is the corresponding component of mass tensor.
The kinetic-energy part of the valence-band Hamiltonian
for the j=

—,
' multiplet in the spherical approximation ' is

given as

2 +(p(2)g(2))
2mo 9

where p, =(4yz+6y3)/Sy( and y, , y2, and y3 are the
Luttinger parameters, mo is the free electron mass, P' '

and J' ' are second-rank tensors composed of the orbital
momentum operator and the angular momentum opera-
tor (j=—', ), respectively, and (P' 'J' ') is a scalar product
between the two second-rank tensors. Then the re1evant
Hamiltonian for the excitonic state becomes
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where the subscript e (h) is attached to the quantities as-
sociated with the electron (hole), H,( ' corresponds to the
first three terms in the last line, HI', ' to the next two
terms, the confinement potentials V, and V& are assumed
to be infinitely high outside the quantum dot, and e is the
dielectric constant of the quantum dot material. The
lowest excitonic state can be constructed from a product
of the lowest subband functions of the electron and the
hole and a function describing the electron-hole relative
motion. Since the Hamiltonian (3) has an axial symmetry
around the ko direction, which will be referred to as the z
direction, the z component of the total angular momen-
tum of the excitonic state is a good quantum number.
The lowest subband state of the electron has an even pari-
ty with respect to the center of the quantum dot and is
given as

f, (r, ) = Yoo(0, )(po(r, )+ Y20(Q, )qr2(r, )+ . , (4)

(6)

where N@ is the normalization constant and the varia-
tional parameter a optimizes the electron-hole relative
motion. The exciton binding energy is defined by
Bx=E,+Ez —Ex, where Ex is the exciton energy and
E, and E), are the subband energies corresponding to (4)
and (5), respectively.

The calculated exciton energy and the exciton binding
energy are shown as a function of the quantum dot radius
in Figs. 1 and 2, respectively, for Si and Ge. From the
comparison of Fig. 1 with the peak energy of photo-
luminescence spectra of Ref. 3, it seems likely that Si
nanostructures with diameter about 50-65 A are formed
in the samples. Furthermore, the exciton binding energy
corresponding to this range of quantum dot size is es-
timated to be about 75-95 meV. These values are in
good agreement with the experimentally measured ac-
tivation energy from the temperature dependence of the
photoluminescence intensity. A strong room-tempera-
ture photoluminescence was observed from Ge nanocrys-
tals embedded in Si02 glassy matrices. The lumines-
cence peak energy of 2.18 eV corresponds to the quantum
dot diameter of about 42 A, as can be estimated from Fig.
1. This value is consistent with the average size estimat-
ed by means of Raman spectroscopy and high-resolution
electron microscopy.

The enhancement factor of the exciton binding energy

Si Ge
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satisfy the boundary condition that they vanish at the
quantum dot surface and are expanded in terms of
j ((kJ r/R ) where R is the radius of the spherical quantum
dot and k. is the jth zero of the spherical Bessel function
j((z). In order to find out the lowest excitonic state, we
employ a variational envelope function as

-~li, -li, I@(r„r(,) =N@e ' " f,(r, )f&(r(„'$3/p),

where Yl is a spherical harmonics and yo and y2 are the
radial part envelope functions. The lowest subband state
of the hole is an eigenstate of H&

' and is given as
)0-

0
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where l denotes the orbital angular momentum and F is a
combined angular momentum of l and j. The radial part
envelope functions go and g2 as well as ((()o and (p2 in (4)
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FIG. 1. The exciton energy in quantum dots is plotted as a
function of the dot radius for Si (solid line) and Ge (dashed line).
The right ordinate indicates the confinement energy hE mea-
sured from the indirect band-gap energy of the bulk material.
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relative to the bulk value (Ry*) is shown on the right or-
dinates of Fig. 2. The enhancement factor of Ge is larger
than that of Si for the same size of quantum dot, as ex-
pected from the lighter carrier masses in Ge. Since the
exciton Bohr radius in the bulk material is generally
larger for the case of lighter carrier masses, the quantum
confinement effect appears more pronounced in Ge than
in Si.

