
PHYSICAL REVIEW B VOLUME 46, NUMBER 23 15 DECEMBER 1992-I

Single-electron energy snbbands of a hollow cylinder in an axial magnetic field
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The energy spectrum of a single electron confined to a hollow cylinder by an infinite square potential
well is determined within the effective-mass approximation, both as a function of the radii and applied
axial magnetic field. In the absence of a magnetic field, the states with nonzero azimuthal quantum num-

ber m are doubly degenerate, with the lowest-energy m =0 subband always the ground state. The appli-
cation of an axial magnetic field lifts these degeneracies. As the field is increased, the m & 0 subbands in-

itially decrease in energy and attain a minimum at a magnetic field corresponding to
~
m~ elementary flux

quanta (h/e) contained within the electron's cyclotron radius. The presence of the magnetic field leads
to quite different conclusions regarding the nature of the ground state. For low fields, the ground state
is, as before, the lowest m =0 state. As the field is increased, this state loses the status of being the
ground state and is replaced by the lowest-energy m = —1 subband, which in turn is replaced by the
m = —2 state, and so on. This behavior is due to the presence of the inner radius and is analogous to
similar behavior recently predicted for a pair of interacting electrons in a solid cylinder.

I. INTRODUCTION

The behavior of electrons in the presence of a uniform
magnetic field is a classic problem in quantum mechan-
ics. ' The advancement in nanostructure fabrication tech-
niques, and hence the ability to confine electrons to
quasi-two-dimensions, has led to a wealth of new physics,
especially with the application of a magnetic field. ' In
particular, the physics of quasi-one- and quasi-zero-
dimensional devices is now the subject of considerable at-
tention.

Long ago, Dingle considered the one-electron proper-
ties of small systems under the influence of a constant
magnetic field, and, of relevance to this investigation,
that of a solid cylinder with an axial field. " Perturbative
techniques were employed in order to obtain the energy
spectrum, together with the development of asymptotic
expansions for the various special functions that arise. In
an earlier paper' we discussed a quantum wire in an axi-
al magnetic field. The Schrodinger equation can be
solved exactly in terms of confluent hypergeometric func-
tions, ' so the boundary condition at the outer radius R of
the wire generates an exact equation for the energy eigen-
value. The character of the solutions depends on the ra-
tio a, /R, where a, =(fi/eB)'r is the magnetic length.
For a, /R » I (weak field) confinement is by the cylinder
alone and the energy spectrum is that of the cylinder
without applied field. ' For a, /R &&1 confinement by
the cylinder wall is irrelevant and the spectrum is the cy-
clotron sequence E„=(n+ —,

' )%co, with to, =eB/p, where

p is the effective mass. The lowest eigenvalue at all fields
corresponds to azimuthal quantum number m equal to
zero. For B =0, states m and —m are degenerate. For
small B, a linear Zeeman splitting is seen, with E( —m)
decreasing and E(m) increasing. For large B, the quad-
ratic coupling Hamiltonian e A /2p is dominant with
the result that both E( —m ) and E(m ) increase as B in-
creases. This means in particular that E( —m) has a

minimum at an intermediate value of B.
Makar, Ahmed, and Awad' raised the question of the

quantum mechanics of an electron in a hollow cylinder
with an axial applied magnetic field. They give a discus-
sion in terms of various limiting and asymptotic solu-
tions, similar in spirit to the much earlier work of Din-
gle" on the solid cylinder. As for the solid cylinder, an
exact solution is possible and forms the subject of this pa-
per.

The paper is arranged as follows. In Sec. II the energy
eigenvalues are discussed for the hollow cylinder in the
absence of a magnetic field. Section III considers in de-
tail the effect of an axial magnetic field on both the one-
electron energies and wave functions. Some concluding
remarks are contained in Sec. IV.

