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The speed of automatic optimization procedures used in surface structure determination by low-

energy electron diffraction can be greatly enhanced by the use of linear approximations in the calculation
of scattering amplitudes. It is shown how linear approximations can be used in the calculation of deriva-

tives of intensities which are required in the least-squares optimization method. The derivatives with

respect to structural and nonstructural parameters are calculated applying a combination of analytic and

numerical methods in connection with approximations of the sum over lattice points in the angular

momentum representation. Special cases for different structural and nonstructural parameters and

simplifications for special geometries are discussed. The computational effort becomes nearly indepen-

dent of the number of free parameters and enables the analysis of complex surface structures.

I. INTRODUCTION

The application of optimization techniques and fast
calculational procedures is essential for the future devel-
opment of low-energy electron diffraction (LEED). The
simultaneous optimization of a large number of parame-
ters makes much more complex structures accessible to
an analysis, in contrast to the usual method (grid search)
of approaching the R-factor minimum by independent
variation of all parameters. In principle, various kinds of
optimization schemes are applicable in LEED, but until
recently only a few different approaches have been pro-
posed. These include a variant of the method of steepest
descent, ' a combination of tensor LEED (Ref. 2) with the
gradient method, so-called direct methods, and least-
squares optimization procedures. In general, those
techniques which apply the derivatives of a fitting func-
tion are faster than search procedures. The calculation of
derivatives, however, can become rather time consuming
because an analytic solution is not, in general, applicable.
If one avoids the calculation of derivatives by applying
other optimization algorithms this may simplify the com-
puter program but does not improve the speed of the cal-
culation because in any case the calculation of LEED in-
tensities is necessary for several points in parameter space
to determine the gradient of the R-factor function.

A very efficient optimization procedure is the so-called
expansion method which is routinely applied in many
fields, e.g., in x-ray structure determination. This method
has the advantage of converging rapidly near a minimum
of the fitting function in the parameter space, but, on the

other hand, converges only slowly far from a minimum.
Therefore we use a slightly different method proposed by
Marquardt which combines the advantages of the gra-
dient method far from the optimum and the expansion
method near the optimum. Its use in connection with
LEED has been described previously and it has been
applied successfully in a number of structural analy-
ses.

The optimization procedure requires the knowledge of
the derivatives of a fitting function with respect to the pa-
rameters which have to be optimized. As a fitting func-
tion frequently an R factor is used which is a complicated
function of experimental and theoretical I/V curves and
involves integrations over the energy range. The deriva-
tives of the R factor, therefore, cannot be analytically cal-
culated. In the least-squares optimization method (the
Marquardt method is a variant of that method) the
mean-square deviation between experimental and theoret-
ical intensities is taken as the fitting function. Its deriva-
tives are simply calculated from the derivatives of the in-

tensities. Therefore only these are required. The purpose
of this paper is to present methods to calculate deriva-
tives of intensities with respect to structural and non-
structural parameters with high efficiency. The intensity
derivatives are intended here to be used with the least-
squares optimization method but could be used with oth-
er optimization techniques as well.

The optimization algorithm does not require an analyt-
ic solution for the derivatives of the intensities and the
simplest way is to calculate the derivatives numerically as
has been done in previous calculations. ' In this case the
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computational effort scales linearly with the number of
free parameters. With an increasing number of free pa-
rameters the calculation of derivatives soon becomes the
most time-consuming step in the analysis. It is, therefore,
highly desirable to improve the efficiency in calculating
derivatives. One approach, proposed by Rous et al. , is
the so-called tensor LEED method. This approach has
been published for the use with the renormalized forward
scattering (RFS) method. ' The combination of the ten-
sor LEED approach with direct methods and with optim-
ization procedures' ' has been successfully applied for
several structures leading to an efficient reduction of the
computational effort. The calculation of derivatives de-
scribed here differs from the tensor LEED method in that
multiple-scattering effects are fully included and further
that nonstructural parameters are also treated. The non-
structural parameters considered here are the Debye tem-
perature and an occupation factor to be used within the
average t-matrix approximation (ATA). Another
difference to the tensor LEED method is that only the
first derivative is calculated and higher-order effects,
which are included in the second step of tensor LEED,
are not considered. We use here the layer-doubling
scheme for interlayer multiple scattering but the calcula-
tion can be easily extended for the RFS scheme.

