
PHYSICAL REVIE% B VOLUME 46, NUMBER 23 15 DECEMBER 1992-I

Conduction subbands in a GaAs/Al„Ga, „As quantum well: Comparing different k p models
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The energy dispersion of the conduction subbands in a GaAs/Al Ga& As superlattice is calculated

by using a k-p Hamiltonian that includes different number of bands. The most accurate model includes

the I 6, I 7, I 8, I 7, and I 8 bands. The resulting subband dispersion is compared with that obtained when

the coupling of the I 6 band with the I 7 and I 8 and/or I 7 and I 8 bands is neglected. We also consider
the 2 X 2 k p Hamiltonian with terms up to the order k . The subband dispersions are analyzed quanti-

tatively by fitting the numerical result to the analytical expression obtained with the invariant expansion

technique. The subbands are found to be significantly different with the various models. The differences

are ascribed to the different bulk band dispersions obtained with different k.p Hamiltonians and to the
variation of the band parameters in the well and barrier materials.

Many authors have calculated the dispersion of the
conduction subbands in multiple-quantum-well struc-
tures. In the simplest model, the Schrodinger equation is

solved for one particle of mass m in a square well. Later
works show the importance of the difference between the
effective masses in the well and in the barrier for the
determination of the energy levels. ' The effect of the
nonparabolicity of the bulk conduction band was taken
into account with various levels of sophistication. Refer-
ence 1 uses an energy-dependent effective mass obtained

by projecting the k p Hamiltonian resulting from the
coupling with the light hole and the split-off bands on the
conduction-band subspace. Second-order terms in k were

neglected in this procedure. Coupling with the light hole
and the split-off bands was fully included in Refs. 2 and 3.
Reference 4 takes into account the nonparabolicity of the
bulk conduction band by using the energy dispersion rela-

tion that includes terms up to the order k, but the spin-

splitting term was neglected. A similar procedure was

follow:d in Ref. 5, where the bulk 2X2 k p Hamiltonian
is used fo. the I 6 conduction-band subspace with terms

up to k . In tni~ way the spin splitting is also obtained.
For bulk GaAs it was shown in Ref. 6 that the cou-

pling of the I 6 conduction band, not only with the I 7

and I 8 valence bands but also with the I'7 and I'8 con-
duction bands, is important to describe its nonparabolici-
ty and warping accurately. This leads to a 14X14 k.p
Hamiltonian. The aim of this paper is to present the sub-
band energy dispersion for a quantum well obtained with
a 14X14 Hamiltonian and to compare it to the results
obtained when fewer bands are included. I shall also con-
sider the case of the 2 X 2 Hamiltonian with terms up to
k as in Ref. 5.

The results obtained here are of significance, e.g. , for
the evaluation of the width of the intersubband absorp-
tion line. It was shown that for this purpose the effective
masses of the subbands involved have to be known accu-
rately.

Let us consider a GaAs/Alp 35Gap65As superlattice

with L =80 A and Lb=250 A for the widths of the

wells and the barriers, respectively. The effective-mass
equation to be solved was derived in Ref. 8 and is written
as follows:

N

5„„E„(z)+ — E—
n' 2mp 2mp

a a
+P„„.(z) k~~+e, . + g I f (z) k~~+e,

l

a.
X kll+

l p
y„.(z}=0, (1)

where E„(z) are the band-edge energies of the N bands
considered. When z is in the well (barrier) the values to
be taken are those for GaAs (Alo»oao 65As). At the in-

terface the variation is assumed to be abrupt. The
momentum matrix elements P„„,(z) and the renormaliza-
tion constants I f (z) are defined in a similar way. The
momentum parallel to the layers is k~~', e, is the unit vec-
tor in direction z (perpendicular to the layers), and mo is

the mass of the free electron.
As is well known from Ref. 9, the matrix of differential

operators acting on the envelope functions qr„(z) in the
effective-mass equation is the bulk k p Hamiltonian with

0, /i replacing k, . The operator acting on y„as it is writ-
ten in (1) is not Hermitian. It can be made so by sym-
metrizing the terms containing derivatives and space-
varying coeIIicients. For the term with P„„.(z) it can be
shown that the terms to be added for symmetrization are
of the same order of magnitude as those neglected when
deriving the effective-mass equation. For the term with
I „g(z), Ref. 10 shows that the Hermitian form is readily
obtained when applying the Lowdin renorrnalization pro-
cedure.