II. HOLLOW CYLINDER

In this section, the energy spectrum of an electron
confined to a hollow cylinder of inner radius R

&
and

outer radius R2 is derived. It is convenient to work in
cylindrical coordinates (p, q&, z). The confining potential
is taken as zero in the region R, ~p~R2 and infinite oth-
erwise. The effective-mass Schrodinger equation is separ-
able' and the wave function P is given by

ttt=[PJ (qp)+QY (qp)]e * e' ~, m =0,+I,+2, . . . ,

with

q'=2I E, /w' .

In the above P and Q are constants determined by nor-
malization and the boundary conditions, p the effective
mass, k, the axial wave vector, J (x) and Y (x) Bessel
functions of order m, are as defined in Ref. 15. The sub-
band energy E I, is related to the total energy via
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1.0—

0.8—

influence of a constant axial magnetic field 8. Although
the procedure leading to the solution of Schrodinger's
equation follows the same path as that described for the
solid cylinder, the results obtained are qualitatively and
quantitatively different.

It is convenient to work in the Landau and Lifshitz
gauge' for the vector potential A:

A=(0, —,'Bp, 0) . (3.1)

0.4—

0.0
0 50 100 150

In the above gauge, the Hamiltonian for an electron with

charge —e is

A'=(P +P, )/2@+(P&+ ,'eBp)—/2p, (3.2)

exp( —g'/2) [PM(a, b, g)+ QU(a, b, P

where p = —ifiV is the momentum operator. Again, as in
the preceding section, the effective-mass Schrodinger
equation is separable, with the details given in our previ-
ous work. ' The wave function may now be written as

FIG. 1. Lowest-order energy eigenvalues as a function of in-
0

creasing inner radius R& and outer radius R2=200 A. For
R&=0, the (1, ImI) sequence is I(0,0),(0, 1),(0,2), (1,0),
(0 3)(1 1) (1 2)(2 0)(1 3) (2 1)

s ~lmipik s
(3.3)

with P and Q constants determined via the normalization
and the boundary conditions.

In Eq. (3.3},a and b are parameters given by

(3.4)

Ak,
ET=E I+

2p
(2.3)

b = Im I+1, (3.5)

and is labeled by the azimuthal quantum number m and
the radial quantum number 1. The Bessel function Y (x )

is allowed in the case of a hollow cylinder, although for a
solid cylinder it is discarded due to its divergent behavior
at the origin.

The boundary conditions, namely, the vanishing of P
at R, and R2, lead to the following eigenvalue equation:

J (qR, )Y (qR, ) —J„(qR,)Y (qR, )=0. (2.4)

III. APPI.IKD MAGNETIC FIELD

Application of a constant axial magnetic field is known
to dramatically alter the energy spectrum in the case of a
solid cylinder. ' In this section analytical results are
presented for the case of a hollow cylinder under the

The above equation is solved numerically for the energy
eigenvalue E &. Figure 1 depicts the lowest subbands as
a function of inner radius R&, with Rz fixed at 200 A.
The energy scale is in units of V (=190 meV}, the
conduction-band offset between GaAs and
Alo 25Gao 75As, and the curves are labeled by their quan-
tum numbers (I,m ). It should be noted that the subband
(0,0) remains the ground state whatever the inner radius,
and that states with nonzero azimuthal quantum number
are doubly degenerate (E I=F. &). For small inner ra-
dius, there is an appreciable separation between states
corresponding to different m but equal I quantum num-
bers. As R, approaches R2, the states with equal I values
converge, with their energies having an (Rz —R t ) vari-
ation.

with g a dimensionless variable defined as

g=p /2a, . (3.6)