The paper is organized as follows. In Sec. II A we de-
scribe the general scheme for the calculation of deriva-
tives for structural parameters in the multiple-scattering
formalism. In Sec. II B, it is shown how the calculation
of the derivatives of the layer-scattering amplitudes is
carried out. It is also discussed how further
simplification brought about by approximations in per-
forming the lattice sum can be used. In Sec. II C we de-
scribe the implementation in the layer-doubling scheme.
The treatment of nonstructural parameters is described in
Sec. II D. Simplifications for special cases are discussed
in Sec. II E. We compare the different methods and dis-
cuss the results in the last section.

II. DESCRIPTION OF THE APPROXIMATION
SCHEME

A. Calculation of derivatives
of multiple-scattering amplitudes

In the least-squares optimization scheme, the minimum
of a fitting function in the parameter space is determined
from its derivatives using a linear expansion of the fitting
function. Nonlinearities are overcome by iterating the
process. As a fitting function usually the mean-square
deviation between measured and calculated intensities is
used, and the calculation of its derivations requires the
calculation of the derivatives of the intensities with
respect to the variable parameters. The least-squares op-
timization procedure is, of course, not limited to the use
of this fitting function and the Y function, as defined for
the r factor proposed by Pendry, ' could be taken as well.
We will describe in the following the theory to calculate
the derivatives of the intensities which are required in
any case.

The simplest approach is to expand the intensities in a

and to calculate the intensities for a new set of parame-
ters p+5p by

I(p+5p. ) = i A (p) + A '(p)5p~
a~(p)

BA '(p) BA (p)
p pj ~ pg

which slightly improves the quality of the linear expan-
sion. If the changes of the parameters are larger than a
certain limit, the full dynamical calculation has to be re-
peated in the iteration process. The vector
p=(p„p2, . . . ,pz) denotes the set of structural or non-
structural parameters to be optimized.

The numerical calculation requires the solution of the
multiple-scattering formalism for each parameter incre-
ment, and hence the computational effort increases ap-
proximately linearly with the number of free parameters.
Improvements can be made by deriving analytic expres-
sions and separating those parts which are common to
different parameters so that they have to be calculated
only once.

A complete analytic expression for the derivatives is
not useful because its calculation would not reduce the
computational effort. We therefore first separate the ma-
trix inversion occurring in the self-consistent solution of
the multiple-scattering problem. This occurs in different
formulations of the multiple-scattering theory either in
direct space with a spherical-wave expansion or in re-
ciprocal space with a plane-wave expansion. In both for-
mulations, the size of the system of linear equations can
become very large for complex structures. The dimen-
sions of the matrices are governed by the number of
spherical waves for calculating the layer-scattering ma-
trices and by the number of plane waves in the layer-
doubling scheme. Although a fast computation is possi-
ble using array processors, the calculation of the matrix
elements and the inversion of matrices are the most
time-consuming processes. Simplifications can be intro-
duced in two different steps. At first, the derivative can
be calculated by expanding the inverse of the matrix
([1—S(p)]) in a Taylor series around a reference struc-
ture given by the set of parameters po,

(1—S(po+5p)) '=(1—S(po))

+ (1—S(po) )

X [S(po+ 5p) —S (po) ]

X(1—S(po)) '+ . (3)

The inverse matrix (1—S(po)) ' or its solution vec-
tors, respectively, can be stored in order to use it for
derivatives of all parameters. The main effect of using
Eq. (3) is that the matrix inversion is replaced by a matrix

Taylor series around a reference structure and to calcu-
late the derivative numerically. It is best to use the
derivative of the amplitudes

gg(p) A(p+5p ) —A (p)
()p 5p-
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multiplication and furthermore that the calculation of the
increment S(po+5p) —S(po) can be simplified in
angular-momentum space as well as in reciprocal space
as will be outlined below.