Here I use the bulk k.p Hamiltonian of Ref. 6 and in-

clude the coupling term 6 between the I » and I »
bands, originating from the spin-orbit coupling potential
in the crystal Hamiltonian. " The notation for the band-
edge energies and for the momentum matrix elements is
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given in Fig. 1.
The numerical values for the momentum matrix ele-

ments P and P' are obtained from the effective mass m,*

and Lande factor g,' at I'&.'
mp 2mp 2P2—1= +
m 3A

P2
1

Ep+~p

2m p 2P2 pp2

+
3g Ep +/Q Ep EQ EQ
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gp

'(14B )
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2mp P, P2
3&2 Ep+ hp Ep

2mo P
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Ep —Ep
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+g'(14B)
7

(3)

with

P2 =P —q2P', P1 =P+g,P',
P2 =P'+q2P, P1 =P' —g,P,

where

(4)

2h
3(EO +bO) 3(EO+ bo)

Expressions (2) and (3) are identical to those found in Ref.

12 if ri& and F12 are zero. As seen from (5), the terms with

g1 and g2 come from the k-independent coupling of the
r» with the I » bands.

The renormalization constants have different values de-
pending on the number of bands N considered. Their ex-
plicit expressions can be found in Table I. The Luttinger
parameters y' ' (v= 1, . . . , 3) given in the literature are
defined for a 6-band model where the coupling of the
valence with the conduction bands is neglected. The re-
normalization constant in the diagonal terms of the 2X2
block for the I 6 subspace is A ', and 8 is the renormaliza-
tion constant appearing in the blocks coupling the I 6 to
the I 8 and I 7 bands. ' The latter constant is responsible
for the spin splitting in the 8-band model where the cou-
pling with the I'7 and I'8 bands is neglected.

The numerical values of all the band parameters at
T =4.2 K for the well and the barrier bulk materials are
given in Table II together with the references from which
they were taken. For AlQ 35Gap 65As the following band
parameters are obtained from a linear interpolation be-
tween the values for GaAs and A1As: hp, Ep, hp, g,*, y„
y2, and y3. When no data for AlAs are available in the
literature (for b, , Q, and A " '), we take the same
values as for GaAs. For the evaluation of P and P' from
(2) and (3), we use C" '=0.02 for both GaAs and
Alo 35Gap 65As.

' As mentioned in the Introduction, we
also need the bulk 2 X 2 k.p Hamiltonian for the I 6 sub-

space with terms up to the order k . It has been derived,
e.g., in Ref. 5, and is given by the following expression:

fi kH' '(k)= +ak +P(k k +k k +k k ) 1
m

pr

'0+

+yIcr k (k k )+cr kr(k k )

+o,k, (k, —k )I, (6)

where 1 is the 2X2 unit matrix and 0. , o, and 0., are
the Pauli matrices.

Diagonalizing (6) and fitting the resulting expressions

TABLE I. Renormalization constants for the various k.p
models considered.

4mpA=, [2Pg/Eo+Pi/(ED+60)],
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4mp
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FIG. 1. Schematic band structure near k =0 for GaAs and
Al Gal „As.
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TABLE II. Band parameters for GaAs and Alp 35Gap 65As at T =4.2 K.

14 bands
GaAs Al„Ga, „As

8 bands
GaAs Al„Ga& As

6 bands
GaAs A1„Ga& As

r1
r2
r' .2A' (eVA )

B (eVA )

—0.58
—0.50
—0.44
—6.477'

0

0.16
—0.02
—0.04
—6.477'

0

0.91
—0.87
—0.07

—10.168
13.79

1.64
—0.39

0.33
—6.994

5.56

6.85
2.10
2.90

53.570
0

559
159
2.31

36.106
0

Ep (eV)
5p (eV)

Ep (eV)
5p (eV)

(ev)
m,* (mp)

gc
P (eV A)
P' (eVA)
Q (eV A)

'Reference 12.
Reference 15.

