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Resonant scattering of exciton polaritons in ZnP2 crystals
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Secondary emission of monoclinic zinc diphosphide is investigated under excitation into the exciton
resonance region at 2 K. Distinct emission lines are observed in the vicinity of the 1s exciton energy,
shifted from the excitation energy by the longitudinal-optical (LO) phonon energies. It is shown that
these lines are caused by inelastic scattering of exciton polaritons by the LO phonons with nearly equal
energies of 32.2 and 31.3 meV. The LO lines show the so-called "outgoing resonance"; the lines are
enhanced resonantly as they approach the energy of a transverse or longitudinal exciton. The observed
phonon energies are related to the exciton damping constants derived from temperature dependence of
the reAection spectra. It is concluded that among numbers of phonons, the LO phonons of 32 meV
govern the relaxation processes of exciton polaritons in ZnP2.

Monoclinic zinc diphosphide is one of the II-V com-
pound semiconductors with the space group Czz, which
contains eight formula units in a unit cell. ' In spite of
this complex crystal structure, it has a very clear hydro-
genlike exciton series in the absorption and reflection
spectra. For the polarization E)(c, pronounced reflection
structures due to a direct allowed exciton are observed
near 800 nm. ' For the EIIb polarization, absorption
lines due to a triplet exciton are weakly observed because
of the small spin-orbit interaction. ' ' ' '" Pevtsov et al.
have found the exciton series up to n =7 in the absorp-
tion spectrum for the 1.2-mrn-thick crystal. Recently
the formation of excitonic molecules has been reported
under high-density excitation. '

As for the lattice vibration, there are 72 phonon modes
in rnonoclinic ZnP2 since it contains eight molecules per
unit cell. Of these, 33 modes are infrared active and 36
modes are Raman active. So far, several modes of
infrared-active phonons have been identified from in-
frared reflection spectra. ' ' However, there have been
no reports on the ordinary nor resonant Raman scatter-
ing, probably due to the weak exciton-phonon interac-
tion.

Recently, semiconductor lasers have been available as
an intense monochromatic light source in the near-
infrared region. In the present work we have undertaken
an experiment to observe the resonant Raman scattering
of monoclinic ZnP2 under excitation into the exciton res-
onance region, by using a semiconductor laser. From
comparison with the infrared spectra, we have identified
resonant one-LO-phonon scattering lines with energies
&~Lo=32.2 and 31.3 rneV.

Single crystals of monoclinic ZnPz were grown from
the vapor phase, as described in the previous papers. '
The obtained crystal contains an optically flat surface of
the bc plane. Experiments were performed on this plane.
The experimental configuration was a backscattering
geometry with the polarization of incident and scattered
light both parallel to the c axis a'(c, c)a'. Here the a'
denotes the direction normal to the bc plane. ' The in-
cident light source was a Ga, „Al As-type semiconduc-

tor laser ( —777 nm, 5 mW). The lasing wavelength was
changed around 777 nrn by about 3 nm, by controlling
temperature of the laser element through the Peltier
effect. The incident light was passed through a filter
monochromator and focused onto the sample. Emission
was analyzed by a 50-cm single monochromator and a
cooled photomultiplier (HTV R1477) with a usual lock-in
detection system. The band pass of the analyzing mono-
chrornator was 0.4 meV.

Figure 1 shows a series of emission spectra around the
1s exciton energy under excitation with various energies,
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FIG. 1. Secondary-emission spectra obtained at 2 K under
various excitation energies, 1.5982 eV (8) to 1.5931 eV (H). For
reference, the emission spectrum obtained under band-to-band
excitation with a He-Ne laser is shown by the curve (A). ET
and EL represent positions of the transverse and the longitudi-
nal exciton energies, respectively. As for the experimental
configuration, see the text.
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FIG. 2. Secondary-emission spectra o ta'~ ~

obtained under resonant
excitation at various temperatures.
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are strongly enhanced as the scattered photon energies
approach the resonance energy of the 1s exciton Ez.
Namely, they show outgoing resonance. ' For the
secondary-emission processes in which the fina1 energy
falls into the resonant region, the polariton scattering
efficiency is given mainly by the factor Tf/Vf. Here
Tf is the transmission coefficient defined by the ratio of
the emitted photon flux to the polariton flux inside the
crystal, and Vf is the group velocity of final polariton
states. It is considered that the observed enhancement of
the scattering efficiency is caused by a sharp decrease of
Vf namely by the increase of the final density of states of
the lower branch around Ez.