The numerical calculation of matrix elements
[S(po+5p) —S(po)] for small increments 5p occurs in
both the plane-wave and spherical-wave representations,
which are both used in the multiple-scattering scheme.
At first, reflection and transmission matrices are calculat-
ed for monatomic or composite layers. In case the layer
spacings are small, several subplanes have to be treated as
a composite layer. This step of the calculation is done in
a spherical-wave expansion and the atomic positions are
required in polar coordinates. The layer-scattering ma-
trices are then combined by the layer-doubling scheme or
the RFS method. ' This part is done in a plane-wave ex-
pansion. Both parts will be discussed separately.

B. Derivatives of layer scattering matrices
of composite layers

The variation of the atomic positions in a composite
layer leads to a variation of its reflection and transmission
matrices. The reflection and transmission matrices for a
composite layer are given as follows by'

8 2

M ~ =g g k A k
~

[i'( —1) YI (Q(k ))e
Im v I'm'p ~ g'~

X [ 1 X ]lmv, I' pmrl I

X Y, (Q(k, ))e ' ~I,

(4)

d

subp[ane v

0„
subp[ane p

FIG. 1. Illustration of atomic positions in a composite layer
as it is used in Eqs. {4)—{7) for calculating the scattering ma-
trices.

A I (k )=i'( —1) Y( (Q(k ))e

hI(z) are the spherical Hankel functions of the first kind,
d„—d is the translation vector between origins of the
subplanes p and v, P are the lattice vectors within a sub-
plane, and ko is the wave vector of the incident wave
field, see Fig. 1.

The matrix elements Mg g are reflection and transmis-
sion coefficients describing the amplitude of the wave
diffracted from the direction kg into the direction kg.
Most of the computing time is spent with the calculation
of the elements of the matrix X which is dominated by
the calculation of the lattice sums FI- (ko).

We define vectors as

where

XIm~ ~ = g c(lm, l' —m', I"m")FI

c(lm, l' —m', 1"m")=f YI (Q)Y&, .(Q)Y& ~ ~ (Q)dQ,

B„I (kg ) =i 'Y( (Q(kg ))e ' "t',"',

Z, I
= g (1 X)„I' „I, .B—„I

p, I'm '

and obtain for the scattering matrices

(10)

F, -(k,)=y. ' i"~,„(lk,i ~P+d„—d, ~)
P

X Yi (Q(P+ d„—d„))

=g fr"(' ~ (P+d„—d, ),
P

Mg g=+A, [1 X),„'B„=g—A„Z„,

where the indices I, m and the arguments k have been

dropped for convenience.
We expand the difference 5Mg g

=Mg ~(po+5p)
—M ~ (po) linearly in terms of 5p,

5Ms s =g A (po+5p) [1—X(po+5p) ] 'B„(po+5p) —g A, (po)[1 —X(po) ] 'B„(po)
V)P

, aa„aw.
A„(po+5p)[1 —X(po)]„„' "5p+ 5p([1 —X(p)]) „'B„(p)

~P ~P

+g g A (po+5p)[1 —X(po)]„„,'5X„.„.[1—X(po)]„„B„(po+5p).
V, P VP

(12)

The derivative of the reflection and transmission
coefficients thus consists of two parts. The first contribu-
tion arises from the geometrical phase occurring in the
vectors A and 8„, and the second contribution arises

from intralayer multiple scattering. Both parts can be
treated separately and are of significant different impor-
tance as will be discussed below.

Equation (12) enables a very efficient calculation. The
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—Im(k, } IPI ~lnE . (13)

Setting @=0.001 leads usually to a radios R,„ofabout
10—15 interatomic distances. If the interlayer spacing
d„—d is varied by an increment 5d„„, this changes the
phase factors, the spherical Hankel functions, and the
spherical harmonics. An analytic calculation of the
derivatives would not really improve the speed of the cal-
culation. It is therefore more advantageous to make use
of the asymptotic behavior of the derivative of the spheri-
cal Hankel functions for large arguments

d
h&(z) = ih&(z) for z &) 1

dz ' (14)

vectors A, (p},8„(p), and Z„(p), respectively, as well as
the spherical harmonics, have been calculated for the
reference structure anyway. For each parameter incre-
ment only the matrix elements 5X ={[X(po+5p)—X(po)]) are required. In special cases, as will be dis-
cussed in Sec. II E, the calculation of 5X can be skipped.