Equation (3.7) may be solved numerically by employing
the recursion relations satisfied by the confluent hyper-
geometric functions together with their integral represen-
tations. These are outlined in Appendix A. Figures 2(a)
and 2(b) show examples of the magnetic field dependence
of the subbands for 1=0 and different m values. In Fig.
2(a) the inner radius is 50 A, while in Fig. 2(b) the inner
radius is 200 A, with R2 =300 A for both. As in the case
of the solid cylinder, the I m I %0 states, which are doubly
degenerate in the absence of a field, are split and show a
linear Zeeman splitting for small 8 and a linear increase
for large magnetic field. In consequence, the negative m
states pass through a minimum at a value of 8 given by

m'(p )B=Iml@e, m= —1, —2, —3, . . . , (3.8)

where 4o(=h/e) is the elementary flux quantum and

(p ) is the expectation value of p. Table I lists the

The functions M(a, b, g) and U(a, b, g) are the confluent
hypergeometric functions, ' and, since the cylinder is hol-
low, U(a, b, g) is an allowed solution. For the solid
cylinder, U( ab, g) is divergent at the origin.

The following dispersion relation follows from the ap-
plication of the boundary conditions:

M(a, b, R f l2a, ) U(a, b, R 2 /2a, )

M(a, b, R 2 /2a—, )U(a, b, R t /2a, ) =0 . (3.7)
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values of B, (p ), and n (p )B/4&o at the minima of Fig.
2(b), the value of (p ) being evaluated numerically using
the normalized wave functions. It is seen that to an ex-
cellent approximation, (3.8) is satisfied. In fact, a simple
semiclassical argument may be invoked to derive (3.8)
and this is outlined in Appendix B.

Just as with the solid cylinder, the minimum for the
m (0 states occurs when

~
m

~
fiux quanta are contained

within the electron's cyclotron radius. There is, however,
an important and striking difference between the hollow
and solid cylinders. For the latter, the ground state is al-
ways (0,0). For the hollow cylinder, however, (0,0) is the
lowest subband at low fields, but at higher fields is re-
placed by (0,—I) which in turn is replaced by (0, —2) as

2.10
4.15
6.30
8.35

10.45
12.55

0.70
0.70
0.70
0.70
0.70
0.70

1.00
1.98
3.00
3.99
4.99
5.99

TABLE I. Values of the minimum B, (p2), and vr(p2)B/4o
corresponding to Fig. 2(b).

B (T)

0.4—

0.3—

E/V 0.2—

0. 1

0.0
I

10

~(T)
20

0
0.17 0.37 0.58

p/Rs
0.79 1.00

0.36—

10T

0.34—

0.30—

(b)

0.28
0

l

10

FIG. 2. The 1=0 subband energies as a function of axial field
B for (a) R

&

=50 A and (b) R
&
=200 A with R2 =300 A in both

cases. The dashed curves correspond to m &0 and the solid
curves to m ~ 0. At B=0 the ~rn

~
values are (a) 0-6, (b) 0—3.

0
0. 1 7 0.37

I

0.58

p/R.

0.79 1.00

FIG. 3. Normalized radial 1=0 wave functions for R
&
=50

A, R &
=300 A with (a) m =0 and (b) m = —1 ~ The values of the

applied magnetic field are as indicated.
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0
0.17 0.37 0.58

p/Rz
0.79 1.00

the field increases further, and so on. This is solely the
result of having an inner radius R „which acts as a lower
bound for the cyclotron radius. As the magnetic field is
increased, the (0,0) wave function, as is demonstrated
later, is "squeezed" towards the inner wall, and hence its
energy increases rapidly. Hence the (0, —1) state be-
comes the ground state. It is interesting that qualitative-
ly similar features are predicted for a solid cylinder con-
taining two interacting electrons. ' Here the two-particle
wave function has a zero on the axis due to the Coulomb
repulsion. This is analogous to the forbidden region in
the one-electron system considered here (p &R t ). The

successive substitution of the ground state occurs at
lower magnetic fields for Fig. 2(b), (Rt =200 A), com-
pared to Fig. 2(a) where R, =50 A due to the larger
inner radius of the former.

It should be emphasized here that these minima in the
energies occur in systems with spherical symmetry also.
In fact, Praddaude' predicted minima in the negative m
states for hydrogenlike atoms in an intense magnetic
field.