A resonance enhancement also occurs at longitudinal
exciton energy EI . The high efficiency of this scattering
process may be connected with the high transmission
coefficient Tf of the lower branch at the energy EL, or
with the high density of states at the bottom of the upper
branch.

In the case of resonant excitation, the luminescence
from the upper branch polariton is very weak or almost
vanished at low temperature, as compared with the case
of band-to-band excitation, as seen in Figs. 1 and 3. This
can be ascribed to the difference in the relaxation process-
es of exciton polaritons. In the case of interband excita-
tion, polaritons relax by the successive scatterings of LO
and acoustic phonons down to around the energy
Eg +Aco+Q in the lower branch, followed by multiple
scatterings of acoustic phonons. After attaining quasi-
thermal equilibrium around the bottleneck and also
around the bottom of the upper branch, polaritons escape
from the sample as the ordinary luminescence. In the
case of resonant excitation, on the other hand, the one-
LO scattering process is the most dominant relaxation
path. Consequently polaritons escape from the sample as
the scattering light or hot luminescence before the
thermal equilibrium, so that the polariton luminescence
from the upper branch becomes weak at low temperature.
It should be noted that the upper branch luminescence
increases in intensity with increasing temperature, as seen
in Fig. 2, which indicates that thermalization due to
acoustic phonons proceeds at higher temperature.

As described above, there appear several scattering
lines under the resonant excitation, as shown in Fig. 3 by
arrows, closed circles, and vertical bars. Of these, the
one-LO scattering line shown by arrows with ANLQ=32. 2

meV is the most intense. This fact indicates that the exci-
ton polariton interacts effectively with this mode of pho-
non. In order to confirm this, we reexamine the temper-
ature dependence of the exciton damping constant ob-
tained in the previous study, ' where the reflection spec-
tra of the 1s exciton were measured at various tempera-
tures and analyzed based on the exciton polariton model
proposed by Hopfield and Thomas. In the numerical
calculation, the damping constant I above E„was as-
sumed to be proportional to the energy, owing to the in-
teraction of the exciton with acoustic phonons,
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FIG. 4. Temperature dependence of the damping constant of
the exciton polariton, obtained by the analysis of reflection
spectra at various temperatures. The solid curve represents the
theoretical curve calculated by taking A'coLo=32. 2 meV as a
LO-phonon energy.

where E„~ is energy of the longitudinal-transverse split-
ting of the 1s exciton, EL-Ez-. In Fig. 4, the damping
constant a obtained from the analysis of reflection spec-
tra is plotted as a function of temperature. The solid
curve represents the calculated curve obtained by assum-
ing the following formula as the damping constant:

The first term on the right-hand side denotes a
temperature-independent damping constant. The second
term arises from exciton interactions with acoustic pho-
nons. The last term arises from interactions with LO
phonons and is proportional to the Bose function n Lo( T)
for LO-phonon occupation,

1neo(T)=
exp(A'coLo/k T) —l

where AcoLQ is a LO-phonon energy. The solid curve was
drawn by taking ~LQ=32.2 meV as a LO-phonon ener-

gy. The curve well reproduces the temperature depen-
dence of the damping constant. The LO-phonon energy
AcuLQ=31. 3 meV gives almost the same results. It is
therefore considered that among numbers of phonons the
exciton polaritons are coupled dominantly to these modes
of LO phonons with energies of —32 meV.

In summary, we have identified LO-phonon lines either
by resonant Raman scattering or by the hot luminescence
process in rnonoclinic ZnPz under excitation into the 2s
to 3s exciton resonances. Two closely located LO-
phonon lines are resolved in the scattering spectra with
energies of 32.2 and 31.3 meV. The LO scattering lines
show outgoing resonance enhancement both at Ez- and EL
of the ls exciton. The intensity of luminescence from the
upper branch polariton is relatively weak under the reso-
nant excitation, as compared with that obtained under
the interband excitation. This can be attributed to the
difference of exciton relaxation processes for both excita-
tions. It is concluded that, though the interaction is
weak, the LO phonons of 32 meV govern the relaxation
processes of exciton polaritons in ZnP2 crystal.
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