Now we discuss the oscillator strength or the radiative
lifetime of excitons. In view of the large exciton binding
energy, the photoluminescence is likely to be of excitonic
origin rather than arising from the recombination of
free-electron —hole pairs. Experimentally, the photo-
luminescence decay dynamics show a nonexponential be-
havior with typical time constants ranging from
nanosecond (ns) to millisecond (ms). ' This behavior sug-
gests strongly the presence of inhornogeneous size distri-
bution of Si nanostructures and also the presence of non-
radiative relaxation channels of excitons. Thus it is very
important to investigate theoretically the exciton lifetime
due to the intrinsic radiative recombination and its
dependence on the luminescence wavelength or the nano-
crysta11ite size, since we can identify the dominant
luminescence mechanism from the comparison between
the theory and experiments.

The momentum matrix element of the excitonic transi-
tion is calculated as
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FIG. 2. Tke exciton binding energy in quantum dots is plot-
ted as a function of the dot radius for Si (solid line) and Ge
(dashed line). The right ordinate represents the same quantity
normalized by the exciton binding energy (Ry ) in the bulk ma-
terial. This ratio indicates the strength of the quantum
confinement.
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where u, k (u„o)is the periodic part of the Bloch function
0

($,0),G„areciprocal lattice vector, uo the volume of
0

a unit cell, and the integrals in (8) and (9) are performed
within a unit cell. In the first term of (7), the derivative
of the periodic part of the Bloch function appears,
whereas in the second term the derivative of the envelope
function appears. Thus the contribution from the first
term is generally larger than that from the second term.
When the momentum matrix element is obtained, the ra-
diative decay rate can be calculated using the well-known
formula.

The size dependence of the radiative lifetime of exci-
tons is determined by the integrals in (7). In the case of
Si and Ge, the conduction-band valleys are located near
the zone boundary of the Brillouin zone and the magni-
tude of the wave vector 6„—ko is at least of the order of

the inverse lattice constant. Thus the integrals take
values of the order of unity only when the confinement
size is as small as a few times the lattice constant and the
envelope functions f, and fz have sizable Fourier com-
ponents at the wave vectors of the same order of magni-
tude as IG„—koI. As the quantum dot size is increased,
the envelope functions become more and more flat and
consequently the magnitude of the momentum matrix
element and the radiative decay rate decrease rapidly.

In the calculation of (8) and (9), the Bloch functions in
bulk crystals of Si and Ge are self-consistently deter-
mined by the first-principles local-density-functional
method. ' They are expressed by the linear combina-
tion of atomic orbitals form of the pseudoatomic wave
function, which is obtained numerically in terms of a sum
over Gaussian-type orbitals. ' ' The calculated radia-
tive decay rate of excitons in Si and Ge quantum dots is
shown in Fig. 3 as a function of the quantum dot radius.
The luminescence decay times of porous Si were reported
to range from ns to ms. If these time constants are con-
sidered as radiative recombination lifetimes, these values
correspond to the quantum dot diameter ranging from 10

0
to 30 A. These values are numerically different from
those estimated from the luminescence peak energies.
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However, there is a large size inhomogeneity about +20
0
A in diameter as can be estimated from the broad photo-
luminescence spectra. Furthermore, the luminescence
decay characteristics are determined by nonradiative pro-
cesses as well as by the radiative decay. Especially, the
nonradiative processes due to dangling bonds at the
nanostructure surface would contribute substantially to
the luminescence decay. Thus the above discrepancy
may be reconciled by taking into account ambiguities
arising from these features. More systematic and inten-
sive studies are necessary on the size dependence of the
luminescence decay times before coming to a conclusion.

We can interpret the observed nonexponential behav-
ior of the luminescence decay in terms of the size inho-
mogeneity of Si nanostructures and the presence of non-
radiative relaxation channels. For example, in a quantum
wire whose diameter is not uniform along the wire axis,
an exciton localized at the thinner part having a relative-
ly higher energy shows a faster luminescence decay but at
the same time relaxes nonradiatively to the thicker part
of the same quantum wire, where the exciton has a lower
energy and shows a slower luminescence decay. These
features can explain the nonexponential behavior of the
luminescence decay.

In summary, we have investigated the quantum
confinement effect on excitons in quantum dots of
indirect-gap materials and clarified a mechanism which
induces an indirect-to-direct conversion of the character
of optical transition. The favorable agreement between
the theory and experimental data on porous Si, concern-
ing the blueshift of the exciton transition energy and the
exciton binding energy, suggests strongly the importance
of the quantum confinement effect in the luminescence
processes of porous Si.
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FIG. 3. The radiative decay rate of excitons in quantum dots
is plotted as a function of the dot radius for Si (solid line) and

Ge (dashed line) ~
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