The lattice sum in Eq. (7) runs over all lattice points
within a limiting radius given by the convergence cri-
terion

with

z = IkllP+d„—d. l
.

%'e may consider the case that the position of atom p
has to be optimized. The spherical harmonics do not
change much with the increment 5d „at large polar an-

gles, i.e., at large vectors P (see Fig. 1). For values of IPI
larger than a limiting radius Ro, the contribution of the
spherical harmonics to the lattice sum FI associated
with the increment 5d„„can be neglected. Therefore the
lattice sum is split into two parts, a near-neighborhood
part which needs to be recalculated for the incremented
parameter d„„=d„„+51„„anda second part which by
Eq. (14) is easily obtained from the corresponding part of
the reference structure. It is advantageous to distinguish
displacements parallel and vertical to the plane. The
separate treatment of d~~ and d~ takes into account that
displacements vertical to the surface do not inhuence the
interatomic distances significantly for large P in contrast
to lateral displacements; hence c~~ takes the values zero
and unity for vertical and lateral displacements, respec-
tively. We obtain for the increment of the lattice sum,

5+P=gfg(P+d„—d +5d„„)—fP(P+d„—d. )=El, g ~'"e' ' Ikol(ld„—d.+5d,„+PI—Id„—d.+PI)

Xh((lkolld„—d„—d„+Pl) Y( (Q(d„—d„+P))

+ g fP(P+d„—d„+5d „)—f(""(P+d„—d„) .
fP[&R,

Utilizing the symmetry properties of the spherical harmonics, the first term in Eq. (15) can be rearranged as

lltol ( ld& d +5d &+ PI Id& d + PI )h&( Ikolld& d + PI ) Y& — (Q(d& d +P ) )
IPl &R,

(15)

&'+ '
lltoll5d, plh(( lltolld„—d, +PI )[ Y& {&(d„—d„+P))—Y& (d„—d, —P ) ]cosp(P )

IPI )Rp

0, 1 —Iml odd —imp
cg

l f
1 Irn I

even (17)

The first term in Eq. (16) vanishes for 1+ m odd and large
vectors P. The term with l +m even vanishes also for
m&0 because of the diagonal dominance of the matrix X
which works remarkably well at normal incidence, '

5XIm v; I'm'p 5XIm v; I'm'p5mm' (18)

with cosy( P ) =P5d „/I P
I I5d,„l.

In the derivation given above we have neglected the
differential of the spherical harmonics due to its small
inhuence on the lattice sum. That this contribution van-
ishes for large P may be seen also from the following ar-
gument. Because of the properties of the spherical har-
monics at 8=m/2,

Y& (90', q&) a&l PI l(0)

Finally the matrix 5X is given by

5X=X(F0+5P) —X(PO)

(19)

A large reduction of the computational effort arises from
the restriction of the lattice sum to IPI &Ro, Ro suitable.
It should be noted that the number of lattice points scales
quadratic with Ro. The latter can be chosen for 3—5 in-
teratomic distances. The main multiple-scattering contri-
bution arises from near-neighbor contributions. Howev-
er, in order to keep the error in the intensities smaller
than 0.001, usually 10—15 interatomic distances (R,„)
need to be included. For the calculation of derivatives
this precision is not required because a linear approxima-
tion is not precise anyway. A cutoff at about 3—5 intera-
tomic distances (Ro) is well justified.
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The value for Ro is determined by the validity of the
asymptotic expansion of the derivative of the spherical
Bessel functions. It generally depends on the quantum
numbers l and m. However, we use an average value of
about 3 —5 interatomic distances independent of l and m.
This results in an accuracy of the derivatives of
0.2 —0.4%%uo which seems to be highly sufficient and leads
to a reduction of the computing time for the matrix X by
a factor of 4.