To conclude this section, the effect of an axial magnetic
field on the wave functions is considered for the various
states of a hollow cylinder which corresponds to the sub-
band spectrum depicted in Fig. 2(a). Figures 3(a) and 3(b)
show the effect of the axial magnetic field (B=0.5, 5, and
10 T) on the lowest-energy m =0 and —1 states, respec-
tively. As expected on physical grounds the wave-
function peak shifts towards the inner radius of the
cylinder as the field is increased, hence the increase in the
energy.

Figures 4(a) and 4(b) show the 1=0 radial wave func-
tions corresponding to the different azimuthal quantum
numbers (lm l

=0, 1,2, 3) for low magnetic fields (B=0.5
T) and for a higher magnetic field (B= 10 T), respective-
ly. The wave-function peak shifts away from the inner
radius, towards the center of the cylindrical shell as lm l

increases due to the increase in the angular momentum.
Clearly, for a given magnetic field, the lowest nonzero m
can be found for which the cyclotron radius of the elec-
tron is the allowed quantized semiclassical orbit. The
corresponding energy subband, in reference to Fig. 2(b),
will consequently become the ground state.

Figure 5 illustrates some higher-order wave functions
having azimuthal quantum number m =2 for B=10 T.
The radial quantum number is essentially a count of the

0
0.17 0.58 0.79 1.00 —2

0.17 0.37 0.58
P/Rz

0.79 1.00

FIG. 4. Normalized 1=0 radial wave functions for R I =50 A0
and R2 =300 A at different constant applied magnetic fields (a)
8=0.5 T; (b) B=10 T, showing the wave-function peak shift
away from the inner radius with increasing lm l

=0, 1, 2, and 3
(as indicated).

FIG. 5. Normalized m= —2 radial wave functions corre-
sponding to the different radial quantum numbers l=0 (full
curve); l =1 (small dash), and l =2 (large dash). The other pa-

0 0
rameters are Rl =50A, R&=300A, and B=10T.
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magnetic field is applied to a one-dimensional constric-
tion is the most relevant.
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APPENDIX A

0
0.67 0.75 0.92 1.0.0

This is a brief comment on how the confluent hyper-
geometric functions were evaluated since they are not
available in standard libraries. The strategy adopted in
evaluating these functions is the same for both. It is
therefore sufficient to consider only one of them, U, say.
In the notation of Ref. 15,

U(a, b,z)= e "t' '(1+t)" ' 'dt (Al)
1

I (a) o

FIG. 6. Normalized lowest subband radial wave function for
a 0

R, =200 A, R& =300 A corresponding to the range of B and m
values (8 ~ 6 T and ~m ~

~ 3) for which confinement of the elec-
tron is mainly by the cylindrical shell walls, and not the (low)
magnetic field.

number of nodes the wave function has. Finally, Fig. 6
shows the lowest subband wave function corresponding
to Fig. 2(b) (R, =200 A; R z =300 A) for a magnetic field
8=0.5 T. For this pair of radii, confinement is mainly
by the cylindrical shell walls and the wave function shows
no dependence on either moderate values of B ( ~ 6 T) or
moderate m ( ~m ~

~ 3).

IV. CONCLUSIONS

Analytic solutions of the one-electron effective-mass
Schrodinger equation have been presented for a hollow
cylinder. The energy spectrum was investigated both
without and with an applied constant axial magnetic
field. In the absence of a magnetic field, the lowest-
energy m =0 subband is always the ground state whatev-
er the values of the radii. This is also true for the solid
cylinder and remains true for the solid cylinder even with
an axial magnetic field. ' The application of an axial mag-
netic field to a hollow cylinder leads to a drastic
modification in the subband spectrum. In particular,
there is a succession of ground states corresponding to
m =0, —1, —2, . . . as the field is increased, although the
radial quantum number remains zero. This behavior is
analogous to that predicted for two electrons in a solid
cylinder interacting via their Coulomb potential. Fur-
thermore, just as with the solid cylinder, the negative m
states have a minimum in their variation with magnetic
field at a field corresponding to