'Reference 11.
Reference 17.

'Reference 16.

1 519
0 341
4.488b

0 171
—0.085'

0.0664'
—0.44b

10.16
3.37
6.26'

1.972'
0.317
4.527b

0 171
—0.085'

0.0955'
0.81
9.44
1.17
6.26d

H'„„' z;ltll, . y„(z)=Ey„(z), (7)

for the eigenvalues to the energy dispersion obtained by
diagonalizing numerically the 14X14 k p Hamiltonian
yields the coefficients m,*, a, p, and y. Table III presents
these coefficients for GaAs and Alo 35Gao 65As at T =4.2
K. The values obtained for GaAs are close to those
found in Ref. 6. Expression (6) with the values in Table
III reproduces the numerical energy dispersion up to
k =0.05 A ' with a maximum deviation of 0.5 meV.

With (6) we can write an efFective-mass equation very
similar to (1):
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0) —0.01
O)I

UJ
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) j I
I
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I

—CB1
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where the z dependence in 0' ' indicates that the band
parameters m,*, u, p, and y are those of GaAs
(Alo»Gao 6~As) for z in the well (barrier). As for (1) the
operator on y„can be made Hermitian by symmetrizing
the terms with derivatives and space-varying coefficients.

The effective-mass equation [(I) or (7)] is solved by ex-

panding the envelope functions and the space-varying
band parameters on a plane-wave basis. It was found
that for the structure considered here the convergence on
the eigenvalues is achieved with 21 plane waves with a
maximum estimated error of 0.5 meV.

Figure 2(a) shows the energy dispersion of the average
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m,* (mp)

~ (eVA')

P (eVA )

r (eVA')

GaAs

0.0669
—1585
—1445

18.3

Alp 35Gap 6,As

0.0958
—748
—985

7.6

TABLE III. Energy dispersion parameters for the conduc-
tion band for GaAs and Alp 35Gap 65As at T =4.2 K.

FIG. 2. (a) Difference between the subband energy dispersion
averaged over the two spins obtained with the 14B model and

that obtained with the SB model (solid line), the 6B model

(dashed line), and the 6C(k ) model (dash-dotted line). (b) Spin

splitting of the first and second conduction subband in the

upper and lower half-plane, respectively, solid line, 14B model;
dashed line, 8B model; and dash-dotted line, 6B(k ) model.
The structure is a GaAs/Alp 35Gap 6&As superlattice at T=4.2

K, L =80 A and Lb =250 A are the widths of the wells and the

barriers, respectively.
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Ak
Z (I )=E,'J'+ " +a k'+P k'k'

J

+ iyIJ'(k„ik, )
—iyj''—k„k,(k„+ik, )

+y3'k (k ik )i .— (10}

This expression is fitted to the subbands obtained by solv-
ing the effective-mass equation. The resulting subband
parameters Eo'i', m', a, p, and y',I' (v=1, . . . , 3) are
presented in Table V.

Figure 2(a) shows the difference between the subband
dispersion averaged over the two spins for all the models
considered and that for the 14-band (148) model. In the
6-band (68) model, the I'6 conduction band is uncoupled

over the two spin bands and Fig. 2(b) gives the spin split-
ting. For a more quantitative overview of the results the
subband energy dispersion was fitted to the analytical ex-
pression obtained with the invariant expansion technique
(see, e.g., Ref. 5).

The symmetry group for the superlattice is Dzd. The
corresponding combinations of the momentum k with the
irreducible representations to which they belong are list-
ed in Table IV. The set of basis matrices in the two-
dimensional subspace associated with each subband in-
cludes the 2 X 2 unit matrix (belonging to I,} and the
Pauli matrices (belonging to I ~). The 2 X 2 k p Hamil-
tonian for the subband number j is obtained from the
multiplication tables for the irreducible representations of
the group D,„:"

Ak
H'4'(I )= E, + ' +a k4+P .k'k' 1

2m *.