C. Implementation in the layer-doubling scheme

vacuum
Wf /fW~

Q1. layer

P)' P,

Q2. layer

P2 P2

Q3. layer

P3 P3

bulk

&~ (Pp)
t, (Pp)

12(Pp)
t, (Pp)

r, (P, ), r,(P,.eP)

t 3 {Pp ) t3 ( Pp + 6 P )

+
"b tk

R2 (Pp)

5R 2'

R3(Pp)

IiR3'

R;.(P, )

R1 (Pp+5P)

where r + describes the reflection of an incoming wave
ik+r ik r

e ' into an outgoing wave e " and the plane-wave
propagators P—+ are defined by

+ik—d
P—=e (21)

d is the distance vector between the two layers.
Applying the layer-doubling method for calculation of

derivatives two different cases have to be distinguished.
First, a variation in the layer-scattering matrices may
occur due to an increment in the atomic coordinates or in
the atomic scattering factors of one of the two composite
layers which are coupled by layer doubling,

In the second step of the multiple-scattering calcula-
tion the scattering matrices of all (possibly composite)
layers are stacked by the layer-doubling method' which
treats the multiple scattering between layers exactly by
matrix inversion, or alternatively by the RFS scheme
which corresponds to an iterative solution of the matrix
inversion. We will treat here only the layer-doubling
scheme because of its wider range of applicability. Let
r„t, and rb, tb be the reflection and transmission ma-
trices for two layers a and b. The matrices r +, t++,
etc. are given by Eq. (4}choosing the proper directions of
the incoming and outgoing waves. The reflection matrix
for the stack of two layers is given by

—+ —++ P +P+
Q a

X(1— +P +P+) 't++ (20)

5r + =r +(po+5p) —r +(po),
(22)

5t +=t+—+——(po+5p) —t (po),
and second, by an increment of the interlayer distances
which changes the interlayer propagators

5P =P(1+ik 5gd) . (23)

In both cases the linear expansion in Eq. (3) can be ap-
plied to calculate 6R

Let us first consider the case that an increment occurs
in the parameter of the layer a leading to an increment
5r, and 5t, . Using the abbreviation

Q p — —+p+[1 + —
( )p

— —+p+] —
1 (24)

and neglecting quadratic terms we obtain for the incre-
ment of the reflection matrix of the stack of two layers

5R + =5r, ++t, (po)Q5r, Qt,+ (po)

+5t. Qt,++(p, )+t. (p, )Q5t.++ . (25)

For a variation of layer b and using

W = [1 r,+ (po)P rb +P—+ ]
we obtain

(26)

FIG. 2. Diagram of the layer-doubling approach for the case
of a parameter variation in the third layer. The scattering ma-
trices to be required in the approximation scheme are indicated.

5R +=t P r +( )P+Wr P 5r +P+Wt+++t P 5r +P Wt++

=t, P [rb +(po)P+Wr, P +1]5rl, +P+ Wt,++

Similar formulas apply for the transmission matrices.

By varying the interlayer distance d we obtain

(27)

5R =t, ([1+P rb +P (1—r,+ P rb +P+) 'r,+ ]}
X [5P +P++P +5P+](1—+ P +P+) (2S)

In both cases the term (1 —r,+ P rI, +P )
' in Eqs.

(25), (27), and (28) can be calculated and stored prior to
incrementing the structural parameter. As an example,
in Fig. 2 the consecutive stacking of scattering matrices
for the case of a parameter variation in the third compos-
ite layer is illustrated. The scattering matrices to be re-
quired in the approximation scheme are indicated. In the

I

first step the third layer is combined with the bulk result-

ing in the reflection matrix of that compound
configuration. The difference 6R 3

+ has to be transport-
ed to the topmost layer via 5R 2

+.
It is advantageous to stack the layers starting from the

topmost layer because then only multiplications of ma-
trices with one vector appear.
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D. Derivatives ~ith respect to nonstructural parameters

The nonstructural parameters which are subject to op-
timization are the following: (i) the inner potential with a
real and imaginary part and its energy dependence; (ii)
the thermal vibrations entering the theory via the Debye
temperature; (iii) an occupation factor. The latter occurs,
e.g., in binary alloys or adsorbate layers with mixed occu-
pation of adsorbate sites.