~
m

~
fiux quanta contained

within the cyclotron radius.
An extensive list of recent experimental references is

given in our previous publication. ' In particular, the re-
cent investigation by Patel et al. ' in which an in-plane

(A3)

where a and pj are factors accumulated from the use of
the recursion relation j times. Once the necessary num-
ber of iterations has been made, the integral representa-
tion for U, Eq. (Al), can then be applied as follows:

a. 00

U(a, b, z)= 1 e t + (1+t} ~ dt
I (a+1+j) o

+ e
—ztta+ j+1

I (a+2+j) o

X(1+ }" ' ' d

(A4)

For purposes of the numerical work carried out here,
I (a ) U(a, b,z ) was calculated rather than U(a, b, z ) itself.
Such a procedure only modifies the factors multiplying
the integrals.

The M(a, b, z) function can be evaluated in exactly the
same way as above, but is subject to the condition
b &a &0. A suitable recursion then is one that incre-
ments both a and b provided that ~a~ is not too large in

which case it may be necessary to use more than one re-
cursion relation. The series representation for the M
function is useful when the a parameter is negative and in
particular for small argument, z, since convergence is
then fast and good accuracy can be reached by taking a
reasonably small number of terms.

subject to the constraint that a & 0; z & 0. The parameter
given by Eq. (3.4), however, is negative for a wide range
of magnetic fields. In order to satisfy the condition that
a & 0, the following recursion was used iteratively on it-
self.

U(a, b,z)+[b —z —2(a+1)]U( +al, b, z)

+(a+1)(2+a b) U(a—+2,b, z) =0 . (A2)

Now, after j ~ ~a
~

iterations, the equation for U becomes

U(a, b,z)=a U(a+1+j, b, z)+pj U(a+2+j, b, z),
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APPENDIX B 29.85

Here a semiclassical derivation of Eq. (3.8) is outlined
in a simple way. An electron with charge —e is con-
strained to move on a plane with a magnetic field B in the
z direction perpendicular to the plane. The canonical
momentum p is 29.70—

p=pv+e A, (Bl)

where v is the velocity and A the vector potential which
is given by Eq. (3.1). For an electron with negative az-
imuthal quantum number the velocity and the vector po-
tential lie in opposite directions, hence

29,55—

p = —pu+ —,'eBp= —
—,'peB .

The angular momentum J is then simply

(B2)

J=—
—,'p eBz . (B3)

From the correspondence principle, the magnitude of the
angular momentum is a multiple of A for large quantum
numbers, viz. ,

e~p & = Im lh, m =0, —1, —2, —3 . (B4)

Equation (B4) is the semiclassical analog to (3.8) and just
describes the quantized orbits of a classical electron in a
magnetic field. Equation (B4) is exact for large quantum
numbers.

It is worth pursuing the argument further by consider-
ing a thin cylindrical shell R

&

——R2 =R. Then, from Eq.
(B4) the allowed cyclotron radius for a given m decreases
as B increases. The ground state is then determined by
the m value which corresponds to the orbit closest to R2.
This gives a semiclassical description of the successive
ground states as a function of B discussed in the text.
Furthermore, within this semiclassical framework, the

29.40 I

B(T)
10 15

FIG. 7. Variation of the minimum energies (dots) as a func-
tion of B (the lines are a guide to the eye). The lowest energy
corresponds to m =0, then m = —1, and so on.

energies at these minima are given by

E;„=Im leo, =
21M

Figure 7 illustrates the variation of the minimum energy
of the various m & 0 states as a function of magnetic field
using the full quantum-mechanical calculation described
in the text for R

&
=200 A and R2 =300 A. It is seen that

variation of E;„with 8 follows Eq. (B5) to a good ap-
proximation, even for small m values.
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