J

+0,0.,+0 o~,
with

n„=y,j k„+y', k, k,'+y", kllk„,
(9)

g =y'~'k +y'J'k k +y'~'k kv2~&3 ill
The eigenvalues of H' ' are given by the following expres-
sion:

TABLE IV. Combinations of the momentum k and &he irre-

ducible representations to which they belong for the D,d sym-

metry group.

1,kll, kll, k»ky
k„k
( k ~ ky )~ k

ll
( k» ~ ky )~ k» ky ( ky ~ k» )

from all the other bands. We see that the curvature of
the two subbands is larger than in the 148 model. The
reason for this is that the nonparabolicity of the conduc-
tion band has been neglected. The effective mass in the
first subband is smaller than that in the second one be-
cause the first state is better confined within the well ma-
terial which has a smaller effective mass. Table V shows
that warping and spin splitting are absent as expected
since these properties are strictly associated with the cou-
pling of the I 6 with other bands. The subbands are
slightly nonparabolic, which is an effect of the confining
potential.

In the 8-band (88) model, the I 6 conduction band is
coupled with the I 7 and I 8 valence bands. From Fig. 2
and Table V we see that the energy at k =0, the effective
mass, the nonparabolicity, the warping, and the spin
splitting for the two subbands are smaller than in the 148
model. This is a direct consequence of the smaller non-
parabolicity, warping, and spin splitting in the bulk con-
duction band for the 88 model. The effective masses are
larger than in the 68 model because the bulk conduction
band is nonparabolic.

In the 68 model with terms of the order up to k
[68 (k )], the curves in Fig. 2 are shown only up to about
k =0.04 A ' because the band parameters of Table IV
were obtained by fitting the numerical curves up to only
k =0.05 A '. We see that the effective masses are slight-
ly smaller and that the nonparabolicity and warping are
larger than in the 148 model; the spin splitting is almost
the same, while the energies at k =0 are significantly
smaller. It is interesting to note that the origin of these
differences is not that the bulk k p Hamiltonian gives a
different dispersion in the 68 (k ) model than in the 148
model. The differences come from the way the coupling

TABLE V. Energy dispersion parameters for the two conduction subbands in a
0 0

GaAs/A1Q 35GRQ 65As superlattice at T=4.2 K; L =80 A and Lb =250 A are the widths of the wells

and the barriers, respectively.

14B CB1
CB2

EQ
(meV)

45.8
166.6

m

(mQ)

0.0722
0.0874

a
(evA. )

—1344
—853

(eVA )

—1340
—1144

r1
(eV A)

0.026
0.086

r'3
(ev A')

—36.3
—27.0

r'3
(eVA')

—1.63
—3.84

CB1
CB2

46.5
168.9

0.0715
0.0844

—1278
—828

—855
—706

0.011
0.036

—17.3
—11.4

—0.88
—2.21

CB1
CB2

44.2
172.2

0.0674
0.0708

—29
—148

6B(k ) CB1
CB2

42.0
156.0

0.0709
0.0872

—1601
—2028

—1419
—1357

0.018
0.082

—35.8
—33.7

0.084
11.78
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between the bands and the solution of the effective-mass
equation are related. In the 14B model they are on the
same footing: both are included in a single step that is
the diagonalization of the matrix corresponding to the
efFective-mass equation. In the 6B(k ) model the cou-
pling between the bands is first renormalized and
represented by the band parameters m *, a, P, and y.
The differential equations are solved in a second step.

For the three models compared to the 14B model we
obtained the general result that the difference is larger for
the second subband. This is expected since the second
subband state corresponds to a larger k, in the bulk band
dispersion for which the differences between the models is
larger.

In conclusion, it has been shown that the inclusion of
different number of bands in the effective-mass equation
significantly changes the subband energy dispersion in a
superlattice. I demonstrated that two distinct mecha-
nisms are responsible for these changes. First, the sub-
band dispersion is different for two models if the corre-
sponding k.p Hamiltonian yields different bulk band
dispersions. Second, I have shown that it is important to
treat the coupling between the bands and the solution of
the differential equations in the effective-mass equation
on equal footing in order to obtain accurate results.
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