The optimization of the inner potential causes no prob-
lems. At normal or near-normal incidence, the refraction
of the incident wave can be neglected and the calculated
I/V curves are fitted to the experimental ones by shifting
the energy scale. There is no need to calculate the deriva-
tive of the theoretical intensities with respect to the inner
potential. It is completely equivalent to shift the experi-
mental energy scale and to take the derivative of the ex-
perirnental intensities without much computational
effort It .corresponds to use BI,„/BE instead of BI,h/BVO
in the optimization procedure. A variation of the energy
dependence of the inner potential corresponds to a non-
linear expansion or compression of the energy scale
and the corresponding differential is given by
(BI,„/BE)(BE/Bp) where p is a parameter of the energy
dependence of the inner potential, e.g., the frequently
used form is a square-root dependence of Vo on the ener-

gy Vo= —const+p/E for values of E above ca. 50 eV.
The imaginary part of the inner potential and its energy
dependence have usually little influence on the structural
result and these parameters are not considered here for
optimization.

The treatment of temperature effects in the dynamical
calculation using a Debye temperature OD and
temperature-dependent phase shifts' allows a rapid cal-
culation of derivatives with respect to this parameter. A
variation of the thermal vibrations at the temperature T
leaves the geometry unchanged and affects only the
single-scattering t matrices via temperature-dependent
phase shifts, ' ' '

i 5&(HD, T)
ti(8D, T)= . e ' sin5t(8D, T) .

ill ol
(29)

+g A (1—X(8D ) ) '5X(1—X(8D ) ) 'B„(8D),

The variation of layer-scattering matrices by a variation
of the Debye temperature 58D is obtained starting from
Eq. (4) and neglecting second-order terms. Using the vec-
tors defined in Eqs. (8)—(10) we obtain

5M ~ =+A (1—X(8D }) '5B„

ism using the ATA approximation. Its successful appli-
cation in LEED structure analysis has been demonstrated
in a number of surfaces of binary alloys. The average t
matrix for a binary alloy of component A and B is given

by

t&(c) ct—
&
„+(1 c—)t& s, (32)

X([1—X(cc)]) 'B„. (33)

The increment 5M ~ of the layer-scattering matrices
can be inserted in the layer-doubling scheme as described
in Sec. II C. The optimization of nonstructural parame-
ters is a relatively fast process, because the time-
consuming recalculation of electron propagator matrices
is not required.

E. Simpli6cations for special cases

In many cases the existence of an adsorbate layer or a
reconstructed surface layer causes slight distortions in
the underlying substrate layers. The distortions may in-
volve lateral and vertical displacements with vertical dis-
placernents being usually more influential on the LEED
I/V data than the lateral displacements. This is not only
a consequence of the backscattering geometry used in
LEED. Vertical displacements occur frequently because
there is more freedom for the atoms to move in a direc-
tion normal to the surface than parallel to the surface.
Lateral displacements usually influence the bond lengths
more than vertical displacernents and in most cases ad-
sorbate layers induce slight rumpling in the uppermost
substrate layers. In these cases the calculation of the
derivatives with respect to vertical displacernents in a
slightly buckled substrate layer becomes necessary. Cor-
responding calculations are very time consuming, be-
cause, on the one hand, the full overlayer unit cell has to
be considered and, on the other hand, the substrate layers
are usually densely packed resulting in a large number of
atoms in the unit cell.

Simplifications can be made by taking advantage of the
fact that the bond lengths change very little in a slightly
buckled layer. Consequently it is sufficient to neglect the
second term in Eq. (12}and to use only the change of the
phase factors in the first part. The derivative of the
scattering amplitudes is then given by

where c is the concentration of element A and (1—c) is
the concentration of element B. An increment in the
concentration 5c leads to

5Mgg=+A„(1 —X(co)) '(t„ts)—B„5c
V, P,

++A„(1—X(co)) '(t„t s)5—cX(c o)

V,P

where

5B„=B„(8D+58D) —B (8D ),
5X=X(8D+58D) X(8D) . —

(30)

(31)

am, ,, , M„
A„(P)(1—X)„„'

J v, p J

BA+ (1—X)„„'B„(P)
as,

(34)

A statistical occupation of lattice sites or adsorbate
sites can be introduced in the multiple-scattering formal-

This corresponds to a quasikinematic approximation be-
cause only the geometric phase is considered and the
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multiple-scattering peart is neglected.
We compare this approximation with a full dynamical

calculation in Fig. 3(b). Obviously, there exist only very
slight differences to the full dynamical calculation. As
the derivatives are required to determine the direction of
the next parameter increment and to estimate its magni-
tude, it is not important to calculate the derivatives more
precisely. By the iteration process in the optimization
scheme the full dynamical calculation is repeated in each
step anyway.

As expected, we have found close agreement between
full dynamical ("exact") and quasikinematical calculated
derivatives of intensities only for a variation of vertical
parameters. Lateral parameters, e.g., a pairing of neigh-
boring atoms, exhibit a significant poorer correspondence
between exact and quasikinematical derivatives, as shown
in Fig. 4(b), upper part. Applying that simple approxi-
mation, the automatic structure refinement leads to an
unreliable new structure and the iterative process does
not converge to the optimum structure. However, this
problem can easily be circumvented by including the
multiple-scattering part according to Eq. (12). The high
accuracy of derivatives with respect to lateral parameters
obtained by this extended version is demonstrated in Fig.
4(b), lower part.

Summarizing, we can state that the derivatives of the
LEED intensities with respect to vertical displacements
in a slightly buckled layer is well approximated by a "ki-
nematic" calculation while the variation of lateral
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FICx. 3. (a) Structure model of 0/Ni(110)-(2X1) and the
different vertical displacements used in the calculation of the
derivatives of intensities with respect to the parameters specified
in the figure. (b) Comparison of the quasikinematically approxi-
mate (full line) and full dynamical calculation (dashed line) of
derivatives.

FICs. 4. Illustration of the limiting radius for a linear expan-
sion of the intensities. (a) A structure model of 0/Co(1010)-
(2X2) and the different horizontal displacements used in the
calculation of the derivatives. (b) Upper part: Comparison of
the quasikinematically approximate (full line) and full dynami-
cal calculation (dashed line) of derivatives. Lower part: Com-
parison of the approximate (including the multiple scattering
part full line) and full dynamical calculation (dashed line) of
derivatives.
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III. DISCUSSION

The approximate calculation of derivatives of the in-
tensities with respect to structural and nonstructural pa-
rameters provides a very eScient way to use optimization
procedures in connection with structure determination by
LEED. A large part of the initial calculation for the
reference structure can be stored and used again for the
incremented structure thus causing the total calculational
effort to increase only weakly with the number of free pa-
rameters. The above methods therefore allow us to deter-
mine structures of complexity up to now not accessible
by LEED.

A further acceleration of this algorithm can be
achieved by using a reduced basis of wave functions in
the spherical-wave expansion as well as in the plane-wave
representation. %e found that no loss of accuracy occurs
(in the derivatives) reducing the number of angular-
momentum components by about 40'I/o by using, e.g.,1,„=6 instead of I,„=S in the full calculation. This
may not be generally valid for high-Z atoms. Because the
calculation in angular-momentum space scales with
(lm,„+1) this part of the calculation is speeded up con-
siderably. A similar reduction is also possible for the set
of plane waves in the layer-doubling scheme.

The reduction in computing time achieved by applying
linear approximations in the calculation of derivatives de-
pends, of course, on the number of free parameters. In
the case of 0/Ni(110)-(2X1), with only six free parame-
ters in the three uppermost layers, the full numerical cal-
culation of derivatives for seven iterations, 21 energy
points in 15-eV steps, 10 phase shifts, and 97 symmetri-
cally independent beams amounts to about 5000 s on a
CRAY- YMP. Using the approximations described above
this time reduces to about 600 s. The save in computa-
tional effort becomes larger with an increasing number of
free parameters. The number of free parameters is not
the limiting factor for the complexity of a structure. The
limits are mainly set by the number of symmetrically in-
dependent atoms in the unit cell of a composite layer for
which a full dynamical calculation can be performed in
reasonable computing times. It is further necessary to
find a reasonable model with at least some agreement be-
tween experimental and theoretical I/V curves which
can be used as a start model for the optimization pro-
cedure.

The calculation of derivatives of the intensity function
is independent of the optimization procedure actually
used for structure refinement. In the optimization
scheme described previously, the mean-square deviation
between experimental and theoretical intensities are mini-
mized. It has been found in a number of previous studies
that this criterion is sufBcient to localize the optimum
structure, with the advantage that intensities need only
be calculated in large steps on the energy scale thus re-
ducing the calculational effort by an additional factor of
3-5. In all cases where a comparison could be made,
even in the cases where the final agreement was marginal,
the same structural parameters were found as determined
from a grid search using Pendry's R factor Rz. ' It
remains, however, to be investigated in detail which
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FIG. 5. (a) Structure model of 0/Co(1010)-(2X1) and the
different parameters used in the calculation of the derivatives.
(b) Derivatives of LEED intensities with respect to different
horizontal and vertical parameters for the reference structure

0
(0.0 A) and model structures with small increments in parame-
ters (0.06 A, 0.16 A for lateral parameter and 0.03 A, 0.08 A for
vertical parameter).

fitting function is best suited for application with LEED.
The comparison of relative intensities certainly gives the
absolute height of maxima in the I/V curves a weight
which may not be appropriate. In the multiple-scattering
theory the thermal vibrations are not correctly treated,
and from the experience of x-ray structure determination
one may conclude that this is the cause for the major
discrepancies between theory and experiment in the
present state of the analysis. Additional uncertainties
occur in the measurement. Effects from misalignment of
the surface normal, energy dependence of the detector
function, or inhomogeneities of the display screen, etc.,
may in6uence the absolute height of maxima but to a
lesser extent the position of maxima on the energy scale.
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Therefore it may be more appropriate to use a different
fitting function which weights the position of peaks as it
does the Y function proposed by Pendry. ' The Y func-
tion can likewise be implemented in the least-squares al-
gorithm. The only disadvantage is that the step width on
the energy scale has to be chosen on a correspondingly
small scale to allow the calculation of the derivative of
the I/V curve with respect to the energy required by the
Y function. The relative intensities, on the other hand,
are certainly more important than the peak position in
determining vibrational amplitude, and in case the theory
can be developed further towards a more precise calcula-
tion of temperature factors the comparison of intensities
will be more useful.

The numerical calculation of derivatives as outlined
above is related to the tensor LEED method proposed by
Pendry and co-workers but uses a different mathematical
approach. Here only a linear approximation is used and
the nonlinearity of the intensity function is overcome by
an iterative solution in the fit procedure. A new full
dynamical calculation is usually required at each itera-
tion step.

A further improvement of the optimization scheme can
be achieved by calculating the LEED intensities around
the reference structure by a linear expansion utilizing the
corresponding derivatives with respect to the parameters
to be optimized. The reliability of this procedure is

demonstrated in Fig. 5, where the derivatives of different
vertical and horizontal displacements are shown for vari-
ous model structures (0.0 indicates the reference struc-
ture). The derivatives do not change significantly for
model structures with parameter variations around the
reference structure within the limits of 0.06 A for lateral
and 0.03 A for vertical displacements. Thus a linear ex-
pansion of LEED intensities should be applicable within
these limits. Thus a new full dynamical calculation is
only required at each second or third iteration step.

In the tensor LEED method the main calculationa1
effort is put in calculating the tensor and saving comput-
ing time by calculating all structures around the refer-
ence structure with the once calculated tensor. The con-
vergence radius of this method is probably larger than
that of the least-squares optimization. A detailed study
of the optimization procedures using different fitting
functions and a comparison with the tensor LEED
method is in progress.
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